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CH.1. DESCRIPTION OF 
MOTION 
Multimedia Course on Continuum Mechanics 



Overview 

1.1.  Definition of the Continuous Medium 
1.1.1. Concept of Continuum 

1.1.2. Continuous Medium or Continuum 

1.2. Equations of Motion 
1.2.1 Configurations of the Continuous Medium 

1.2.2. Material and Spatial Coordinates 

1.2.3. Equation of Motion and Inverse Equation of Motion 

1.2.4. Mathematical Restrictions 

1.2.5. Example 

1.3. Descriptions of Motion 
1.3.1. Material or Lagrangian Description 

1.3.2. Spatial or Eulerian Description 

1.3.3. Example 

2 

Lecture 5 

Lecture 1 

Lecture 2 

Lecture 4 

Lecture 3 

https://youtu.be/QMgua6RokWM#t=00m00s
https://youtu.be/TQS-Wtm0K7Y#t=00m00s
https://youtu.be/jfHm466uohs#t=00m00s
https://youtu.be/an9ZM9zoguc#t=00m00s
https://youtu.be/4uKWlR6XDC4#t=00m00s


Overview (cont’d)

1.4. Time Derivatives 
1.4.1. Material and Local Derivatives 

1.4.2. Convective Rate of Change 

1.4.3. Example 

1.5. Velocity and Acceleration 
1.5.1. Velocity 

1.5.2. Acceleration 

1.5.3. Example 

1.6. Stationarity and Uniformity 
1.6.1. Stationary Properties 

1.6.2. Uniform Properties 
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Lecture 6 

Lecture 7 

Lecture 10 

Lecture 9 

Lecture 8 

https://youtu.be/hBaFoxRH0dQ#t=00m00s
https://youtu.be/y-o6fsdFTNU#t=00m00s
https://youtu.be/r6WZotLoGsM#t=00m00s
https://youtu.be/tf8saqw8EG4#t=00m00s
https://youtu.be/N_NwTUs6Tqs#t=00m00s


Overview (cont’d)

1.7. Trajectory or Pathline 
1.7.1. Equation of the Trajectories 
1.7.2. Example 

1.8. Streamlines 
1.8.1. Equation of the Streamlines 
1.8.2. Trajectories and Streamlines 
1.8.3. Example 
1.8.4. Streamtubes 

1.9. Control and Material Surfaces 
1.9.1. Control Surface 

1.9.2. Material Surface 

1.9.3. Control Volume 

1.9.4. Material Volume 
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Lecture 12 

Lecture 11 

https://youtu.be/zqBvr6bxtZo#t=00m00s
https://youtu.be/uQxriImCifY#t=00m00s


Ch.1. Description of Motion 

1.1 Definition of the Continuous 
Medium 
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The Concept of Continuum 

 Microscopic scale: 
Matter is made of atoms which may be grouped in

molecules.
Matter has gaps and spaces.

 Macroscopic scale: 
 Atomic and molecular discontinuities are disregarded.
Matter is assumed to be continuous.
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https://youtu.be/TQS-Wtm0K7Y#t=00m00s


Continuous Medium or Continuum 

 Matter is studied at a macroscopic scale: it completely 
fills the space, there exist no gaps or empty spaces. 

 Assumption that the medium and is made of infinite 
particles (of infinitesimal size) whose  properties are 
describable by continuous functions with continuous 
derivatives. 

7 



Exceptions to the Continuous Medium 

 Exceptions will exist where the theory will not account 
for all the observed properties of matter. E.g.: fatigue 
cracks. 
 In occasions, continuum theory can be used in combination

with empirical information or information derived from a
physical theory based on the molecular nature of material.

 The existence of areas in which the theory is not 
applicable does not destroy its usefulness in other 
areas.   

8 



Continuum Mechanics 

 Study of the mechanical behavior of a continuous 
medium when subjected to forces or displacements, and 
the subsequent effects of this medium on its 
environment.  

 It divides into: 
 General Principles: assumptions and consequences

applicable to all continuous media.
 Constitutive Equations: define the mechanical behavior of

a particular idealized material.

9 



Ch.1. Description of Motion 

1.2 Equations of Motion 

10 



Material and Spatial points, 
Configuration 

 A continuous medium is formed by an infinite number of 
particles which occupy different positions in space during 
their movement over time. 

 MATERIAL POINTS: particles

 SPATIAL POINTS: fixed spots in space

 The CONFIGURATION Ωt of a continuous medium at a 
given time (t) is the locus of the positions occupied by the 
material points of the continuous medium at the given time. 

11 

https://youtu.be/jfHm466uohs#t=00m00s


Γ0 

Ω0 X 

Ω 

Γ 

x 

( ), tϕ X

Configurations of the Continuous 
Medium 

Ω or Ωt: deformed (or present) 
configuration, at present time t. 

Γ or Γt : deformed boundary. 
x : Position vector of the same 

particle at present time.  

Ω0: non-deformed (or reference) 
configuration, at reference time t0. 

Γ0 : non-deformed boundary. 
X : Position vector of a particle at 

reference time. 

 

Initial, reference 
or undeformed 
configuration 

Present or deformed 
configuration 

0 0t = → reference time [ ]0,t T∈ → current time

12 

https://youtu.be/jfHm466uohs#t=03m06s


Material and Spatial Coordinates 

 The position vector of a given particle can be 
expressed in: 
 Non-deformed or Reference Configuration

  

 Deformed or Present Configuration

[ ]
1

2

3

X
X X
X Y
X Z

   
   = = ≡   
   
   

material coordinates (capital letter)

[ ]
1

2

3

x
x x
x y
x z

   
   = = ≡   
   
   

spatial coordinates (small letter)
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https://youtu.be/jfHm466uohs#t=10m35s


 The motion of a given particle is described by the evolution 
of its spatial coordinates (or its position vector) over time. 

 The Canonical Form of the Equations of Motion is obtained 
when the “particle label” is taken as its material coordinates 

Equations of Motion 

( ) ( )
( ) { }

, ,

, 1, 2,3i i

t t

x t i

ϕ

ϕ

= =


= ∈

x xparticle label particle label

particle label

 φ (particle label, t) is the motion that takes 
the body from a reference configuration to 
the current one. 

{ }1 2 3
TX X X≡ ≡ Xparticle label

( ) ( )
( ) { }1 2 3

, ,

, , , 1,2,3

not

i i

t t

x X X X t i

x X x Xϕ

ϕ

 = =


= ∈
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https://youtu.be/jfHm466uohs#t=14m26s


Γ0 

Ω0 
X 

Ω 

Γ 

x 

( ), tϕ X

( )1 ,x tϕ−

Inverse Equations of Motion 

 The inverse equations of motion give the material 
coordinates as a function of the spatial ones. 

( ) ( )
( ) { }

1

1
1 2 3

, ,

, , , 1,2,3

not

i i

t t

X x x x t i

X x X xϕ

ϕ

−

−

 = =


= ∈
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https://youtu.be/jfHm466uohs#t=20m07s


Mathematical restrictions for φ and φ-1 
defining a “physical” motion 

 Consistency condition 
                      , as X is the position vector for t=0 

 Continuity condition 
           , φ is continuous with continuous derivatives 

 Biunivocity condition 
 φ is biunivocal to guarantee that two particles do not occupy 

simultaneously the same spot in space and that a particle does not 
occupy simultaneously more than one spot in space. 
Mathematically: the “Jacobian” of the motion’s equations  should 
be  different from zero: 

 
 The “Jacobian” of the equations of motion should be 

“strictly positive” 
  

( ),0ϕ =X X

1Cϕ∈

( ),
det 0i

j

t
J

ϕ ϕ ∂ ∂
= = > 

∂ ∂  

X
X X

( ),
det 0i

j

t
J

ϕ ϕ ∂ ∂
= = ≠ 

∂ ∂  

X
X X
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density is always positive  
(to be proven) 

https://youtu.be/jfHm466uohs#t=24m40s


Example 

The spatial description of the motion of a continuous medium is given by: 

 

 

 

 

Find the inverse equations of motion. 

( )

2 2
1 1

2 2
2 2

2 2
3 1 3

,
5 5

t t

t t

t t

x X e x Xe
t x X e y Ye

x X t X e z Xt Ze

− −

 = =
 ≡ = ≡ = 
 = + = + 

x X
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https://youtu.be/4uKWlR6XDC4


Example - Solution 

Check the mathematical restrictions: 

 Consistency Condition                  ? 

 

 

 Continuity Condition            ? 

 Biunivocity Condition  ? 
 

 

 

 

 

 Density positive ?   

 

 

( ),0ϕ =X X

1Cϕ∈

( ),
0

t
J

ϕ∂
= >

∂
X
X

( )

2
1 1

2
2 2

2
3 1 3

,
5

t

t

t

x X e
t x X e

x X t X e

−

 =


≡ =
 = +

x X

( )

2 0
1 1

2 0
2 2

2 0
1 3 3

, 0
5 0

X e X
t X e X

X X e X

⋅

− ⋅

⋅

   
   = = = =   
   ⋅ +   

x X X

1 1 1

21 2 3

2 2 2 2 22 2 2

1 2 3 2

3 3 3

1 2 3

0 0
0 0 0
5 0

t

t t t t ti

j t

x x x
X X X

e
x x x xJ e e e e e t
X X X X

t e
x x x
X X X

− −

∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂ ∂
= = = = ⋅ ⋅ = ≠ ∀
∂ ∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂

2 0tJ e= >
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Example - Solution 

Calculate the inverse equations: 

 
 
 

  

( )

2
1 1

2
2 2

2
3 1 3

,
5

t

t

t

x X e
t x X e

x X t X e

−

 =


≡ =
 = +

x X

2 21
1 1 1 12

t t
t

xx X e X x e
e

−= ⇒ = =

2 22
2 2 2 22

t t
t

xx X e X x e
e

−
−= ⇒ = =

( )( )2 2 2 2 43 1
3 1 3 3 3 1 3 12

55 5 5t t t t t
t

x X tx X t X e X x x e t e x e tx e
e

− − − −−
= + ⇒ = = − = −

( )

2
1 1

1 2
2 2

2 4
3 3 1

,
5

t

t

t t

X x e
t X x e

X x e tx e
ϕ

−

−

− −

 =


≡ = =
 = −

X x
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Ch.1. Description of Motion 

1.3 Descriptions of Motion 
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Descriptions of Motion 

 The mathematical description of the particle properties 
can be done in two ways: 
 
Material (Lagrangian) Description 

 
 Spatial (Eulerian) Description 

21 

https://youtu.be/an9ZM9zoguc#t=00m00s


Material or Lagrangian Description 

 The physical properties are described in terms of the 
material coordinates and time. 
 

 It focuses on what is occurring at a fixed material point (a 
particle, labeled by its material coordinates) as time 
progresses. 

 
 Normally used in solid mechanics. 

 
 

22 



 The physical properties are described in terms of the spatial 
coordinates and time. 
 

 It focuses on what is occurring at a fixed point in space (a 
spatial point labeled by its spatial  

   coordinates) as time progresses. 
 

 
 Normally used in fluid mechanics.  

 
 

Spatial or Eulerian Description 

23 



Example 

The equation of motion of a continuous medium is: 

 

 

 

Find the spatial description of the property whose material description is: 

( ),   
x X Yt

t y Xt Y
z Xt Z

= −
= ≡ = +
 = − +

x x X

( ) 21
X Y ZX,Y,Z,t

t
ρ + +

=
+
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https://youtu.be/QMgua6RokWM#t=00m00s


Example - Solution 

Check the mathematical restrictions: 

 Consistency Condition               ? 

 

 

 Continuity Condition            ? 

 Biunivocity Condition  ? 
 

 

 

 

 Any diff. Vol. must be positive                   ?   

 

 

( ) XX =0,φ

1C∈φ

( ) 0,
>

∂
∂

=
X
X tJ φ

( )
0

, 0 0
0

X Y X
t X Y Y

X Z Z

− ⋅   
   = = ⋅ + = =   
   ⋅ +   

x X X

( ) 2

1 0
1 0 1 1 1 1 1 0
0 1

i

j

x x x
X Y Z t

x y y yJ t t t t t
X X Y Z

tz z z
X Y Z

∂ ∂ ∂
∂ ∂ ∂ −

∂ ∂ ∂ ∂
= = = = ⋅ ⋅ − ⋅ − ⋅ = + ≠ ∀
∂ ∂ ∂ ∂

−∂ ∂ ∂
∂ ∂ ∂

21 0J t= + >

( ),   
x X Yt

t y Xt Y
z Xt Z

= −
= ≡ = +
 = − +

x x X
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Example - Solution 

Calculate the inverse equations: 

 
 
 

  

( ),   
x X Yt

t y Xt Y
z Xt Z

= −
= ≡ = +
 = − +

x x X

2
21

x X Yt X x Yt
y Y y xtx Yt Yt Y y xt Yy Y t ty Xt Y X

t

= − ⇒ = + 
− −⇒ + = ⇒ + = − ⇒ =−  += + ⇒ = 

2 2

2 2 21 1 1
y xt x xt yt xt x ytX x Yt x t

t t t
− + + − + = + = + = = + + + 

2 2

2 21 1
x yt z zt xt ytz Xt Z Z z Xt z t

t t
+ + + + = − + ⇒ = + = + = + + 

( )

2

1
2

2 2

2

1

,
1

1

x ytX
t

y xtt Y
t

z zt xt ytZ
t

ϕ−

+ = +
−≡ = = +

 + + +
= +

X x
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Example - Solution 

Calculate the property in its spatial description: 

 
 
 

  

( )
( )

2 2

2 2 2 2 2

22 2 2

1 1 1
1 1 1

x yt y xt z zt xt yt
t t tX Y Z x y yt yt z ztX,Y,Z,t

t t t
ρ

 + − + + +   + +     + + ++ + + + + + +     = = =
+ + +

( )

2

1
2

2 2

2

1

,
1

1

x ytX
t

y xtt Y
t

z zt xt ytZ
t

ϕ−

+ = +
−≡ = = +

 + + +
= +

X x

( ) ( ) ( )
( )

( )
2 2

22 2

1 1
 

1 1

x y t t z tX Y ZX,Y,Z,t x, y,z,t
t t

ρ ρ
+ + + + ++ +

= ⇒ =
+ +

27 



Ch.1. Description of Motion 

1.4 Time Derivatives 

28 



Material and Local Derivatives 

 The time derivative of a given property can be defined 
based on the: 
Material Description Γ(X,t) TOTAL or MATERIAL DERIVATIVE

 Variation of the property w.r.t. time following a specific particle
in the continuous medium.



 Spatial Description γ(x,t)  LOCAL or SPATIAL DERIVATIVE
 Variation of the property w.r.t. time in a fixed spot of space.



( ), t
t

∂Γ 
≡ → ∂ 

X partial time derivative of the 
material derivative

of the properymaterial description 

( ), t
t

γ∂ 
≡ → ∂ 

x partial time derivative of the 
local derivative

 of the properyspatial description

29 
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Convective Derivative 

 Remember: x=x(X,t), therefore, γ(x,t)=γ(x(X,t),t)=Γ(X,t) 
 The material derivative can be computed in terms of 

spatial descriptions: 

Generalising for any property:

( ) ( )

( )( ) ( )




( )
 

( , ) ( , )
( , ) ( , )

( , ), ,

, ,
, ,

not not

i

i

i t i
t t

t t

d D tt t
dt Dt t
t txd t t

dt t x t t t
γγ

γ

γ γ

γ γγ γγ

         

∂
∂ ⋅

∂Γ
→ = = = =

∂
∂ ∂∂∂ ∂ ∂

= = + ⋅ = + ⋅ =
∂ ∂ ∂ ∂ ∂ ∂

x x v x
v x x

Xx x

x x xx X
x



material derivative

∇∇
∇

( ) ( ) ( ) ( ), ,
, ,

d t t
t t

dt t
χ χ

χ
∂

= + ⋅∇
∂

x x
v x x

REMARK  
The spatial Nabla operator 
is defined as: êi

ix
∂

∇ ≡
∂

material 
derivative 

local 
derivative 

convective rate of 
change 

(convective derivative) 30 

https://youtu.be/y-o6fsdFTNU#t=00m00s


Convective Derivative 

 Convective rate of change or convective derivative is 
implicitly defined as: 

 
 

 The term convection is generally applied to motion related 
phenomena.  
 If there is no convection (v=0) there is no convective rate of change 

and the material and local derivatives coincide. 
 

( )⋅∇ •v

( ) ( ) ( )0
d

dt t
• ∂ •

⋅∇ • = =
∂

v

31 



Example 

Given the following equation of motion: 

 

 

 

And the spatial description of a property                               ,  

Calculate its material derivative. 

 

Option #1: Computing the material derivative from material descriptions 

Option #2: Computing the material derivative from spatial descriptions 

 

 









+=
+=

++=
≡

XtZz
ZtYy

ZtYtXx
t

3
2),(Xx

( ) tyxt 323, ++=ρ x
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https://youtu.be/N_NwTUs6Tqs#t=00m00s


Example - Solution 

Option #1: Computing the material derivative from material 
descriptions 

Obtain ρ as a function of X by replacing the Eqns. of motion into ρ(x,t) : 
 
 
Calculate its material derivative as the partial derivative of the material 
description: 









+=
+=

++=
≡

XtZz
ZtYy

ZtYtXx
t

3
2),(Xx

( ) tyxt 323, ++=ρ x

( ) ( ) ( ) ( ) ( ), ( , ), , 3 2 2 3
3 3 2 7 3

t t t t X Yt Zt Y Zt t
X Yt Y Zt t

ρ ρ ρ= = = + + + + +

= + + + +

x x X X

( )
( )

( )
,

, ,
3 3 7

x x X

x X

t

d t t
Y Z

dt t
ρ

=

ρ ∂
= = + +

∂

( )
( )

( ) ( )
,

, ,
3 3 2 7 3 3 7 3

x x X

x X

t

d t t
X Yt Y Zt t Y Z

dt t t
ρ

=

ρ ∂ ∂
= = + + + + = + +

∂ ∂
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Example - Solution 

Option #2: Computing the material derivative from spatial 
descriptions 

 

Applying this on ρ(x,t) : 

( ) ( ) ( ) ( ), ,
, ,

d t t
t t

dt t
ρ ρ

ρ
∂

= + ⋅∇
∂

x x
v x x

( ) ( )

( ) ( ) ( ) ( ) ( ) [ ]

( ) ( ) ( ) ( ) ( ) ( ) ( )

[ ]

,

,
3 2 3 3

, , 2 , 3 , 2 , 3 2
3

, , ,
, , , 3 2 3 , 3 2 3 , 3 2 3

3
3, 2, 0 2

0

x x X

x

xv x

x x x
x

T
T

T T

T

t

t
x y t

t t
Y Z

t X Yt Zt Y Zt Z Xt Y Z Z X Z
t t t t

X

t t t
t x y t x y t x y t

x y z x y z

=

∂ρ ∂
= + + =

∂ ∂
+ 

∂ ∂ ∂ ∂   = = + + + + = + =   ∂ ∂ ∂ ∂    

∂ρ ∂ρ ∂ρ   ∂ ∂ ∂
∇ρ = = + + + + + + =   ∂ ∂ ∂ ∂ ∂ ∂  

 
 = = 
 















 
 









+=
+=

++=
≡

XtZz
ZtYy

ZtYtXx
t

3
2),(Xx

( ) tyxt 323, ++=ρ x

34 
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Example - Solution 

Option #2 
The material derivative is obtained: 









+=
+=

++=
≡

XtZz
ZtYy

ZtYtXx
t

3
2),(Xx

( ) tyxt 323, ++=ρ x

( )
( )



,

3
,

3 [ , 2 , 3 ] 2 3 3 3 4
0

( )

x x X

x

v

v Tt

d t
Y Z Z X Y Z Z

dt

ρ

ρ
 
  

 
  

=

 
ρ  = + + = + + + 

  

⋅









( )
( ),

,
3 3 7

x x X

x

t

d t
Y Z

dt =

ρ
= + +
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Ch.1. Description of Motion 

1.5 Velocity and Acceleration 

36 



Velocity 

 Time derivative of the equations of motion. 
Material description of the velocity:

Time derivative of the equations of motion 

 

 Spatial description of the velocity:
Velocity is expressed in terms of x using the inverse equations of 
motion: 

( )( ) ( ), , ,t t tV X x v x

( ) ( )

( ) ( )

,
,

,
, 1, 2,3i

i

t
t

t
x t

V t i
t

∂
= ∂


∂ = ∈ ∂

x X
V X

X
X  

REMARK 
Remember the 
equations of motion 
are of the form: 

( ) ( ), ,x X x X
not

t tϕ= =

37 

https://youtu.be/tf8saqw8EG4#t=00m00s


 Material time derivative of the velocity field. 
 Material description of acceleration:

Derivative of the material description of velocity: 

 Spatial description of acceleration:
A(X,t) is expressed in terms of x using the inverse equations of motion: 

Or a(x,t) is obtained directly through the material derivative of v(x,t): 

Acceleration 

( ) ( )

( ) ( )

,
,

,
, 1, 2,3i

i

t
t

t
V t

A t i
t

∂
= ∂


∂ = ∈ ∂

V X
A X

X
X  

( )( ) ( ), , ,t t tA X x a x

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

, ,
, , ,

v , v , v, v , , 1, 2,3i i i
i k

k

d t t
t t t

dt t
d t t

a t t t i
dt t x

∂
= = + ⋅∇ ∂

 ∂ ∂ = = + ⋅ ∈
 ∂ ∂

v x v x
a x v x v x

x x
x x x  

38 
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Example 

Consider a solid that rotates at a constant angular velocity ω and has the 
following equation of motion: 

 

Find the velocity and acceleration of the movement described in both, material 
and spatial forms. 



( )
( )

  sin
( , , )

  cos

x R t
R t

y R t

ω

ω

= + φφ → 
= + φ

→

x
label of 
particle

(non - canonical equations of motion)
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Example - Solution 

Using the expressions 

 

The equation of motion can be rewritten as: 

 

 

For t=0, the equation of motion becomes:  
 

Therefore, the equation of motion in terms of the material coordinates is: 

( )
( )

sin sin cos cos sin

cos cos cos sin sin

a b a b a b

a b a b a b

± = ⋅ ± ⋅


± = ⋅ ⋅ 

( ) ( ) ( )
( ) ( ) ( )

 sin  sin cos  cos  sin

 cos  cos cos  sin  sin

x R t R t R t

y R t R t R t

= ω + φ = ω φ+ ω φ


= ω + φ = ω φ− ω φ

  sin
  cos

X R
Y R

= φ
 = φ

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

 sin  sin cos  cos  sin cos sin

 cos  cos cos  sin  sin sin cos

x R t R t R t X t Y t

y R t R t R t X t Y t

= ω + φ = ω φ+ ω φ = ω + ω

= ω + φ = ω φ− ω φ = − ω + ω

X=

X=Y=

Y=

( )
( )




φ+ω=
φ+ω=

tRy
tsinRx

cos  
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Example - Solution 

The inverse equation of motion is easily obtained 

( ) ( )

( ) ( )

cos sin

sin cos

x X t Y t

y X t Y t

= ω + ω

= − ω + ω

( )
( )

( )
( )

sin
cos

cos
sin

x Y t
X

t

y Y t
X

t

− ω
=

ω

− + ω
=

ω

( )
( )

( )
( )

sin cos
cos sin

x Y t y Y t
t t

− ω − + ω
=

ω ω

( ) ( ) ( ) ( )2 2sin sin cos cosx t Y t y t Y tω − ω = − ω + ω

( ) ( ) ( ) ( )( )2 2

1

sin cos cos sinx t y t Y t t

=

ω + ω = ω + ω


( ) ( )( ) ( )
( ) ( )

( )
( )

( ) ( )
( )

( )
( )
( )

( )

2

2

cos

sin cos sin sin cos sin
cos cos cos cos

1 sin
sin

cos

t

x x t y t t x t y t txX
t t t t

t
x y t

t
= ω

− ω + ω ω ω ω ω
= = − − =

ω ω ω ω

− ω
= − ω

ω
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cos sin

sin cos

x X t Y t

y X t Y t

= ω + ω

= − ω + ω
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Example - Solution 

So, the equation of motion and its inverse in terms of the material coordinates 
are: 

( )
( ) ( )
( ) ( )

cos sin
,

sin cos

x X t Y t
t

y X t Y t

= ω + ω→ →
= − ω + ω

x X canonical equations of motion

( )
( ) ( )
( ) ( )

cos sin
,

sin cos

X x t y t
t

Y x t y t

= ω − ω→ →
= ω + ω

X x inverse equations of motion
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Example - Solution 

Velocity in material description is obtained from ( ) ( ),
,

x X
V X

t
t

t
∂

=
∂

( ) ( ) ( ) ( )( )

( ) ( )( )

cos sin,
,

sin cos

x X t Y tt t tt
yt X t Y t
t t

∂ ∂ = ω + ω∂  ∂ ∂= = ∂ ∂∂  = − ω + ω
 ∂ ∂

x X
V X

( )
( ) ( )
( ) ( )

cos sin
,

sin cos

x X t Y t
t

y X t Y t

= ω + ω→ 
= − ω + ω

x X

( )
( ) ( )
( ) ( )

sin cos
,

cos sin
x

y

X t Y tV
t

V X t Y t

− ω ω + ω ω     = =   
− ω ω − ω ω      

    
V X
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Example - Solution 

Velocity in spatial description is obtained introducing X(x,t) into V(X,t): 
 

 

 

Alternative procedure (longer): 

( ) ( )( ) ( ) ( )
( ) ( )

v sin cos
, , ,

v cos sin
x

y

yX t Y t
t t t

xX t Y t

y

x

v x V X x
  ω− ω + ω ω    = = = =   − ω− ω − ω ω      

−





( ) ( )
( ) ( )

cos sin

sin cos

X x t y t

Y x t y t

= ω − ω


= ω + ω

( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( )

2 2

2 2

2 2

2 2

0 1

1

cos sin sin sin cos cos
,

cos sin cos sin cos sin

sin cos cos sin sin cos

sin cos

x t t y t x t t y t
t

x t y t t x t y t t

x t t t t y t t

x t t

ω

ω

ω

ω
= =

=

 − ω ω +ω ω +ω ω ω +ω ω = = 
− ω +ω ω ω −ω ω −ω ω ω  

ω ω − ω ω +ω ω + ω

=
− ω + ω

  
v x

 




 

( ) ( ) ( ) ( )( )
0

sin cos cos siny t t t t
=

 
 
 
 

+ω ω ω − ω ω 
  




( )
v  

,
v  

x

y

y
t

x
  ω  = =   −ω    

v x

( ) ( )
( ) ( )

cos sin

sin cos

x X t Y t

y X t Y t

= ω + ω →
= − ω + ω
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cos sin

sin cos

x X t Y t

y X t Y t

= ω + ω


= − ω + ω
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Example - Solution 

Acceleration in material description is obtained applying: ( ) ( ),
,

V X
A X

t
t

t
∂

=
∂

( )
( ) ( )
( ) ( )

sin cos
,

cos sin

X t Y t
t

X t Y t

− ω ω + ω ω  =  
− ω ω − ω ω  

    
V X

    

( ) ( ) ( ) ( )

( ) ( )

2 2

2 2

cos sin,
,

sin cos

x

y

V X t Y tt tt
Vt

X t Y t
t

∂ = − ω ω − ω ω∂  ∂= = ∂∂  = ω ω − ω ω
 ∂

    V X
A X

    

( )
( ) ( )
( ) ( )

2
cos sin

,
sin cos

x

y

X t Y tA
t

A X t Y t

ω + ω     = = −ω   
− ω + ω      

A X
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Example - Solution 

(OPTION #1) Acceleration in spatial description is obtained by replacing the 
inverse equation of motion into A(X,t): 

 ( ) ( )( )
( ) ( )( ) ( ) ( ) ( )( ) ( )
( ) ( )( ) ( ) ( ) ( )( ) ( )

2

, , ,

cos sin cos sin cos sin

cos sin sin sin cos cos

t t t

x t y t t x t y t t

x t y t t x t y t t
ω

= =

 ω − ω ω + ω + ω ω = −  
− ω − ω ω + ω + ω ω  

a x A X x

( ) ( )
( ) ( )

cos sin

sin cos

X x t y t

Y x t y t

= ω − ω


= ω + ω

( )

( ) ( )( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ) ( )( )

2 2

2

2 2

01

0 1

cos sin sin cos cos sin

,
cos sin sin cos sin cos

x t t y t t t t

t
x t t t t y t t

==

= =

 ω + ω + − ω ω + ω ω
 
 = −ω  

− ω ω + ω ω + ω + ω 
  

 

a x







( )
2

2
, x

y

a x
t

a y

  −ω   = =   
−ω    

a x
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Example - Solution 

(OPTION #2): Acceleration in spatial description is obtained by directly 
calculating the material derivative of the velocity in spatial description: 

 ( ) ( ) ( ) ( ) ( ), ,
, , ,

v x v x
a x v x v x

d t t
t t t

dt t
∂

= = + ⋅∇
∂

( ) [ ] [ ]

[ ]
( ) ( )

( ) ( )
[ ]

2

2

, , ,

0 0
, ,

0 0

y xt y x y x
xt

y

y x
xx xy x y x
yy x

y y

= =

= = =

∂ 
 ω ∂ ∂ + ω −ω ω −ω  ∂−ω∂   
 ∂ 

∂ ∂ ω −ω   −ω −ω   ∂ ∂   + ω −ω ω −ω    ∂ ∂ ω −ω        ω −ω ∂ ∂ 

a x    

   

( )
2

2
,

x
t

y

 −ω =  
−ω  

a x

( )
v  

,
v  

x

y

y
t

x
  ω  = =   −ω    

v x
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Ch.1. Description of Motion 

1.6 Stationarity and Uniformity 

48 



Stationary properties 

 A property is stationary when its spatial description is not 
dependent on time. 

 
 The local derivative of a stationary property is zero.

 The time-independence in the spatial description (stationarity) does
not imply time-independence in the material description:

( ) ( ), tχ χ=x x

( ) ( ) ( ),
, 0

t
t

t
χ

χ χ
∂

= =
∂
x

x x

( ) ( ) ( ) ( ), ,t tχ χ χ χ= =x x X X REMARK
This is easily understood if we consider, 
for example, a stationary velocity: 

( ) ( ) ( )( ) ( ), , ,t t t= = =v x v x v x X V X
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In certain fields, the 
term steady-state is 
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Example 

Consider a solid that rotates at a constant angular velocity ω and has the 
following equation of motion: 

We have obtained: 

Velocity in spatial description 

     stationary 

Velocity in material description 

( )
( )

  sin

  cos

x R t

y R t

ω ϕ

ω ϕ

= +


= +

( )
( ) ( )
( ) ( )

sin cos
,

cos sin
x

y

X t Y tV
t

V X t Y t

− ω ω + ω ω     = =   
− ω ω − ω ω      

    
V X

    

( )
v  

,
v  

x

y

y
t

x
ω
ω

   = =   −    
v x
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Uniform properties 

 A property is uniform when its spatial description is not 
dependent on the spatial coordinates. 

 
 
 If its spatial description does not depend on the coordinates (uniform 

character of the property), neither does its material one. 

 

( ) ( ),x t tχ χ=

( ) ( ) ( ) ( ), ,t t t tχ χ χ χ= =x X
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Ch.1. Description of Motion 

1.7 Trajectory (path-line) 
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Trajectory or pathline 

 A trajectory or pathline is the locus of the positions 
occupied by a given particle in space throughout time. 

REMARK  
A trajectory can also be defined as 
the path that a particle follows 
through space as a function of time. 
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Equation of the trajectories 

 The equation of a given particle’s trajectory is obtained 
particularizing the equation of motion for that particle, which is 
identified by it material coordinates X*. 

 

 Also, from the velocity field in spatial description, v(x,t): 
 A family of curves is obtained from:

 
 

 Particularizing for a given particle by imposing the consistency condition in
the reference configuration:

 Replacing [2] in [1], the equation of the trajectories in canonical form

( ) ( )
( ) ( )

*

*

, ( )

, ( )
ii i

t t t

x t t t iϕ φ
=

=

 = =


= = ∈

X X

X X

x X

X

ϕ φ



( ) ( )( ) ( )1 2 3, , , ], [1
d t

t t C C C t
dt

= =
x

v x x φ

( ) ( ) ( )1 2 30
, , , [2]0 i it

t C C C C χ
=
= = =x X X Xφ

( ) ( ) ( )( ) ( )1 2 3, , , ,x X X X XC C C t tφ ϕ= =
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Example 

Consider the following velocity field: 

 

 

 

Obtain the equation of the trajectories. 

( )
 

,
 
y

t
x

ω 
=  −ω 

v x
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Example - Solution 

We integrate the velocity field: 

 

 

 

 

This is a crossed-variable system of differential equations. We derive the 2nd 
eq. and replace it in the 1st one, 

 

 

 

( ) ( )

( ) ( )

( ) ( )

v ,
,

v ,

x

y

dx t
t yd t dtt

dt dy t
t x

dt


= = ω= 

 = = −ω

xx
v x

x

( ) ( ) ( )
2

2
2

d y t dx t
y t

dt dt
= −ω = −ω 2 0y y′′ + ω =
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Example - Solution 

The characteristic equation:  

Has the characteristic solutions:  

And the solution of the problem is:  

 

 

And, using      ,  we obtain 

 

 

So, the general solution is:  

2 2 0r +ω =
  {1,2}jr i j= ± ω ∈

{ } ( ) ( )1 2 1 2( ) cos siniwt iwty t Real Part Z e Z e C t C t−= + = ω + ω 

dy x
dt

= −ω

( ) ( )( )1 2
1 1 sin  cosdyx C t C t

dt
= − = − − ω ω + ω ω

ω ω

( ) ( ) ( )
( ) ( ) ( )

1 2 1 2

1 2 1 2

, ,  sin  cos

, ,  cos  sin

x C C t C t C t

y C C t C t C t

= ω − ω


= ω + ω
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Example - Solution 

The canonical form is obtained from the initial conditions: 

 

 

 

 

 

This results in: 

( )1 2, ,0C C =x X
( ) ( ) ( )

( ) ( ) ( )

1 2 1 2 2

1 2 1 2 1

0 1

1 0

, ,0  sin 0  cos 0  

, ,0  cos 0  sin 0

X x C C C C C

Y y C C C C C

= =

= =


 = = ω⋅ − ω⋅ =

 = = ω⋅ + ω⋅ =


 

 

( ) ( )
( ) ( )

  sin   cos
( , )

  cos   in

x Y t X t
t

y Y t X s t

= ω + ω→ 
= ω − ω

x X
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1 2 1 2

1 2 1 2

, ,  sin  cos

, ,  cos  sin

x C C t C t C t

y C C t C t C t

= ω − ω


= ω + ω
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Ch.1. Description of Motion 

1.8 Streamline 

59 



Streamline 

 The streamlines are a family of curves which, for every 
instant in time, are the velocity field envelopes. 

 Streamlines are defined for any given time instant and change with
the velocity field.

REMARK 
The envelopes of vector field are the curves whose tangent vector 
at each point coincides (in direction and sense but not necessarily 
in magnitude) with the corresponding vector of the vector field.  

time – t0 

X 

Y 

X 

Y 
time – t1 

REMARK  
Two streamlines can 
never cut each other. 
Is it true? 
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Equation of the Streamlines 

 The equation of the streamlines is of 
the type: 

 
 

 Also, from the velocity field in spatial description, v(x,t*) at a 
given time instant t*: 
 A family of curves is obtained from:

 
 
 Where each group                     identifies a streamline x(λ) whose 

points are obtained assigning values to the parameter λ. 
 For each time instant t* a new family of curves is obtained.

( ) ( )( ) ( )1 2 3, * , , , , *
d

t C C C t
d
λ

λ φ λ
λ

′ ′ ′= =
x

v x x

( )
v v vx y z

d x d y dz dd ds
d

λ
λ

= = = = =
x v
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Trajectories and Streamlines 

 For a stationary velocity field, the trajectories and the 
streamlines coincide – PROOF: 
1. If v(x,t)=v(x):

 Eq. trajectories:

 Eq. streamlines:

The differential equations only differ in the denomination of the 
integration parameter (t or λ), so the solution to both systems MUST be 
the same. 

( ) ( )( ) ( )1 2 3, , , ,
d t

t t C C C t
dt

φ= =
x

v x x

( ) ( )( ) ( )1 2 3, * , , , , *
d

t C C C t
d
λ

λ φ λ
λ

= =
x

v x x
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Trajectories and Streamlines 

 For a stationary velocity field, the trajectories and the 
streamlines coincide – PROOF: 
2. If v(x,t)=v(x) the envelopes (i.e., the streamline) of the field do not 

vary throughout time. 

 
        A particle’s trajectory is always tangent to the velocity field it 

encounters at every time instant. 
 
 
 If a trajectory starts at a certain point in a streamline and the 

streamline does not vary with time and neither does the velocity 
field, the trajectory and streamline MUST coincide. 
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Trajectories and Streamlines 

 The inverse is not necessarily true: if the trajectories and the 
streamlines coincide, the velocity field is not necessarily 
stationary – COUNTER-EXAMPLE: 

 Given the (non-stationary) velocity field: 
 

 The eq. trajectory are: 
 
 
 

 The eq. streamlines are: 
 
 
 

( )t 0
0

at 
 =    
  

v

( )

2
12

t 0
0

a t C +
 
 =
 
  

x

( )
1

t 0
0

at Cλ ′+ 
 =  
  

x

( ) ( )t
0 t 0
0 0

at at
d

d dt
dt

   
     = =               

x
x

( ) ( )0 0
0 0

at at
d

d d
d
λ

λ λ
λ

   
     = =               

x
x
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Example 

Consider the following velocity field: 

Obtain the equation of the trajectories and the streamlines associated to this 
vector field.  

Do they coincide? Why? 

{ }v 1,2,3
1

i
i

x i
t

= ∈
+
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Example - Solution 

Eq. trajectories: 

 

Introducing the velocity field and rearranging: 

 

 

 

Integrating both sides of the expression: 

 

 

 

The solution: 

 
 
 
 
 
 
 

( ) ( )( )
( ) ( )( )

,

v ,i
i

d t
t t

dt
dx t

t t i
dt


=


 = ∈

x
v x

x 

1
i idx x i

dt t
= ∈

+


1
i

i

dx dt i
x t

= ∈
+



1 1
1i

i

dx dt
x t

=
+∫ ∫ ( ) ( )ln ln 1 ln ln 1i i ix t C C t i= + + = + ∈

( )1i ix C t i= + ∈
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Example - Solution 

Eq. streamlines: 

 

Introducing the velocity field and rearranging: 

 

 

 

Integrating both sides of the expression: 

 

 

 

The solution: 

 

 
 
 
 
 
 

( ) ( )( )
( ) ( )( )*

, *

v ,i
i

d
t

d
dx t

t i
d

λ
λ

λ

λ
λ


=


 = ∈

x
v x

x 

1
i idx x i

d tλ
= ∈

+


1
i

i

dx d i
x t

λ
= ∈

+


1 1
1i

i

dx d
x t

λ=
+∫ ∫ ln

1i ix K
t

λ
= +

+

1 1
i

i
i

Kt tKx e e e
i

λ λ   
      
   

++ +

 = =
 ∈ 

1
i i

tx C e i
λ 

  
 += ∈

iC=
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Streamtube 

 A streamtube is a surface composed of streamlines 
which pass through the points of a closed contour fixed 
in space. 
 
 
 
 
 In stationary cases, the tube will remain fixed in space 

throughout time. In non-stationary cases, it will vary 
(although the closed contour line is fixed). 
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Ch.1. Description of Motion 

1.9 Control and Material Surfaces 
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Control Surface 

 A control surface is a fixed surface in space which does not 
vary in time. 

 
 
 
 
 
Mass (particles) can flow across a control surface. 

 

( ){ }:  x , , 0f x y zΣ = =
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Material Surface 

 A material surface is a mobile surface in the 
space constituted always by the same particles. 
 In the reference configuration, the surface Σ0 will be defined in terms

of the material coordinates:

The set of particles (material points)
belonging the surface are the same at all times 

 In spatial description  

 The set of  spatial points belonging to the  the surface depends on time
 The material surface moves in space

( ){ }0 :  , , 0F X Y ZΣ = =X

( ){ }:  , , , 0t f x y z tΣ = =x

( ) ( ), , ( , ), ( , ), ( , ) ( , ) ( , , , )F X Y Z F X t Y t Z t f t f x y z t= = =x x x x
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 Necessary and sufficient condition for a mobile surface in space, 
implicitly defined by the function                  , to be a material 
surface is that the material derivative of the function is zero: 
 Necessary: if it is a material surface, its material description does not depend

on time:

 Sufficient: if the material derivative of f(x,t) is null:
 

 The surface  
 contains always the same set the of particles (it is a material surface) 

( ) ( ) ( ) ( ) ( ), ( , ), , 0 , 0Xx x X X xd Ff t f t t F t f t
d t t

∂
→ = = = =

∂

( ){ } ( ){ }:  , 0  0t f t FΣ = = = =x X Xx

Material Surface 

( ), , ,f x y z t

( ) ( ) ( ) ( ) ( , ), ( , ), , 0 , ( , ) ( )Xx x X X x X Xd F tf t f t t F t f t F t F
d t t

∂
→ = = = ≡

∂
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Control Volume 

 A control volume is a group of fixed points in space 
situated in the interior of a closed control surface, which 
does not vary in time. 

 
 
 

 Particles can enter and exit a control volume.

( ){ }0|: ≤= xx fV  

REMARK   
The function f(x) is defined 
so that f(x)<0 corresponds 
to the points inside V. 
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Material Volume 

 A material volume is a (mobile) volume enclosed inside a 
material boundary or surface. 
 In the reference configuration, the volume V0 will be defined in terms

of the material coordinates: 

 The particles       in the volume are 
the same at all times

 In spatial description, the volume Vt  will depend on time.

 The set of  spatial points belonging to the  the volume depends on time
 The material volume moves in space along time

( ){ }0 :  | 0V F= ≤X X

( ){ }:  | , 0tV f t= ≤x x

X
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Material Volume 

 A material volume is always constituted by the same 
particles. This is proved by reductio ad absurdum: 

 If a particle is added into the volume, it would have to cross its
material boundary.

 Material boundaries are constituted always by the same particles, so,
no particles can cross.

 Thus, a material volume is always constituted by the same particles
 (a material volume is a pack of particles). 
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Chapter 1
Description of Motion

1.1 Definition of the Continuous Medium
A continuous medium is understood as an infinite set of particles (which form
part of, for example, solids or fluids) that will be studied macroscopically, that
is, without considering the possible discontinuities existing at microscopic level
(atomic or molecular level). Accordingly, one admits that there are no discon-
tinuities between the particles and that the mathematical description of this
medium and its properties can be described by continuous functions.

1.2 Equations of Motion
The most basic description of the motion of a continuous medium can be
achieved by means of mathematical functions that describe the position of each
particle along time. In general, these functions and their derivatives are required
to be continuous.

Definition 1.1. Consider the following definitions:

• Spatial point: Fixed point in space.

• Material point: A particle. It may occupy different spatial points
during its motion along time.

• Configuration: Locus of the positions occupied in space by the
particles of the continuous medium at a given time t.

The continuous medium is assumed to be composed of an infinite number of
particles (material points) that occupy different positions in the physical space
during its motion along time (see Figure 1.1). The configuration of the contin-

1
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2 CHAPTER 1. DESCRIPTION OF MOTION

Ω0 – reference configuration

t0 – reference time

Ωt – present configuration

t – present time

Figure 1.1: Configurations of the continuous medium.

uous medium at time t, denoted by Ωt , is defined as the locus of the positions
occupied in space by the material points (particles) of the continuous medium at
the given time.

A certain time t = t0 of the time interval of interest is referred to as the ref-
erence time and the configuration at this time, denoted by Ω0, is referred to as
initial, material or reference configuration1.

Consider now the Cartesian coordinate system (X ,Y,Z) in Figure 1.1 and the
corresponding orthonormal basis {ê1, ê2, ê3}. In the reference configuration Ω0,
the position vector X of a particle occupying a point P in space (at the reference
time) is given by2,3

X = X1ê1 +X2ê2 +X3ê3 = Xiêi, (1.1)

where the components (X1,X2,X3) are referred to as material coordinates (of the

particle) and can be collected in a vector of components denoted as4

X not≡ [X] =

⎡
⎢⎣X1

X2

X3

⎤
⎥⎦ de f

= material coordinates. (1.2)

1 In general, the time t0 = 0 will be taken as the reference time.
2 Notations (X ,Y,Z) and (X1,X2,X3) will be used indistinctly to designate the Cartesian
coordinate system.
3 Einstein or repeated index notation will be used in the remainder of this text. Every repe-
tition of an index in the same monomial of an algebraic expression represents the sum over
that index. For example,

i=3

∑
i=1

Xiêi
not
= Xiêi ,

k=3

∑
k=1

aikbk j
not
= aikbk j and

i=3

∑
i=1

j=3

∑
j=1

ai jbi j
not
= ai jbi j.

4 Here, the vector (physical entity) X is distinguished from its vector of components [X].
Henceforth, the symbol

not≡ (equivalent notation) will be used to indicate that the tensor and
component notations at either side of the symbol are equivalent when the system of coordi-
nates used remains unchanged.

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems
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Equations of Motion 3

In the present configuration Ωt
5, a particle originally located at a material

point P (see Figure 1.1) occupies a spatial point P′ and its position vector x is
given by

x = x1ê1 + x2ê2 + x3ê3 = xiêi, (1.3)

where (x1,x2,x3) are referred to as spatial coordinates of the particle at time t,

x not≡ [x] =

⎡
⎢⎣ x1

x2

x3

⎤
⎥⎦ de f

= spatial coordinates. (1.4)

The motion of the particles of the continuous medium can now be described
by the evolution of their spatial coordinates (or their position vector) along time.
Mathematically, this requires the definition of a function that provides for each
particle (identified by its label) its spatial coordinates xi (or its spatial position
vector x) at successive instants of time. The material coordinates Xi of the par-
ticle can be chosen as the label that univocally characterizes it and, thus, the
equation of motion{

x = ϕ (particle, t) = ϕ (X, t) not
= x(X, t)

xi = ϕi (X1,X2,X3, t) i ∈ {1,2,3}
(1.5)

is obtained, which provides the spatial coordinates in terms of the material ones.
The spatial coordinates xi of the particle can also be chosen as label, defining
the inverse equation of motion6 as{

X = ϕ−1 (x, t) not
= X(x, t) ,

Xi = ϕ−1
i (x1,x2,x3, t) i ∈ {1,2,3} ,

(1.6)

which provides the material coordinates in terms of the spatial ones.

Remark 1.1. There are different alternatives when choosing the la-
bel that characterizes a particle, even though the option of using its
material coordinates is the most common one. When the equation of
motion is written in terms of the material coordinates as label (as in
(1.5)), one refers to it as the equation of motion in canonical form.

5 Whenever possible, uppercase letters will be used to denote variables relating to the refer-
ence configuration Ω0 and lowercase letters to denote the variables referring to the current
configuration Ωt .
6 With certain abuse of notation, the function will be frequently confused with its image.
Hence, the equation of motion will be often written as x = x(X, t) and its inverse equation as
X = X(x, t).

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems
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4 CHAPTER 1. DESCRIPTION OF MOTION

There exist certain mathematical restrictions to guarantee the existence of ϕ
and ϕ−1, as well as their correct physical meaning. These restrictions are:

• ϕ (X,0) = X since, by definition, X is the position vector at the reference
time t = 0 (consistency condition).

• ϕ ∈ C1 (function ϕ is continuous with continuous derivatives at each point
and at each instant of time).

• ϕ is biunivocal (to guarantee that two particles do not occupy simultaneously
the same point in space and that a particle does not occupy simultaneously
more than one point in space).

• The Jacobian of the transformation J = det

[
∂ϕ (X, t)

∂X

]
not
=

∣∣∣∣∂ϕ (X, t)
∂X

∣∣∣∣> 0.

The physical interpretation of this condition (which will be studied later) is
that every differential volume must always be positive or, using the principle of
mass conservation (which will be seen later), the density of the particles must
always be positive.

Remark 1.2. The equation of motion at the reference time t = 0 re-
sults in x(X, t)|t=0 = X. Accordingly, x = X , y = Y , z = Z is the
equation of motion at the reference time and the Jacobian at this in-
stant of time is7

J (X,0) =

∣∣∣∣ ∂ (xyz)
∂ (XY Z)

∣∣∣∣= det

[
∂xi

∂Xj

]
= det [δi j] = det1 = 1.

Figure 1.2: Trajectory or pathline of a particle.

7 The two-index operator Delta Kronecker
not
= δi j is defined as δi j = 0 when i �= j and δi j = 1

when i = j. Then, the unit tensor 1 is defined as [1]i j = δi j.

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems
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Equations of Motion 5

Remark 1.3. The expression x = ϕ (X, t), particularized for a fixed
value of the material coordinates X, provides the equation of the
trajectory or pathline of a particle (see Figure 1.2).

Example 1.1 – The spatial description of the motion of a continuous medium
is given by

x(X, t) not≡

⎡
⎢⎣ x1 = X1e2t

x2 = X2e−2t

x3 = 5X1t +X3e2t

⎤
⎥⎦=

⎡
⎢⎣ x = Xe2t

y = Y e−2t

z = 5Xt +Ze2t

⎤
⎥⎦

Obtain the inverse equation of motion.

Solution

The determinant of the Jacobian is computed as

J =

∣∣∣∣ ∂xi

∂Xj

∣∣∣∣=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x1

∂X1

∂x1

∂X2

∂x1

∂X3

∂x2

∂X1

∂x2

∂X2

∂x2

∂X3

∂x3

∂X1

∂x3

∂X2

∂x3

∂X3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
e2t 0 0

0 e−2t 0

5t 0 e2t

∣∣∣∣∣∣∣∣= e2t �= 0.

The sufficient (but not necessary) condition for the function x = ϕ (X, t) to
be biunivocal (that is, for its inverse to exist) is that the determinant of the
Jacobian of the function is not null. In addition, since the Jacobian is positive,
the motion has physical sense. Therefore, the inverse of the given spatial
description exists and is determined by

X = ϕ−1 (x, t) not≡

⎡
⎢⎢⎣

X1

X2

X3

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

x1e−2t

x2e2t

x3e−2t −5tx1e−4t

⎤
⎥⎥⎦ .

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems
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6 CHAPTER 1. DESCRIPTION OF MOTION

1.3 Descriptions of Motion
The mathematical description of the properties of the particles of the continu-
ous medium can be addressed in two alternative ways: the material description
(typically used in solid mechanics) and the spatial description (typically used
in fluid mechanics). Both descriptions essentially differ in the type of argument
(material coordinates or spatial coordinates) that appears in the mathematical
functions that describe the properties of the continuous medium.

1.3.1 Material Description
In the material description8, a given property (for example, the density ρ) is
described by a certain function ρ (•, t) : R3×R+ → R+, where the argument (•)
in ρ (•, t) represents the material coordinates,

ρ = ρ (X, t) = ρ (X1,X2,X3, t) . (1.7)

Here, if the three arguments X≡ (X1,X2,X3) are fixed, a specific particle is being
followed (see Figure 1.3) and, hence, the name of material description.

1.3.2 Spatial Description
In the spatial description9, the focus is on a point in space. The property is de-
scribed as a function ρ (•, t) : R3 ×R+ → R+ of the point in space and of time,

ρ = ρ (x, t) = ρ (x1,x2,x3, t) . (1.8)

Then, when the argument x in ρ = ρ (x, t) is assigned a certain value, the evolu-
tion of the density for the different particles that occupy the point in space along
time is obtained (see Figure 1.3). Conversely, fixing the time argument in (1.8)
results in an instantaneous distribution (like a snapshot) of the property in space.
Obviously, the direct and inverse equations of motion allow shifting from one

Figure 1.3: Material description (left) and spatial description (right) of a property.

8 Literature on this topic also refers to the material description as Lagrangian description.
9 The spatial description is also referred to as Eulerian description.

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems
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Descriptions of Motion 7

description to the other as follows.{
ρ (x, t) = ρ (x(X, t) , t) = ρ (X, t)

ρ (X, t) = ρ (X(x, t) , t) = ρ (x, t)
(1.9)

Example 1.2 – The equation of motion of a continuous medium is

x = x(X, t) not≡
[ x = X −Yt

y = Xt +Y
z =−Xt +Z

]
.

Obtain the spatial description of the property whose material description is

ρ (X ,Y,Z, t) =
X +Y +Z

1+ t2
.

Solution

The equation of motion is given in the canonical form since in the reference
configuration Ω0 its expression results in

x = X(X,0)
not≡

[ x = X
y = Y
z = Z

]
.

The determinant of the Jacobian is

J =

∣∣∣∣ ∂xi

∂Xj

∣∣∣∣=

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x
∂X

∂x
∂Y

∂x
∂Z

∂y
∂X

∂y
∂Y

∂y
∂Z

∂ z
∂X

∂ z
∂Y

∂ z
∂Z

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1 −t 0

t 1 0

−t 0 1

∣∣∣∣∣∣∣∣= 1+ t2 �= 0

and the inverse equation of motion is given by

X(x, t) not≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

X =
x+ yt
1+ t2

Y =
y− xt
1+ t2

Z =
z+ zt2 + xt + yt2

1+ t2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems

doi:10.13140/RG.2.2.25821.20961



Con
tin

uum
M

ech
an

ics
for

Engin
eer

s

Theo
ry

an
d Pro

blem
s

©
X. O

liv
er

an
d C. A

ge
let

de Sar
ac

ibar

8 CHAPTER 1. DESCRIPTION OF MOTION

Consider now the material description of the property,

ρ (X ,Y,Z, t) =
X +Y +Z

1+ t2
,

its spatial description is obtained by introducing the inverse equation of mo-
tion into the expression above,

ρ (X ,Y,Z, t)≡ x+ yt + y+ z+ zt2 + yt2

(1+ t2)2
= ρ (x,y,z, t) .

1.4 Time Derivatives: Local, Material and Convective
The consideration of different descriptions (material and spatial) of the proper-
ties of the continuous medium leads to diverse definitions of the time derivatives
of these properties. Consider a certain property and its material and spatial de-
scriptions,

Γ (X, t) = γ (x, t) , (1.10)

in which the change from the spatial to the material description and vice versa
is performed by means of the equation of motion (1.5) and its inverse equa-
tion (1.6).

Definition 1.2. The local derivative of a property is its variation
along time at a fixed point in space. If the spatial description γ (x, t)
of the property is available, the local derivative is mathematically
written as10

local derivative
not
=

∂γ (x, t)
∂ t

.

The material derivative of a property is its variation along time fol-
lowing a specific particle (material point) of the continuous medium.
If the material description Γ (X, t) of the property is available, the
material derivative is mathematically written as

material derivative
not
=

d
dt

Γ =
∂Γ (X, t)

∂ t
.

10 The expression ∂ (•, t)/∂ t is understood in the classical sense of partial derivative with
respect to the variable t.

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems
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Time Derivatives: Local, Material and Convective 9

However, taking the spatial description of the property γ (x, t) and considering
the equation of motion is implicit in this expression yields

γ (x, t) = γ (x(X, t) , t) = Γ (X, t) . (1.11)

Then, the material derivative (following a particle) is obtained from the spatial
description of the property as

material derivative
not
=

d
dt

γ (x(X, t) , t) =
∂Γ (X, t)

∂ t
. (1.12)

Expanding (1.12) results in11

dγ (x(X, t) , t)
dt

=
∂γ (x, t)

∂ t
+

∂γ
∂xi

∂xi

∂ t
=

∂γ (x, t)
∂ t

+
∂γ
∂x

· ∂x
∂ t︸︷︷︸

v(x, t)

=

=
∂γ (x, t)

∂ t
+

∂γ
∂x

·v(x, t) ,
(1.13)

where the definition of velocity as the derivative of the equation of motion (1.5)
with respect to time has been taken into account,

∂x(X, t)
∂ t

= V(X(x, t) , t) = v(x, t) . (1.14)

The deduction of the material derivative from the spatial description can be
generalized for any property χ (x, t) (of scalar, vectorial or tensorial character)

as12

dχ (x, t)
dt︸ ︷︷ ︸

material
derivative

=
∂ χ (x, t)

∂ t︸ ︷︷ ︸
local

derivative

+ v(x, t) ·∇χ (x, t)︸ ︷︷ ︸
convective
derivative

. (1.15)

Remark 1.4. The expression in (1.15) implicitly defines the convec-
tive derivative v ·∇(•) as the difference between the material and
spatial derivatives of the property. In continuum mechanics, the term
convection is applied to phenomena that are related to mass (or par-
ticle) transport. Note that, if there is no convection (v = 0), the con-
vective derivative disappears and the local and material derivatives
coincide.

11 In literature, the notation D(•)/Dt is often used as an alternative to d(•)/dt.
12 The symbolic form of the spatial Nabla operator, ∇ ≡ ∂ êi/∂xi , is considered here.
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10 CHAPTER 1. DESCRIPTION OF MOTION

Example 1.3 – Given the equation of motion

x(X, t) not≡
[ x = X +Yt +Zt

y = Y +2Zt
z = Z +3Xt

]
,

and the spatial description of a property, ρ (x, t) = 3x+ 2y+ 3t, obtain the
material derivative of this property.

Solution

The material description of the property is obtained introducing the equation
of motion into its spatial description,

ρ (X ,Y,Z, t)= 3(X +Yt +Zt)+2(Y +2Zt)+3t = 3X+3Yt+7Zt+2Y +3t .

The material derivative is then calculated as the derivative of the material
description with respect to time,

∂ρ
∂ t

= 3Y +7Z +3 .

An alternative way of deducing the material derivative is by using the concept
of material derivative of the spatial description of the property,

dρ
dt

=
∂ρ
∂ t

+v ·∇ρ with

∂ρ
∂ t

= 3 , v =
∂x
∂ t

= [Y +Z, 2Z, 3X ]T and ∇ρ = [3, 2, 0]T .

Replacing in the expression of the material derivative operator,

dρ
dt

= 3+3Y +7Z

is obtained. Note that the expressions for the material derivative obtained
from the material description, ∂ρ/∂ t, and the spatial description, dρ/dt, co-
incide.

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems
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Velocity and Acceleration 11

1.5 Velocity and Acceleration

Definition 1.3. The velocity is the time derivative of the equation of
motion.

The material description of velocity is, consequently, given by⎧⎪⎪⎨
⎪⎪⎩

V(X, t) =
∂x(X, t)

∂ t

Vi (X, t) =
∂xi (X, t)

∂ t
i ∈ {1, 2, 3}

(1.16)

and, if the inverse equation of motion X = ϕ−1 (x, t) is known, the spatial de-
scription of the velocity can be obtained as

v(x, t) = V(X(x, t) , t) . (1.17)

Definition 1.4. The acceleration is the time derivative of the velocity
field.

If the velocity is described in material form, the material description of the
acceleration is given by⎧⎪⎪⎨

⎪⎪⎩
A(X, t) =

∂V(X, t)
∂ t

Ai (X, t) =
∂Vi (X, t)

∂ t
i ∈ {1, 2, 3}

(1.18)

and, through the inverse equation of motion X = ϕ−1 (x, t), the spatial descrip-
tion is obtained, a(x, t) = A(X(x, t) , t). Alternatively, if the spatial description
of the velocity is available, applying (1.15) to obtain the material derivative of
v(x, t),

a(x, t) =
dv(x, t)

dt
=

∂v(x, t)
∂ t

+v(x, t) ·∇v(x, t) , (1.19)

directly yields the spatial description of the acceleration.

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems
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12 CHAPTER 1. DESCRIPTION OF MOTION

Example 1.4 – Consider the solid in the figure below, which rotates at a
constant angular velocity ω and has the expression{

x = Rsin(ωt +φ)

y = Rcos(ωt +φ)

as its equation of motion. Find the velocity and acceleration of the motion
described both in material and spatial forms.

Solution

The equation of motion can be rewritten as{
x = Rsin(ωt +φ) = Rsin(ωt)cosφ +Rcos(ωt)sinφ
y = Rcos(ωt +φ) = Rcos(ωt)cosφ −Rsin(ωt)sinφ

and, since for t = 0, X = Rsinφ and Y = Rcosφ , the canonical form of the
equation of motion and its inverse equation result in{

x = X cos(ωt)+Y sin(ωt)

y =−X sin(ωt)+Y cos(ωt)
and

{
X = xcos(ωt)− ysin(ωt)

Y = xsin(ωt)+ ycos(ωt)
.

Velocity in material description:

V(X, t) =
∂x(X, t)

∂ t
)

not≡

⎡
⎢⎢⎣

∂x
∂ t

=−Xω sin(ωt)+Y ω cos(ωt)

∂y
∂ t

=−Xω cos(ωt)−Y ω sin(ωt)

⎤
⎥⎥⎦

Velocity in spatial description:
Replacing the canonical form of the equation of motion into the material
description of the velocity results in

v(x, t) = V(X(x, t) , t) not≡
[

ωy
−ωx

]
.

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems
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Velocity and Acceleration 13

Acceleration in material description:

A(X, t) =
∂V(X, t)

∂ t

A(X, t) not≡

⎡
⎢⎢⎢⎣

∂vx

∂ t
=−Xω2 cos(ωt)−Y ω2 sin(ωt)

∂vy

∂ t
= Xω2 sin(ωt)−Y ω2 cos(ωt)

⎤
⎥⎥⎥⎦=

=−ω2

[
X cos(ωt)+Y sin(ωt)

−X sin(ωt)+Y cos(ωt)

]

Acceleration in spatial description:
Replacing the canonical form of the equation of motion into the material
description of the acceleration results in

a(x, t) = A(X(x, t) , t) not≡
[
−ω2x

−ω2y

]
.

This same expression can be obtained if the expression for the velocity v(x, t)
and the definition of material derivative in (1.15) are taken into account,

a(x, t) =
dv(x, t)

dt
=

∂v(x, t)
∂ t

+v(x, t) ·∇v(x, t) =

not≡ ∂
∂ t

[
ωy
−ωx

]
+
[

ωy , −ωx
]
⎡
⎢⎢⎢⎣

∂
∂x
∂
∂y

⎤
⎥⎥⎥⎦[

ωy , −ωx
]
,

a(x, t) not≡
[

0

0

]
+
[

ωy , −ωx
]
⎡
⎢⎢⎢⎣

∂
∂x

(ωy)
∂
∂x

(−ωx)

∂
∂y

(ωy)
∂
∂y

(−ωx)

⎤
⎥⎥⎥⎦=

[
−ω2x

−ω2y

]
.

Note that the result obtained using both procedures is identical.
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14 CHAPTER 1. DESCRIPTION OF MOTION

1.6 Stationarity

Definition 1.5. A property is stationary when its spatial description
does not depend on time.

According to the above definition, and considering the concept of local deriva-
tive, any stationary property has a null local derivative. For example, if the ve-
locity for a certain motion is stationary, it can be described in spatial form as

v(x, t) = v(x) ⇐⇒ ∂v(x, t)
∂ t

= 0 . (1.20)

Remark 1.5. The non-dependence on time of the spatial description
(stationarity) assumes that, for a same point in space, the property
being considered does not vary along time. This does not imply that,
for a same particle, such property does not vary along time (the ma-
terial description may depend on time). For example, if the velocity
v(x, t) is stationary,

v(x, t)≡ v(x) = v(x(X, t)) = V(X, t) ,

and, thus, the material description of the velocity depends on time.
In the case of stationary density (see Figure 1.4), for two particles
labeled X1 and X2 that have varying densities along time, when oc-
cupying a same spatial point x (at two different times t1 and t2) their
density value will coincide,

ρ (X1, t1) = ρ (X2, t2) = ρ (x) .

That is, for an observer placed outside the medium, the density of
the fixed point in space x will always be the same.

Figure 1.4: Motion of two particles with stationary density.
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Trajectory 15

Example 1.5 – Justify if the motion described in Example 1.4 is stationary
or not.

Solution

The velocity field in Example 1.4 is v(x) not≡ [ωy , −ωx]T . Therefore, it is a
case in which the spatial description of the velocity is not dependent on time
and, thus, the velocity is stationary. Obviously, this implies that the velocity
of the particles (whose motion is a uniform rotation with respect to the origin,
with angular velocity ω) does not depend on time (see figure below). The
direction of the velocity vector for a same particle is tangent to its circular
trajectory and changes along time.

The acceleration (material derivative of the velocity),

a(x) =
dv(x)

dt
=

∂v(x)
∂ t

+v(x) ·∇v(x) = v(x) ·∇v(x) ,

appears due to the change in direction of the velocity vector of the particles
and is known as the centripetal acceleration.

1.7 Trajectory

Definition 1.6. A trajectory (or pathline) is the locus of the positions
occupied in space by a given particle along time.

The parametric equation of a trajectory as a function of time is obtained by par-
ticularizing the equation of motion for a given particle (identified by its material
coordinates X∗, see Figure 1.5),

x(t) = ϕ (X, t)
∣∣∣
X=X∗ . (1.21)
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16 CHAPTER 1. DESCRIPTION OF MOTION

Figure 1.5: Trajectory or pathline of a particle.

Given the equation of motion x = ϕ (X, t), each point in space is occupied
by a trajectory characterized by the value of the label (material coordinates) X.
Then, the equation of motion defines a family of curves whose elements are the
trajectories of the various particles.

1.7.1 Differential Equation of the Trajectories
Given the velocity field in spatial description v(x, t), the family of trajectories
can be obtained by formulating the system of differential equations that imposes
that, for each point in space x, the velocity vector is the time derivative of the
parametric equation of the trajectory defined in (1.21), i.e.,

Find x(t) :=

⎧⎪⎪⎨
⎪⎪⎩

dx(t)
dt

= v(x(t) , t) ,

dxi (t)
dt

= vi (x(t) , t) i ∈ {1, 2, 3} .

(1.22)

The solution to this first-order system of differential equations depends on three
integration constants (C1,C2,C3),{

x = φ (C1,C2,C3, t) ,

x = φi (C1,C2,C3, t) i ∈ {1, 2, 3} .
(1.23)

These expressions constitute a family of curves in space parametrized by the
constants (C1,C2,C3). Assigning a particular value to these constants yields a
member of the family, which is the trajectory of a particle characterized by the
label (C1,C2,C3).

To obtain the equation in canonical form, the consistency condition is im-
posed in the reference configuration,

x(t)
∣∣∣
t=0
=X =⇒ X= φ (C1,C2,C3,0) =⇒ Ci = χi (X) i∈ {1, 2, 3} , (1.24)

and, replacing into (1.23), the canonical form of the equation of the trajectory,

X = φ (C1 (X) ,C2 (X) ,C3 (X) , t) = ϕ (X, t) , (1.25)

is obtained.
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Trajectory 17

Example 1.6 – Given the velocity field in Example 1.5, v(x) not≡ [ωy , −ωx]T ,
obtain the equation of the trajectory.

Solution

Using expression (1.22), one can write

dx(t)
dt

= v(x, t) =⇒

⎧⎪⎪⎨
⎪⎪⎩

dx(t)
dt

= vx (x, t) = ωy ,

dy(t)
dt

= vy (x, t) =−ωx .

This system of equations is a system with crossed variables. Differentiating
the second equation and replacing the result obtained into the first equation
yields

d2y(t)
dt2

=−ω
dx(t)

dt
=−ω2y(t) =⇒ y′′+ω2y = 0 .

The characteristic equation of this second-order differential equation is
r2 +ω2 = 0 and its characteristic solutions are r j = ±iω j ∈ {1, 2}.
Therefore, the y component of the equation of the trajectory is

y(t) = Real Part
{

C1eiwt +C2e−iwt}=C1 cos(ωt)+C2 sin(ωt) .

The solution for x(t) is obtained from dy/dt = −ωx , which results in
x =−dy/(ω dt) and, therefore,{

x(C1,C2, t) =C1 sin(ωt)−C2 cos(ωt) ,

y(C1,C2, t) =C1 cos(ωt)+C2 sin(ωt) .

This equation provides the expressions of the trajectories in a non-canonical
form. The canonical form is obtained considering the initial condition,

x(C1,C2,0) = X ,

that is, {
x(C1,C2,0) =−C2 = X ,

y(C1,C2,0) =C1 = Y .

Finally, the equation of motion, or the equation of the trajectory, in canonical
form {

x = Y sin(ωt)+X cos(ωt)

y = Y cos(ωt)−X sin(ωt)

is obtained.
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18 CHAPTER 1. DESCRIPTION OF MOTION

1.8 Streamline

Definition 1.7. The streamlines are a family of curves that, for every
instant of time, are the velocity field envelopes13.

According to its definition, the tangent at each point of a streamline has the same
direction (though not necessarily the same magnitude) as the velocity vector at
that same point in space.

Remark 1.6. In general, the velocity field (in spatial description) will
be different for each instant of time (v ≡ v(x, t)). Therefore, one
must speak of a different family of streamlines for each instant of
time (see Figure 1.6).

1.8.1 Differential Equation of the Streamlines
Consider a given time t∗ and the spatial description of the velocity field at this
time v(x, t∗). Let x(λ ) be the equation of a streamline parametrized in terms of
a certain parameter λ . Then, the vector tangent to the streamline is defined, for

Figure 1.6: Streamlines at two different instants of time.

13 The envelopes of a vector field are the family of curves whose tangent vector has, at each
point, the same direction as the corresponding vector of the vector field.

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems

doi:10.13140/RG.2.2.25821.20961



Con
tin

uum
M

ech
an

ics
for

Engin
eer

s

Theo
ry

an
d Pro

blem
s

©
X. O

liv
er

an
d C. A

ge
let

de Sar
ac

ibar

Streamline 19

each value of λ 14, by dx(λ )/dλ and the vector field tangency condition can be
written as follows.

Find x(λ ) :=

⎧⎪⎪⎨
⎪⎪⎩

dx(λ )
dλ

= v(x(λ ) , t∗) ,

dxi (λ )
dλ

= vi (x(λ ) , t∗) i ∈ {1, 2, 3} .
(1.26)

The expressions in (1.26) constitute a system of first-order differential equa-
tions whose solution for each time t∗, which will depend on three integration
constants (C′

1,C
′
2,C

′
3), provides the parametric expression of the streamlines,{
x = φ (C′

1,C
′
2,C

′
3,λ , t∗) ,

xi = φi (C′
1,C

′
2,C

′
3,λ , t∗) i ∈ {1, 2, 3} .

(1.27)

Each triplet of integration constants (C′
1,C

′
2,C

′
3) identifies a streamline whose

points, in turn, are obtained by assigning values to the parameter λ . For each
time t∗ a new family of streamlines is obtained.

Remark 1.7. In a stationary velocity field (v(x, t)≡ v(x)) the trajec-
tories and streamlines coincide. This can be proven from two differ-
ent viewpoints:

• The fact that the time variable does not appear in (1.22) or (1.26)
means that the differential equations defining the trajectories and
those defining the streamlines only differ in the denomination of
the integration parameter (t or λ , respectively). The solution to
both systems must be, therefore, the same, except for the name
of the parameter used in each type of curves.

• From a more physical point of view: a) If the velocity field is
stationary, its envelopes (the streamlines) do not change along
time; b) a given particle moves in space keeping the trajectory
in the direction tangent to the velocity field it encounters along
time; c) consequently, if a trajectory starts at a certain point in a
streamline, it will stay on this streamline throughout time.

14 It is assumed that the value of the parameter λ is chosen such that, at each point in space
x, not only does dx(λ )/dλ have the same direction as the vector v(x, t), but it coincides
therewith.

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems

doi:10.13140/RG.2.2.25821.20961



Con
tin

uum
M

ech
an

ics
for

Engin
eer

s

Theo
ry

an
d Pro

blem
s

©
X. O

liv
er

an
d C. A

ge
let

de Sar
ac

ibar

20 CHAPTER 1. DESCRIPTION OF MOTION

1.9 Streamtubes

Definition 1.8. A streamtube is a surface formed by a bundle of
streamlines that occupy the points of a closed line, fixed in space,
and that does not constitute a streamline.

In non-stationary cases, even though the closed line does not vary in space, the
streamtube and streamlines do change. On the contrary, in a stationary case, the
streamtube remains fixed in space along time.

1.9.1 Equation of the Streamtube
Streamlines constitute a family of curves of the type

x = f(C1,C2,C3,λ , t) . (1.28)

The problem consists in determining, for each instant of time, which curves
of the family of curves of the streamlines cross a closed line, which is fixed in the
space Γ , whose mathematical expression parametrized in terms of a parameter s
is

Γ := x = g(s) . (1.29)

To this aim, one imposes, in terms of the parameters λ ∗ and s∗, that a same point
belong to both curves,{

g(s∗) = f(C1,C2,C3,λ ∗, t) ,

gi (s∗) = fi (C1,C2,C3,λ ∗, t) i ∈ {1, 2, 3} .
(1.30)

A system of three equations is obtained from which, for example, s∗, λ ∗ and C3

can be isolated,

s∗ = s∗ (C1,C2, t) ,

λ ∗ = λ ∗ (C1,C2, t) ,

C3 =C3 (C1,C2, t) .

(1.31)

Introducing (1.31) into (1.30) yields

x = f(C1, C2, C3 (C1,C2, t) , λ ∗ (C1,C2, t) , t) = h(C1,C2, t) , (1.32)

which constitutes the parametrized expression (in terms of the parameters C1

and C2) of the streamtube for each time t (see Figure 1.7).
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Streaklines 21

Figure 1.7: Streamtube at a given time t.

1.10 Streaklines

Definition 1.9. A streakline, relative to a fixed point in space x∗
named spill point and at a time interval

[
ti, t f

]
named spill period,

is the locus of the positions occupied at time t by all the particles
that have occupied x∗ over the time τ ∈ [ti, t]

⋂[
ti, t f

]
.

The above definition corresponds to the physical concept of the color line
(streak) that would be observed in the medium at time t if a tracer fluid were
injected at spill point x∗ throughout the time interval

[
ti, t f

]
(see Figure 1.8).

Figure 1.8: Streakline corresponding to the spill period τ ∈ [
ti, t f

]
.

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems

doi:10.13140/RG.2.2.25821.20961



Con
tin

uum
M

ech
an

ics
for

Engin
eer

s

Theo
ry

an
d Pro

blem
s

©
X. O

liv
er

an
d C. A

ge
let

de Sar
ac

ibar

22 CHAPTER 1. DESCRIPTION OF MOTION

1.10.1 Equation of the Streakline
To determine the equation of a streakline one must identify all the particles that
occupy point x∗ in the corresponding times τ . Given the equation of motion (1.5)
and its inverse equation (1.6), the label of the particle which at time τ occupies
the spill point must be identified. Then,

x∗ = x(X,τ)

x∗i = xi (X,τ) i ∈ {1, 2, 3}

}
=⇒ X = f(τ) (1.33)

and replacing (1.33) into the equation of motion (1.5) results in

x = ϕ (f(τ) , t) = g(τ, t) τ ∈ [ti, t]
⋂[

ti, t f
]
. (1.34)

Expression (1.34) is, for each time t, the parametric expression (in terms of
parameter τ) of a curvilinear segment in space which is the streakline at that
time.

Example 1.7 – Given the equation of motion⎧⎨
⎩ x = (X +Y ) t2 +X cos t ,

y = (X +Y )cos t −X ,

obtain the equation of the streakline associated with the spill point x∗ = (0,1)
for the spill period [t0,+∞).

Solution

The material coordinates of a particle that has occupied the spill point at time
τ are given by

0 = (X +Y )τ2 +X cosτ
1 = (X +Y )cosτ −X

}
=⇒

⎧⎪⎪⎨
⎪⎪⎩

X =
−τ2

τ2 + cos2 τ
,

Y =
τ2 + cosτ
τ2 + cos2 τ

.

Therefore, the label of the particles that have occupied the spill point from
the initial spill time t0 until the present time t is defined by

X =
−τ2

τ2 + cos2 τ

Y =
τ2 + cosτ
τ2 + cos2 τ

⎫⎪⎪⎬
⎪⎪⎭ τ ∈ [t0, t]

⋂
[t0,∞) = [t0, t] .
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Material Surface 23

Then, replacing these into the equation of motion, the equation of the streak-
line is obtained,

x = g(τ, t) not≡

⎡
⎢⎢⎣ x =

cosτ
τ2 + cos2 τ

t2 +
−τ2

τ2 + cos2 τ
cos t

y =
cosτ

τ2 + cos2 τ
cos t − −τ2

τ2 + cos2 τ

⎤
⎥⎥⎦ τ ∈ [t0, t] .

Remark 1.8. In a stationary problem, the streaklines are segments of
the trajectories (or of the streamlines). The rationale is based on the
fact that, in the stationary case, the trajectory follows the envelope of
the velocity field, which remains constant along time. If one consid-
ers a spill point x∗, all the particles that occupy this point will follow
portions (segments) of the same trajectory.

1.11 Material Surface

Definition 1.10. A material surface is a mobile surface in space al-
ways constituted by the same particles (material points).

In the reference configuration Ω0, surface Σ0 can be defined in terms of a func-
tion of the material coordinates F (X ,Y,Z) as

Σ0 := {X ,Y,Z | F (X ,Y,Z) = 0} . (1.35)

Remark 1.9. The function F (X ,Y,Z) does not depend on time,
which guarantees that the particles, identified by their label, that sat-
isfy equation F (X ,Y,Z) = 0 are always the same in accordance with
the definition of material surface.

The spatial description of the surface is obtained from the spatial description
of F (X(x, t)) = f (x,y,z, t) as

Σt := {x,y,z | f (x,y,z, t) = 0} . (1.36)
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24 CHAPTER 1. DESCRIPTION OF MOTION

Remark 1.10. The function f (x,y,z, t) depends explicitly on time,
which indicates that the points in space that are on the surface will
vary along time. This time dependence of the spatial description of
the surface confers the character of mobile surface in space to the
surface (see Figure 1.9).

Remark 1.11. The necessary and sufficient condition for a mobile
surface in space, defined implicitly by a function f (x,y,z, t) = 0, to
be material (to be always constituted by the same particles) is that
the material derivative of f (x,y,z, t) is null,

d f (x, t)
dt

=
∂ f
∂ t

+v ·∇ f = 0 ∀x ∈ Σt ∀t .

The condition is necessary because, if the surface is a material sur-
face, its material description will not depend on time (F ≡ F (X))
and, therefore, its spatial description will have a null material deriva-
tive. The condition of sufficiency is based on the fact that, if the ma-
terial derivative of f (x, t) is zero, the corresponding material de-
scription will not depend on time (F ≡ F (X)) and, therefore, the set
of particles (identified by their material coordinates) that satisfy the
condition F (X) = 0 is always the same.

Figure 1.9: A material surface at two different instants of time.
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Material Surface 25

Example 1.8 – In ocean waves theory, the condition that the free surface
of the fluid in contact with the atmosphere is a material surface is imposed.
This restriction implies that the free surface is always composed of the same
particles, which is a reasonable hypothesis (especially in deep waters). De-
termine how this condition is stated in terms of the velocity field of the fluid.

Solution

Assuming that z = η (x,y, t) defines the elevation of the sea surface with re-
spect to a reference level, the free surface of the water will be given by

f (x,y,z, t)≡ z−η (x,y, t) = 0 .

The condition d f/dt = 0 can be written as

d f
dt

=
∂ f
∂ t

+v ·∇ f where
∂ f
∂ t

=−∂η
∂ t

and

v ·∇ f not≡ [vx, vy, vz]

[
∂ f
∂x

,
∂ f
∂y

,
∂ f
∂ z

]T

= vx
∂ f
∂x

+vy
∂ f
∂y

+vz
∂ f
∂ z

.

Then,
d f
dt

=
∂ f
∂ t

+v ·∇ f =−∂η
∂ t

−vx
∂η
∂x

−vy
∂η
∂y

+vz = 0

and, isolating vz leads to

vz =
∂η
∂ t

+vx
∂η
∂x

+vy
∂η
∂y

.

Therefore, the material surface condition results in a condition on the vertical
component of the velocity field.
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26 CHAPTER 1. DESCRIPTION OF MOTION

1.12 Control Surface

Definition 1.11. A control surface is a fixed surface in space.

The mathematical description of a control surface is given by

Σ := {x | f (x,y,z) = 0} . (1.37)

Obviously, a control surface is occupied by the different particles of the contin-
uous medium along time (see Figure 1.10).

Figure 1.10: Movement of particles through a control surface along time.

1.13 Material Volume

Definition 1.12. A material volume is a volume enclosed by a closed
material surface.

The mathematical description of a material volume (see Figure 1.11) is given, in
the material description, by15

V0 := {X | F (X)≤ 0} (1.38)

and, in the spatial description, by

Vt := {x | f (x, t)≤ 0} , (1.39)

15 It is assumed that function F (X) is defined such that F (X) < 0 corresponds to points in
the interior of V0.
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Control Volume 27

where F (X) = f (x(X, t) , t) is the function that describes the material surface
that encloses the volume.

Remark 1.12. A material volume is always constituted by the same
particles. This is proven by reductio ad absurdum as follows. If a
certain particle could enter or exit the material volume, it would be
incorporated into the material surface during its motion (at least, for
an instant of time). This would be contrary to the fact that the sur-
face, being a material surface, is always constituted by the same par-
ticles.

Figure 1.11: A material volume at two different instants of time.

1.14 Control Volume

Definition 1.13. A control volume is a group of points in space situ-
ated in the interior of a closed control surface.

It is a volume fixed in space that is occupied by the particles of the medium
during its motion. The mathematical description of the control volume (see Fig-
ure 1.12) is16

V := {x | f (x)≤ 0} . (1.40)

16 It is assumed that function f (x) is defined such that f (x)< 0 corresponds to points in the
interior of V .
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28 CHAPTER 1. DESCRIPTION OF MOTION

Figure 1.12: A control volume is occupied by different particles along time.
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PROBLEMS

Problem 1.1 – Justify whether the following statements are true or false.

a) If the velocity field is stationary, the acceleration field is also stationary.

b) If the velocity field is uniform, the acceleration field is always null.

Solution
a) A stationary velocity field implies that the spatial description of velocity does
not depend on time,

∂v(x, t)
∂ t

= 0 =⇒ v(x) .

The acceleration is the material derivative of the velocity, therefore

a(x, t) =
∂v(x, t)

∂ t
+v(x, t) ·∇v(x, t) = v(x) ·∇v(x) .

The resulting expression does not depend on time. Thus, the statement is true.

b) A uniform velocity field implies that the spatial description of velocity does
not depend on the spatial coordinates,

v(x, t) =⇒ v(t) .

The material derivative of the velocity results in

a(x, t) =
∂v(x, t)

∂ t
+v(x, t) ·∇v(x, t) =

∂v(t)
∂ t

,

where the expression used for the gradient of the velocity field is

[∇v(t)]i j =
∂vi (t)

∂x j
= 0 .

Therefore, the statement is false because ∂v(t)/∂ t is not necessarily zero.
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30 CHAPTER 1. DESCRIPTION OF MOTION

Problem 1.2 – Calculate the acceleration at time t = 2 in point (1,1,1) of the
velocity field

v not≡ [
x− z , z

(
e t + e−t) , 0

]T
.

Solution
Since the velocity field is given in its spatial expression and the acceleration is

requested for a point x∗ = (1,1,1)T , the equation of motion is not needed. One
can simply apply

a(x, t) =
dv(x, t)

dt
=

∂v(x, t)
∂ t

+v(x, t) ·∇v(x, t) ,

where
∂v
∂ t

not≡ [
0 , z

(
e t − e−t) , 0

]T
and

∇v not≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂
∂x
∂
∂y

∂
∂ z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
x− z , z

(
e t + e−t) , 0

]
=

⎡
⎢⎢⎣

1 0 0

0 0 0

−1 (e t + e−t) 0

⎤
⎥⎥⎦ , such that

v ·∇v not≡ [x− z , 0 , 0]T .

Therefore, the spatial expression for the acceleration field is

a not≡ [
x− z , z

(
e t − e−t) , 0

]T

and, for the given point at the given instant of time, the acceleration is

a(x = x∗, t = 2)
not≡ [

0 , e2 − e−2 , 0
]T

.
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Problem 1.3 – The equation of a certain motion is

x=X , y=
1

2

(
(Y +Z)e t +(Y −Z)e−t) , z=

1

2

(
(Y +Z)e t − (Y −Z)e−t) .

Calculate the accelerations that would be observed along time by:

a) An observer located in the fixed point (1,1,1).

b) An observer traveling with the particle that at time t = 0 occupied position
(1,1,1).

c) An observer located in point (1,1,1) that measures the accelerations as the
difference between velocities at this point per unit of time.

Solution
a) The spatial description of the acceleration in point x∗ = (1,1,1) must be
obtained,

a(x = x∗, t) = A(X(x∗, t) , t) =
∂V(X(x∗, t) , t)

∂ t
.

The material expression of the velocity field is

V(X, t) =
∂x(X, t)

∂ t
=⇒ V(X, t) not≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

1

2
((Y +Z)e t − (Y −Z)e−t)

1

2
((Y +Z)e t +(Y −Z)e−t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Then, the material description of the acceleration is

A(X, t) =
∂V(X, t)

∂ t
not≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

1

2
((Y +Z)e t +(Y −Z)e−t)

1

2
((Y +Z)e t − (Y −Z)e−t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Careful observation of the expression obtained reveals that

Ay =
1

2

(
(Y +Z)e t +(Y −Z)e−t)= y and
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32 CHAPTER 1. DESCRIPTION OF MOTION

Az =
1

2

(
(Y +Z)e t − (Y −Z)e−t)= z .

Therefore, the spatial description of the acceleration field is

a(x, t) not≡ [0 , y , z]T

and, for x = x∗,

a(x∗, t) not≡ [0 , 1 , 1]T .

NOTE: In case one does not realize that Ay = y and Az = z, this same result can
be obtained by replacing into the material expression of the acceleration field
the inverse equation of motion as follows.

y+ z = (Y +Z)e t

y− z = (Y −Z)e−t

}
=⇒

{
Y +Z = (y+ z)e−t

Y −Z = (y− z)e t

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

X = x

Y =
1

2
((y+ z)e−t +(y− z)e t)

Z =
1

2
((y+ z)e−t − (y− z)e t)

b) The material description of the acceleration in point X∗ = (1,1,1) must be
obtained. Replacing point X∗ into the expression obtained in a) yields

A(X∗, t) not≡ [
0 , e t , e t]T

.

c) The difference between the spatial velocities per unit of time must be ob-
tained, for point x∗ = (1,1,1),

Δv(x∗, t)
Δ t

−→ ∂v(x∗, t)
∂ t

.

The spatial description of the velocity field is

v(x = x∗, t) = V(X(x∗, t) , t) .
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Careful observation of the material expression of the velocity field obtained in a)
reveals that Vy = z and Vz = y, therefore

v(x, t) not≡ [0 , z , y]T =⇒ ∂v(x∗, t)
∂ t

not≡ [0 , 0 , 0]T .

Problem 1.4 – Given the spatial description of the velocity field in Cartesian
coordinates,

v not≡ [x , y , zϕ (t)]T

and the surface

Σt :=
{

x | F (x,y,z, t) = e−2t (x2 + y2
)
+ z2e−t2 −C = 0

}
,

where C �= 0 is a constant, determine ϕ (t) considering that the particles on this
surface are always the same.

Solution
The function F defines the material surface Σt := {x | F (x,y,z, t) = 0}. The nec-
essary and sufficient condition for this surface to be a material surface is

dF
dt

=
∂F
∂ t

+v ·∇F = 0 ∀x ∈ Σt ∀t ,

where
∂F
∂ t

=−2e−2t
(
x2 + y2

)−2tz2e−t2
,

∇F not≡
[
2xe−2t , 2ye−2t , 2ze−t2

]T
, and

v ·∇F = 2x2e−2t +2y2e−2t +2z2e−t2ϕ (t) .

Then, the necessary and sufficient condition above is reduced to

2z2 (ϕ (t)− t)e−t2
= 0 ∀x ∈ Σt ∀t .

Moreover, for x ∈ Σt , the term z2 can be isolated from the expression of
the function defining the material surface F (x,y,z, t) given in the statement,

z2 =
(
C− e−2t

(
x2 + y2

))
et2

. Replacing this expression into the previous equa-
tion yields

2
(
C− e−2t (x2 + y2

))
(ϕ (t)− t) = 0 ∀x ∀t .
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34 CHAPTER 1. DESCRIPTION OF MOTION

Since
(
C− e−2t

(
x2 + y2

))
= 0 cannot be satisfied for ∀x and ∀t because C is a

constant, the only possibility left is

ϕ (t) = t .

Problem 1.5 – Given the velocity field of a perfect fluid

v(x, t) not≡
[

ze t ,
y

1+ t
, vz

]T

and the surface ϕ (x, t) = x− z(1+ t)e t + k = 0 (where k is a constant), which
is known to be a material surface, determine:

a) The equation of the trajectory in canonical form and the equation of the
streamlines.

b) The equation of the streakline and the position of its initial and final points
if the spill point is x∗ and the spill period is t ∈ [t1, t2].

Solution
a) To be able to calculate the trajectories and streamlines, the expression for
the velocity field must be completed. To find vz, the information given about
surface ϕ is used. The necessary and sufficient condition for this surface to be a
material surface is

dϕ
dt

=
∂ϕ
∂ t

+v ·∇ϕ = 0 ∀x ∈ Σt ∀t ,

where
∂ϕ
∂ t

=−z(e t + e t (1+ t)) , ∇ϕ not≡ [1 , 0 , −e t (1+ t)]T

and v ·∇ϕ = ze t −vze
t (1+ t) .

Then, the material derivative of ϕ is

dϕ
dt

=−ze t − ze t (1+ t)+ ze t −vze
t (1+ t) = 0

which results in vz =−z. Therefore, the spatial description of velocity field is

v(x, t) not≡
[

ze t ,
y

1+ t
, −z

]T

.
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Problems and Exercises 35

Now, this field must be integrated to obtain the equation of the trajectory since
dx/dt = v(x, t). Applying the equality for each component and particularizing
for the velocity field determined yields

dx
dt

= ze t ,
dy
dt

=
y

1+ t
and

dz
dt

=−z .

Note that the x-component depends on the z-coordinate. Then, the z-coordinate
must be determined first,

dz
dt

=−z =⇒ z =C1e−t .

Replacing the expression found for z into the x-component and integrating the
expression results in

dx
dt

=C1e−te t =C1 =⇒ x =C1t +C2 .

Finally, the y-component is

dy
dt

=
y

1+ t
=⇒ y =C3 (1+ t) .

To obtain the canonical form of the expression, x = X for t = 0 is imposed,⎧⎪⎨
⎪⎩

x(0) =C2 = X

y(0) =C3 = Y

z(0) =C1 = Z

and, finally, the equation of the trajectory in canonical form is

x = X +Zt

y = Y (1+ t)

z = Ze−t

.

The equation of the streamlines is found by integrating the velocity field with
respect to λ , that is, dx(λ )/dλ = v(x(λ ) , t). As in the case of the equation of
the trajectory, the z-component must be determined before the x-component,

dz
dλ

=−z =⇒ z =C1e−λ .
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36 CHAPTER 1. DESCRIPTION OF MOTION

Replacing into the x-component yields

dx
dλ

=C1e (t−λ ) =⇒ x =−C1e (t−λ ) +C2

and the remaining component results in

dy
dλ

=
y

1+ t
=⇒ y =C3e

λ
1+t .

Then, the equation of the streamlines is

x =−C1e (t−λ ) +C2

y =C3e
λ

1+t

z =C1e−λ

.

b) To obtain the equation of the streakline it is enough to take the equation of
motion and impose x∗ = x(X,τ), where τ is a time belonging to the spill period.⎧⎪⎨

⎪⎩
x∗ = X +Zτ
y∗ = Y (1+ τ)
z∗ = Ze−τ

And the inverse of this equation is⎧⎪⎪⎨
⎪⎪⎩

X = x∗ −Zτ = x∗ − z∗τeτ

Y =
y∗

1+ τ
Z = z∗eτ

Replacing these into the equation of motion results in the equation of the streak-
line,

x = x∗ − z∗ (τ − t)eτ

y = y∗
1+ t
1+ τ

z = z∗e(τ−t)

.

Consider the physical concept of the streakline as the color line that would be
observed in the medium if a tracer fluid were injected at the spill point through-
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out the spill period. Then, for each time t, the streakline can be visualized in
terms of the parameter τ , which gives the position in space of the colored parti-
cles. It is verified that, as expected, x = x∗ for t = τ , since it corresponds to the
time in which the streakline is crossing the spill point. Now, the streakline must
be delimited for each time t.

There are two distinct cases:

i) t1 < t < t2

The first colored point in the streakline is the one crossing the spill point at
τ = t1 while the last one is the one crossing the spill point at τ = t.

Initial point:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x = x∗ − z∗ (t1 − t)e t1

y = y∗
1+ t
1+ t1

z = z∗e (t1−t)

Final point:

⎧⎪⎨
⎪⎩

x = x∗

y = y∗

z = z∗

ii) t ≥ t2

The first colored point in the streakline is the same as in the previous case,
τ = t1, but the last point is now τ = t2. The streakline has now “moved away”
from the spill point.

Initial point:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x = x∗ − z∗ (t1 − t)e t1

y = y∗
1+ t
1+ t1

z = z∗e (t1−t)

Final point:

⎧⎪⎪⎨
⎪⎪⎩

x = x∗ − z∗ (t2 − t)e t2

y = y∗
1+ t
1+ t2

z = z∗e (t2−t)
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EXERCISES

1.1 – Justify if the following statements are true or false.

a) Two streamlines corresponding to a same instant of time can never cross each
other unless the velocity field at the cross point is zero.

b) Two different trajectories can never cross each other.
c) Two streaklines corresponding to two spill points with the same spill period

can cross each other at one or more points.

1.2 – Given the following velocity field in material description

v not≡ [
Ae AtX1, BtX1, CX3

]T
,

with A, B and C constants, obtain its spatial description and the conditions A, B
and C must fulfill for the motion to be feasible for 0 < t < ∞.

1.3 – Tracer fluid is injected at point (1,1,1) of the interior of a fluid from time
t = 1 to time t = 2. If the equation of the streamlines is

x =C1eλ t , y =C2eλ t , z =C3e2λ t

determine the equation of the streakline, indicating its initial and final points for
t = 5.

1.4 – The spatial description of the velocity field of a fluid is

v not≡ [
ye−t , ze t , 0

]T
.

Tracer fluid is injected on plane y = 0 at time t = 1. Obtain the spatial equation
of the stain along time.

1.5 – A certain motion is defined by the velocity field

vx = 2ax ; vy =−by ; vz =− z
t + c

.

Determine:

a) The equation of the trajectory in canonical form and the equation of the
streamlines.

b) The possible values of a, b and c such that the motion has physical sense for
t ∈ [0,∞).
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40 CHAPTER 1. DESCRIPTION OF MOTION

c) The spatial description of the material surface that, at time t = 1, was a
sphere with center at (0,0,0) and radius R (consider a = b = c = 1).

1.6 – A certain motion is defined by the velocity field

vx = ye−t ; vy = y ; vz = 0 .

Determine:

a) The equation of the trajectory in canonical form and the equation of the
streamlines.

b) The spatial description of the material surface that, at time t = 1, was a
sphere with center at (0,0,0) and radius R.
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2.2 Deformation Gradient Tensors 



Reference or 
non-deformed 

Present or 
deformed 

Ω0 

Ωt

t0 

P 

t 

P’ 

( ), tϕ X

Q 

Q’dX dx 

X x 

Ω or Ωt: deformed (or present) 
configuration, at present time t. 

x : Position vector of the same particle 
at present time. 

Continuous Medium in Movement 

Ω0: non-deformed (or reference) 
configuration, at reference time t0. 

X : Position vector of a particle at 
reference time. 

8 

https://youtu.be/g9a5xRrhn3A?t=00m15s


Fundamental Equation of Deformation 

 The Equations of Motion: 

 Differentiating w.r.t. X : 

( ) ( ) { }

( ) ( )

,
, , 1, 2,3

,
,

not
i

i j ij j
j

not

x t
dx dX F t dX i j

X

t
d d t d

∂
= = ∈ ∂


∂ = ⋅ = ⋅ ∂

X
X

x X
x X F X X

X

Fundamental equation 
of deformation 

 (material) deformation 
gradient tensor 

( ) ( ) { }

( ) ( )
1 2 3 1 2 3, , , , , , 1, 2,3

, ,

not

i i i

not

x X X X t x X X X t i

t t

ϕ

ϕ

= = ∈

= =x X x X

9 

https://youtu.be/g9a5xRrhn3A?t=03m29s


Material Deformation Gradient Tensor 

 The (material) deformation gradient tensor: 

 

 F(X,t): 
 is a primary measure of deformation
 characterizes the variation of relative placements in the neighbourhood of a

material point (particle).

( )

{ }

, ( , )

, 1, 2,3

not

not
i

ij
j

t t
xF i j
X

 = ⊗∇
 ∂

= ∈
∂

F X x X

REMARK 
The material Nabla operator 
is defined as: ˆ i

iX
e∂

∇ ≡
∂

[ ]

1 1 1

1 2 3
1

2 2 2
2

1 2 3 1 2 3
3

3 3 3

1 2 3

 

x x x
X X X

x
x x xx

X X X X X X
x

x x x
X X X

 ∂ ∂ ∂
 ∂ ∂ ∂  
   ∂ ∂ ∂∂ ∂ ∂  = ⊗ = =       ∂ ∂ ∂ ∂ ∂ ∂       ∂ ∂ ∂
 
∂ ∂ ∂ 

F x ∇

  = x T= ∇

( ),d t d= ⋅x F X X
10 

1

2

3

X

X

X

 ∂
 ∂ 
 ∂

 ∇ =    ∂ 
 ∂
 
∂ 

https://youtu.be/g9a5xRrhn3A?t=08m37s


Inverse (spatial) Deformation Gradient 
Tensor 

 The inverse Equations of Motion: 

 

 

 Differentiating w.r.t. x : 

( ) ( ) { }

( ) ( )

1

1

,
, , 1, 2,3

,
,

not
i

i j ij j
j

not

X t
dX dx F t dx i j

x

t
d d t d

−

−

∂
= = ∈

∂

∂
= ⋅ = ⋅

∂

X
x

X x
X x F x x

x

Inverse (spatial) deformation 
gradient tensor 

( ) ( ) { }

( ) ( )

1
1 2 3 1 2 3

1

, , , , , , 1, 2,3

, ,

not

i i i

not

X x x x t X x x x t i

t t

ϕ

ϕ

−

−

= = ∈

= =X x X x

11 

https://youtu.be/g9a5xRrhn3A?t=12m34s


Inverse (spatial) Deformation Gradient 
Tensor 

 The spatial (or inverse) deformation gradient tensor: 

 
 
 

 
  
 
 

  F-1(x,t):  
 is a primary measure of deformation 
 characterizes the variation of relative placements in the neighbourhood of a 

spatial point. 
 It is not the spatial description of the material deformation gradient tensor 

( )

{ }

1

1

, ( , )

, 1, 2,3i
ij

j

t t
XF i j
x

−

−

 ≡ ⊗∇


∂ = ∈ ∂

F x X x

ˆ i
ix

∂
∇ ≡

∂
e

REMARK   
The spatial Nabla 
operator is defined as: 
 
 

[ ]

1 1 1

1 2 3
1

1 2 2 2
2

1 2 3 1 2 3
3

3 3 3

1 2 3

X X X
x x x

X
X X XX

x x x x x x
X

X X X
x x x

−

 ∂ ∂ ∂
 ∂ ∂ ∂  
   ∂ ∂ ∂∂ ∂ ∂   = ⊗ = =       ∂ ∂ ∂ ∂ ∂ ∂       ∂ ∂ ∂
 
∂ ∂ ∂ 

F X ∇

  = X

T= ∇

( )1 ,d t d−= ⋅X F x x

[ ]
1

2

3

x

x

x

 ∂
 
 
 ∂

∇ =  
 
 ∂
 
 

12 



Properties of the Deformation 
Gradients 

 The spatial deformation gradient tensor is the inverse of the material 
deformation gradient tensor: 

 If F is not dependent on the space coordinates,                    the 
deformation is said to be homogeneous. 
 Every part of the solid body deforms as the whole does.
 The associated motion is called affine.

 If there is no motion,                                          . 

1 1i k i
ij

k j j

x X x
X x x

δ − −∂ ∂ ∂
= = ⋅ = ⋅ =

∂ ∂ ∂
F F F F 1

1−∂
= = = =

∂
xx X F F
X

 and  1

( )( , )t t≡F X F

13 

https://youtu.be/g9a5xRrhn3A?t=15m54s


Example 

Compute the deformation gradient and inverse  deformation gradient tensors 
for a motion equation with Cartesian components given by, 

Using the results obtained, check that                 . 

[ ] ( )

2

1
t

X Y t
Y t

Ze

 +
 = + 
  

x

1−⋅ =F F 1

14 

https://youtu.be/2GVhUQry8Yw?t=00m00s


Example - Solution 

The Cartesian components of the deformation gradient tensor are, 

The Cartesian components of the inverse motion equation will be given by, 

( ) [ ] ( )

2 1 2 0
, 1 , , 0 1 0

0 0
F X x x

T

t t

X Y t Yt
t Y t t

X Y Z
Ze e

 +  
∂ ∂ ∂      = ⊗ ≡ = + = +         ∂ ∂ ∂      

∇ ∇

[ ] ( )

( )

2

2

1

1

,
1

t

y tX x
t

yt Y
t

Z ze

X x−

−

 
= − + 

 
 = = =   + 

= 
 
  

ϕ

[ ] ( )

2

1
t

X Y t
Y t

Ze

 +
 = + 
  

x

15 

( )
( )

( )
,

21 0
(1 )

( , ), , 0 1 0
0 0 tt

yt
t

t t t t
ef x

F X x f x

 
   +
   = = +     
     
  



https://youtu.be/2GVhUQry8Yw?t=00m15s


Example - Solution 

The Cartesian components of the inverse deformation gradient tensor are, 

 

 

 

 

 

And it is verified that                :  

 

 

( )

( )2

1

21 0
1
1, 0 0

1

0 0 t

yt
t

t
t

e

−

−

 − + 
 

  =    + 
 
 
  

F x

1−⋅ =F F 1

( ) ( ) ( )

[ ]

2 2 2

1

2 2 21 0 1 021 0 1 1 1
1 0 0(1 )

1 10 1 0 0 0 0 0 0 1 0
1 1

0 0 0 0 1

0 0 0 0

t

t t t

yt yt yt
yt t t t

t
tt

t t
e

e e e

F F−

− −

   − − +     + + +     +       +  ⋅ = + ⋅ = = =       + +             
      

   

1
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Ch.2. Deformation and Strain 

2.3 Displacements 



 Displacement: relative position of a particle,  in its current (deformed) 
configuration at time t,  with respect to its position in the initial 
(undeformed) configuration.  

 Displacement field: displacement of all the particles in the continuous 
medium. 
 Material description (Lagrangian form):

 
 

 Spatial description (Eulerian form): Ω0 

Ω 

t0 

P 

t 

P’ U=u 

X 
x 

Displacements 

( ) ( )
( ) ( ) { }

, ,

, , 1, 2,3i i i

t t

U t x t X i

= −

= − ∈

U X x X X

X X

( ) ( )
( ) ( ) { }

, ,

, , 1, 2,3i i i

t t

u t x X t i

= −

= − ∈

u x x X x

x x

18 

https://youtu.be/ZO8P2iiQGDc?t=00m00s


  Taking partial derivatives of U w.r.t. X : 

 Taking partial derivatives of u w.r.t. x : 

Displacement Gradient Tensor 



( , ) ( , ) def
i i i

ij ij ij
j j j

ijijF

U t x t X F J
X X X

δ

δ∂ ∂ ∂
= − = − =

∂ ∂ ∂
X X



{ }

( ) ( )

, 1,2,3

, ,

i
ij ij ij

j

def

UJ F i j
X

t tJ X U X F∇

∂ = = − ∈ ∂



= ⊗ = −

δ

1

{ }

( ) ( )

1

1

, 1,2,3

, ,

i
ij ij ij

j

def

uj F i j
x

t tj x u x F∇

−

−

∂ = = − ∈ ∂



= ⊗ = −

δ

1

Material  Displacement  
Gradient Tensor 

Spatial Displacement Gradient 
Tensor 



1

1

( , ) ( , ) def
i i i

ij ij ij ij
j j j

ij ijF

u t x X t F j
x x x

δ

δ δ−

−

∂ ∂ ∂
= − = − − =

∂ ∂ ∂
x x



REMARK   If motion is a pure shifting: 
. 

1( , ) ( )t t andxx X X U F F j J 0
X

−∂
= + ⇒ = = = = =

∂
1

( ) ( )
( ) ( ) { }

, ,

, , 1,2,3i i i

t t

U t x t X i

U X x X X

X X

= −


= − ∈

( ) ( )
( ) ( ) { }

, ,

, , 1,2,3i i i

t t

u t x X t i

u x x X x

x x

= −


= − ∈

19 

https://youtu.be/ZO8P2iiQGDc?t=01m04s
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Ch.2. Deformation and Strain 

2.4 Strain Tensors 



Strain Tensors 

 F characterizes changes of relative placements during motion but is not 
a suitable measure of deformation for engineering purposes: 

 It is not null when no changes of distances and angles take place, e.g.,
in rigid-body motions.

 Strain is a normalized measure of deformation which characterizes the 
changes of distances and angles between particles. 

 It reduces to zero when there is no change of distances and angles
between particles.

21 

https://youtu.be/UQPUdS4LYoo?t=00m00s


Ω0 

Ω 

t0 

P 

t 

P’ 

( ), tF X

Q 

Q’dX dx 

X x 

dS 
ds 

 Consider 

 where dS is the length of segment dX :  
 and ds is the length of segment dx :

Strain Tensors 

dS d d= ⋅X X
ds d d= ⋅x x

 

i ij j

d d
dx F dX

= ⋅
=

x F X

-1

1
i ij j

d d
dX F dx−

= ⋅

=

X F x

22 

https://youtu.be/UQPUdS4LYoo?t=00m59s


Strain Tensors 

 One can write: 

dS d d= ⋅X X ds d d= ⋅x x

( ) [ ] [ ] [ ] [ ]
( )

2

2     

T T T

T
k k ki i kj j i ki kj j i ik kj j

ds d d d d d d d d

ds dx dx F dX F dX dX F F dX dX F F dX

 = ⋅ = ⋅ = ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅

 = = = =

x x x x F X F X X F F X

( ) [ ] [ ]
( )

2 1 1 1

2 1 1 1 1 1    

notTT T

T
k k ki i kj j i ki kj j i ik kj j

dS d d d d d d d d

dS dX dX F dx F dx dx F F dx dx F F dx

− − − −

− − − − − −

    = ⋅ = ⋅ = ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅    
 = = = =

X X X X F x F x x F F x
REMARK 
The convention  
   

is used. 
1( ) ( )

notT T− − • = • 

-1

1
i ij j

d d
dX F dx−

= ⋅

=

X F x  

i ij j

d d
dx F dX

= ⋅
=

x F X

23 



Green-Lagrange Strain Tensor 

 
 

 Subtracting: 

 

 The Green-Lagrange or Material Strain Tensor is defined: 

 E is symmetrical:

( ) ( )

( ) ( ) { }

1,
2
1, , 1, 2,3
2

T

ij ki kj ij

t

E t F F i jδ

 = ⋅ −

 = − ∈


E X F F

X

1

( )2 Tds d d= ⋅ ⋅ ⋅X F F X ( )2dS d d= ⋅X X

( ) ( ) ( )2 2

2

2
def

T T Tds dS d d d d d d d d d d d d

=

− = ⋅ ⋅ ⋅ − ⋅ = ⋅ ⋅ ⋅ − ⋅ ⋅ = ⋅ ⋅ − ⋅ = ⋅ ⋅

E

X F F X X X X F F X X X X F F X X E X


1 1

( ) ( )( ) ( )
{ }

1 1 1
2 2 2

, 1,2,3

T TT T T T T T

ij jiE E i j

= ⋅ − = ⋅ − = ⋅ − =

= ∈

E F F F F F F E1 1 1

24 

https://youtu.be/UQPUdS4LYoo?t=06m08s


Euler-Almansi Strain Tensor 

 
 

 Subtracting: 

 

 

 The Euler-Almansi or Spatial Strain Tensor is defined: 

 

 

 

 e is symmetrical:

( )2ds d d= ⋅x x ( )2 1TdS d d− −= ⋅ ⋅ ⋅x F F x

( ) ( )
( )

2 2 1 1

1 2

2def

T T

T

ds dS d d d d d d d d

d d d d

− − − −

− −

=

− = ⋅ − ⋅ ⋅ ⋅ = ⋅ ⋅ − ⋅ ⋅ ⋅ =

= ⋅ − ⋅ ⋅ = ⋅ ⋅

x x x F F x x x x F F x

x F F x x e x

e


1

1

( ) ( )

( ) ( ) { }

1

1 1

1,
2
1, , 1, 2,3
2

T

ij ij ki kj

t

e t F F i jδ

− −

− −

 = − ⋅

 = − ∈


e x F F

x

1

2
def
= e

( ) ( ) ( )( ) ( )
{ }

1 1 11 1 1
2 2 2

, 1,2,3

T T TT T T T T

ij jie e i j

− − − − − −= − ⋅ = − ⋅ = − ⋅ =

= ∈

e F F F F F F e1 1 1

25 

https://youtu.be/UQPUdS4LYoo?t=12m00s


Particularities of the Strain Tensors 

 The Green-Lagrange and the Euler-Almansi Strain Tensors are different 
tensors. 
 They are not the material and spatial descriptions of a same strain tensor.
 They are affected by different vectors (dX and dx) when measuring distances:

 The Green-Lagrange Strain Tensor is inherently obtained in material 
description,                     . 
 By substitution of the inverse Equations of Motion,                                          . 

 The Euler-Almansi Strain Tensor is inherently obtained in spatial description, 

                   .
 By substitution of the Equations of Motion,                                        . 

( ) ( )2 2 2 2ds dS d d d d− = ⋅ ⋅ = ⋅ ⋅X E X x e x

( ), t=E E X
( )( ) ( ), , ,t t t= =E E X x E x

( ), t=e e X
( )( ) ( ), , ,t t t= =e e x X e X

26 

https://youtu.be/UQPUdS4LYoo?t=14m54s


Strain Tensors in terms of Displacements 

 Substituting                                     into 

                                                        : 

1− = = +F j F J1- 1and

( ) ( )11 1
2 2

T T− −= ⋅ − = − ⋅E F F e F F1 1and

1 1( ) ( )
2 2
1 , {1,2,3}
2

T T T

ji k k
ij

j i i j

UU U UE i j
X X X X

    = + ⋅ + − = + + ⋅   

  ∂∂ ∂ ∂ = + + ∈  ∂ ∂ ∂ ∂  

E J J J J J J1 1 1

( ) ( )

{ }

1 1
2 2
1 , 1,2,3
2

T T T

ji k k
ij

j i i j

uu u ue i j
x x x x

    = − − ⋅ − = + − ⋅   

  ∂∂ ∂ ∂ = + − ∈  ∂ ∂ ∂ ∂  

e j j j j j j1 1 1

27 

https://youtu.be/UQPUdS4LYoo?t=16m02s


Example 

For the movement in the previous example, obtain the strain tensors in the 
material and spatial description. 

[ ] ( )

2

1
t

X Y t
Y t

Ze

 +
 = + 
  

x
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https://youtu.be/UQPUdS4LYoo?t=17m50s


Example - Solution 

The deformation gradient tensor and its inverse tensor have already been 
obtained: 

The material strain tensor : 

( )2

1

21 0
1

1 2 0
10 1 0 0 0

1
0 0

0 0

t

t

yt
t

Yt
t

t
e

e

−

−

 − +     = + =    +     
 
  

F F

( ) ( ) ( )

( ) ( )

2 2

2 2

2

1 1 2 01 0 0 1 2 0
1 1 12 1 0 0 1 0 2 2 1 1 0
2 2 2

0 0 0 0 0 0 1

0 2 0
1 2 2 1 1 0
2

0 0 1

T

t t t t

t

YtYt
Yt t t Yt Yt t

e e e e

Yt

Yt Yt t
e

E F F

−     
     = ⋅ − = + ⋅ + − = + + − =     

   −         
 
 

= + + − 
 − 

1 1

30 

https://youtu.be/UQPUdS4LYoo?t=18m00s


Example - Solution 

The spatial strain tensor : 

 

 

 

 

 

 

 

 

 

 

( )
( )

( ) ( )

( ) ( )

2
2

2 2
1

2 2 2

21 1 021 0 1
11 0 0

1 1 2 1 1 1 2 2 10 0 0 1 0
2 2 1 1 2 11 1 1

0 00 0 0 0 1

T

t
t t t

yt
yt

t
t

yt yt yt
t t tt t t

ee e e

e F F− −

−
− − −

 − −    − +     +              = − ⋅ = − − ⋅ = − − − +         + + + + + +           −         

1 1

( )

( ) ( )

2

2 2

2 2

2

20 0
1

1 2 2 11 0
2 11 1

0 0 1 t

yt
t

yt yt
tt t

e−



 =





 − + 
     = − − −      + + +  
 −
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Example - Solution 

In conclusion, the material strain tensor is: 

And the spatial strain tensor is: 

 

Observe that                       and                        . ( ) ( ), ,E x e xt t≠

32 

( ) ( ) ( )2 2

2

0 2 0
1, 2 2 1 1 0
2

0 0 1
E X

t

Yt

t Yt Yt t
e

 
 

= + + − 
 − 

( )

( )

( ) ( )

2 2

2

20 0
1

1 2 2 1, 1 0
2 1 1 1

0 0 1

e X

t

Yt
t

Yt Ytt
t t t

e−

 − + 
     = − − −     + + +   

− 
 
 

[ ] ( )

2

1x
t

X Y t
Y t

Ze

 +
 = + 
  

( )

( )

( ) ( )

2

2 2

2 2

2

20 0
1

1 2 2 1, 1 0
2 11 1

0 0 1

e x

t

yt
t

yt ytt
tt t

e−

 − + 
     = − − −      + + +  
 −
 
  

( )

( )

( ) ( ) ( )
2

2

2

20 0
1

1 2 2, 1 1 0
2 1 1

0 0 1

E x

t

yt
t

yt ytt t
t t

e

 
 + 
   = + + −   + +  

− 
 
 

( ) ( ), ,E X e Xt t≠

( )1y Y t= +

( )1
yY

t
=

+

material description 

material description 

spatial description 

spatial description 
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Ch.2. Deformation and Strain 

2.5 Variations of Distances 



 The stretch ratio or stretch is defined as: 

Ω0 

Ω 

t0 

P 

t 

P’ 

Q 

Q’dX dx 

X x 

dS 
ds 

T 

t 

Stretch 

( )
def ´ ´ 0P Q ds

dSPQ
λ λ λ= = = = < < ∞T tstretch

REMARK 
The sub-indexes (●)T and 
(●)t are often dropped. But 
one must bear in mind that 
stretch and unit elongation 
always have a particular 
direction associated to them. 

34 

https://youtu.be/4RG1HedarZc?t=00m00s


Unit Elongation 

 The extension or unit elongation is defined as: 

def PQ ds dS
dSPQ

ε ε ∆ −
= = = =T tunit elongation

REMARK 
The sub-indexes (●)T and 
(●)t are often dropped. But 
one must bear in mind that 
stretch and unit elongation 
always have a particular 
direction associated to them. 

Ω0 

Ω 

t0 

P 

t 

P’ 

Q 

Q’dX dx 

X x 

dS 
ds 

T 

t 
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https://youtu.be/4RG1HedarZc?t=05m05s


Relation between Stretch and Unit 
Elongation 

 The stretch and unit elongation for a same point and direction are 
related through: 

 If                                     : P and Q may have moved in time but have kept 
the distance between them constant.

 If                                     : the distance between them P and Q has 
increased with the deformation of the medium.

 If                                      : the distance between them P and Q has 
decreased with the deformation of the medium.

( )1 1 1ds dS ds
dS dS

ε λ ε−
= = − = − − < < ∞

( )1 0 ds dSλ ε= = =

( )1 0 ds dSλ ε> > >

( )1 0 ds dSλ ε< < <

λ=

36 

https://youtu.be/4RG1HedarZc?t=07m01s


Stretch and Unit Elongation in terms of 
the Strain Tensors 

 Considering: 

 

 

 Then: 

1 2   

1 1 2   1

λ

ε λ

= + ⋅ ⋅

= − = + ⋅ ⋅ −

T E T

T E T

REMARK   
E(X,t) and e(x,t) 
contain information 
regarding the stretch 
and unit elongation for 
any direction in the 
differential neighbour-
hood of a point.  

( ) ( )
( ) ( )

2 2

2 2

2

2

ds dS d d

ds dS d d

− = ⋅ ⋅

− = ⋅ ⋅

X E X

x e x

d dS
d ds

=
=

X T
x t

( ) ( ) ( )

( ) ( ) ( )

2
2 2 2

2
2 2 2

2   1 2   

2   1 2   

dsds dS dS
dS

dSds dS ds
ds

 − = ⋅ ⋅ − = ⋅ ⋅ 
 

 − = ⋅ ⋅ − = ⋅ ⋅ 
 

T E T T E T

t e t t e t

( )21
λ=

2λ=( )2
1

dS
×

( )2
1

ds
×

1
1 2   

11 1
1 2   

λ

ε λ

=
− ⋅ ⋅

= − = −
− ⋅ ⋅

t e t

t e t

37 
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Ch.2. Deformation and Strain 

2.6 Variation of Angles 



Ω0 

Ω 

t0 

P 

t 

P’ 

Q 

Q’ 
ds(2)

X x 

dS(1) ds(1)

T(1) 

t(1) 

R’ 

t(2) 

dS(2) 

T(2) 

R 
Θ θ 

 

 

 The scalar product of the vectors dx(1) and dx(2) : 

Variation of Angles 

( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 2cos cosd d d d ds dsθ θ⋅ = ⋅ =x x x x

( ) ( ) ( )

( ) ( ) ( )

1 1 1

2 2 2

d dS

d dS

=

=

X T

X T

( ) ( ) ( )

( ) ( ) ( )

1 1 1

2 2 2

d ds

d ds

=

=

x t

x t
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( ) ( ) ( )

( )
( )



( ) ( ) ( ) ( )

( )
( )



( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( )1 2 1 1 2 1 2 1 2 1 2

1 2
1 2

1 2

2 1 12  2  cos
ds ds

d d dS dS ds ds ds dsx x T E T T E T θ
λ λ

λ λ

 ⋅ = ⋅ + ⋅ = ⋅ + ⋅ = 
 

1 1

Variation of Angles 

( )

( )


( )

( )


( ) ( )1 2 1 2

21

cos
T dd

d d ds ds θ
       

⋅ =
xx

x x

( ) ( )

( ) ( )

1 1

2 2

d d

d d

 = ⋅


= ⋅

x F  X

x F  X
( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 2

2

T Td d d d d d

E

x x F X F X X F F X

+

   ⋅ = ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅   


1
( ) ( ) ( )

( ) ( ) ( )

1 1 1

2 2 2

d dS

d dS

= 


= 

X T

X T

1 2   λ = + ⋅ ⋅T E T

( ) ( ) ( )

( ) ( ) ( ) ( )

1 2

1 1 2 2

2

1 2     1 2   

 ⋅ + ⋅
  + ⋅ ⋅ + ⋅ ⋅ 

T E T

T E T T E T

1

( ) ( ) ( )

( ) ( ) ( ) ( )

1 2

1 1 2 2

2
cos

1 2     1 2   
θ

⋅ + ⋅
=

+ ⋅ ⋅ + ⋅ ⋅

T E T

T E T T E T

1
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Ω0 

Ω 

t0 

P 

t 

P’ 

Q 

Q’ 
ds(2)

X x 

dS(1) ds(1)

T(1) 

t(1) 

R’ 

t(2) 

dS(2) 

T(2) 

R 
Θ θ 

 

 

 The scalar product of the vectors dX(1) and dX(2) : 

Variation of Angles 

( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 2cos cosd d d d dS dS⋅ = ⋅ Θ = ΘX X X X

( ) ( ) ( )

( ) ( ) ( )

1 1 1

2 2 2

d dS

d dS

 =


=

X T

X T

( ) ( ) ( )

( ) ( ) ( )

1 1 1

2 2 2

d ds

d ds

 =


=

x t

x t
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( ) ( ) ( )

( ) ( )


( ) ( ) ( )

( ) ( )


( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )1 1 1 2 1 2 1 2 1 2 1 2

1 1 2 2

2 2( - 2 ) ( - 2 )  cos
dS dS

d d ds ds dS dS dS dSX X t e t t e t
λ λ

λ λ⋅ = ⋅ ⋅ = ⋅ ⋅ = Θ1 1

Variation of Angles 

( ) ( )

( ) ( )

1 1

2 2

1

1

d d

d d

−

−

 = ⋅


= ⋅

X F  x

X F  x

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 1 22 1 1 1

2

T Td d d d d d

e

X X F  x F  x x F F x− − − −

−

   ⋅ = ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅   


1
( ) ( ) ( )

( ) ( ) ( )

1 1 1

2 2 2

d ds

d ds

 =


=

x t

x t

1
1 2   

λ =
− ⋅ ⋅t e t

( ) ( ) ( )

( ) ( ) ( ) ( )

1 2

1 1 2 2

2

1 2     1 2   

 ⋅ − ⋅
  − ⋅ ⋅ − ⋅ ⋅ 

t e t

t e t t e t

1

( )

( )


( )

( )


( ) ( )1 2 1 2

21

cos
T dd

d d dS dS
       

⋅ = Θ
XX

X X

( ) ( ) ( )

( ) ( ) ( ) ( )

1 2

1 1 2 2

2
cos

1 2     1 2   

⋅ − ⋅
Θ =

− ⋅ ⋅ − ⋅ ⋅

t e t

t e t t e t

1

REMARK   
E(X,t) and e(x,t) contain information 
regarding the variation in angles 
between segments in the differential 
neighbourhood of a point.  
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Example 

Let us consider the motion of a continuum body such that the spatial description 
of the Cartesian components of the spatial Almansi strain tensor is given by, 

 

Compute at time t=0 (the reference time), the length of the curve that at time 
t=2 is a straight line going from point a (0,0,0) to point b (1,1,1). 
The length of the curve at time t=0 can be expressed as, 

[ ]
( )

0 0
( , ) 0 0 0

0 2

tz

tz tz t

te
t

te t e e

 −
 

=  
 
− −  

e x



( )1 ,
B b

A a
ds

L dS t ds

λ
λ

=

= =∫ ∫ x
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Example - Solution 

The inverse of the stretch, at the points belonging to the straight line going 
from a(0,0,0) to b(1,1,1) along the unit vector in the direction of the straight 
line, is given by, 

Where the unit vector is given by, 

Substituting the unit vector and spatial Almansi strain tensor into the expression 
of the inverse of the stretching yields, 

( )
( )

( ) ( )11, , 1 2 ,
1 2 ,

x x t e x t
t e x t

t t t
t

λ λ−= → = − ⋅ ⋅
− ⋅ ⋅

[ ] [ ]1 1 1 1
3

T=t

( )1 2, 1
3

tt teλ− = +x
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Example - Solution 

The inverse of the stretch, which is uniform and therefore does not depends on 
the spatial coordinates, at time t=2 reads, 

Substituting the inverse of the stretch into the integral expression provides the 
length at time t=0, 

( )1 24, 2 1
3

eλ− = +x

( )
(1,1,1)1 2 2 2

(0,0,0)

3

4 4,2 1 1 3 4
3 3

x
b b

a a
L dS ds e ds e ds eλ−

Γ

=

= = = + = + = +∫ ∫ ∫ ∫
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46 

Ch.2. Deformation and Strain 

2.7 Physical Interpretation of E and e 



Physical Interpretation of E 

 Consider the components of the material strain tensor, E: 

 For a segment parallel to the X-axis, the stretch is: 

11 12 13

12 22 23

13 23 33

XX XY XZ

XY YY YZ

XZ YZ ZZ

E E E E E E
E E E E E E E

E E E E E E

   
   = =   
      

[ ]


(1)

11 12 13
(1) (1)

12 22 23 11

13 23 33

(1)

1
1 0 0   0

0T

E E E
E E E E
E E E

T

T

T E T
 
  

 
  

   
   ⋅ ⋅ = ⋅ ⋅ =   
      



(1)

1
0
0

 
 ≡  
 
 

T (1) 0
0

dS
d dS

 
 ≡ =  
 
 

X T

1 2   λ = + ⋅ ⋅T E T

1 111 2Eλ = +
Stretching of 
the material in 
the X-direction 

reference 
configuration 
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XX XY XZ

XY YY YZ

XZ YZ ZZ

E E E
E E E E

E E E

 
 =  
  

Physical Interpretation of E 

 Similarly, the stretching of the material in the Y-direction and the Z-
direction: 

 The longitudinal strains contain information on the stretch and unit 
elongation of the segments initially oriented in the X, Y and Z-directions 
(in the material configuration). 

 

 

1 11

2 22

3 33

1 2 1 1 2 1

1 2 1 1 2 1

1 2 1 1 2 1

X X XX

Y Y YY

Z Z ZZ

E E

E E

E E

λ ε λ

λ ε λ

λ ε λ

= + = − = + −

= + = − = + −

= + = − = + −

0 0XX XE ε= =

0 0YY YE ε= =

0 0ZZ ZE ε= =

No elongation in the X-direction 

No elongation in the Y-direction 

No elongation in the Z-direction 

If 

If 

If 
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Physical Interpretation of E 

 Consider the angle between a segment parallel to the X-axis and a 
segment parallel to the Y-axis, the angle is: 

( ) ( ) ( )

( ) ( ) ( ) ( )

1 2

1 1 2 2

2
cos

1 2     1 2   
θ

⋅ + ⋅
=

+ ⋅ ⋅ + ⋅ ⋅

T E T

T E T T E T

1

( )1
1
0
0

 
 =  
 
 

T ( )2

0
1
0

 
 =  
 
 

T

( ) ( )1 2 0⋅ =T T
( ) ( )1 1

11  E⋅ ⋅ =T E T

( ) ( )2 2

22  E⋅ ⋅ =T E T

( ) ( )1 2

12  E⋅ ⋅ =T E T

12

11 22

2cos
1 2 E   1 2 E

Eθ =
+ +

XX YY XX YY

2 2arccos arcsin
21 2 1 2 1 2 1 2 

XY XY
xy

E E
E E E E

πθ θ≡ = = −
+ + + +

reference 
configuration 

deformed 
configuration 
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Physical Interpretation of E 

 The increment of the final angle w.r.t. its initial value: 

XX YY

2arcsin
2 1 2 1 2 

XY
xy

E
E E

πθ θ≡ = −
+ +



XX YY

2

2arcsin
1 2 1 2 

XY
XY xy XY

E
E Eπ

θ∆Θ = −Θ = −
+ +

reference 
configuration 

deformed 
configuration 
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Physical Interpretation of E 

 Similarly, the increment of the final angle w.r.t. its initial value for 
couples of segments oriented in the direction of the coordinate axes: 

 The angular strains contain information on the variation of the angles 
between segments initially oriented in the X, Y and Z-directions (in the 
material configuration). 

 

 
XX XY XZ

XY YY YZ

XZ YZ ZZ

E E E
E E E E

E E E

 
 =  
  

XX YY

XX ZZ

YY ZZ

2arcsin
1 2 1 2 

2arcsin
1 2 1 2 

2arcsin
1 2 1 2 

XY
XY

XZ
XZ

YZ
YZ

E
E E

E
E E

E
E E

∆Θ = −
+ +

∆Θ = −
+ +

∆Θ = −
+ +

0XYE =

0XZE =

0YZE =

No angle variation between the 
X- and Y-directions  
No angle variation between the 
X- and Z-directions  
No angle variation between the 
Y- and Z-directions 

If 

If 

If 
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reference 
configuration 

deformed 
configuration 

Physical Interpretation of E 

 In short, 

XX YY

XX ZZ

YY ZZ

2arcsin
1 2 1 2 

2arcsin
1 2 1 2 

2arcsin
1 2 1 2 

XY
XY

XZ
XZ

YZ
YZ

E
E E

E
E E

E
E E

∆Θ = −
+ +

∆Θ = −
+ +

∆Θ = −
+ +
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3

1 2

1 2

1 2

XX

YY

ZZ

dX E dX

dY E dY

dZ E dZ

λ

λ

λ

= +

= +

= +



Physical Interpretation of e 

 Consider the components of the spatial strain tensor, e: 

 For a segment parallel to the x-axis, the stretch is: 

1
11

1
1 2e

λ =
−

Stretching of 
the material in 
the x-direction 

11 12 13

12 22 23

13 23 33

xx xy xz

xy yy yz

xz yz zz

e e e e e e
e e e e e e
e e e e e e

   
   ≡ =   
     

e

deformed 
configuration 

0
0

ds
d

 
 ≡  
 
 

x(1)

1
0
0

 
 ≡  
 
 

t

1
1 2   

λ =
− ⋅ ⋅t e t

[ ]
11 12 13

12 22 23 11

13 23 33

1
1 0 0   0

0

e e e
e e e e
e e e

   
   ⋅ ⋅ = ⋅ ⋅ =   
      

t e t
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 Similarly, the stretching of the material in the y-direction and the z-
direction: 

 The longitudinal strains contain information on the stretch and unit 
elongation of the segments oriented in the x, y and z-directions (in the 
deformed or actual configuration). 

xx xy xz

xy yy yz

xz yz zz

e e e
e e e
e e e

 
 ≡  
  

e

Physical Interpretation of e 

1
11

2
22

3
33

1 11 1
1 2 1 2

1 11 1
1 2 1 2

1 11 1
1 2 1 2

x x
xx

y y
yy

z z
zz

e e

e e

e e

λ ε λ

λ ε λ

λ ε λ

= ⇒ = − = −
− −

= ⇒ = − = −
− −

= ⇒ = − = −
− −
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Physical Interpretation of e 

 Consider the angle between a segment parallel to the x-axis and a 
segment parallel to the y-axis, the angle is: 

( ) ( ) ( )

( ) ( ) ( ) ( )

1 2

1 1 2 2

2
cos

1 2     1 2   

⋅ − ⋅
Θ =

− ⋅ ⋅ − ⋅ ⋅

t e t

t e t t e t

1

( ) ( )1 2 0⋅ =t t
( ) ( )1 1

11 e⋅ ⋅ =t e t

( ) ( )2 2

22 e⋅ ⋅ =t e t

( ) ( )1 2

12e⋅ ⋅ =t e t

12

11 22

2cos
1 2 e   1 2 e

e−
Θ =

− −

xx yy

2
arcsin

2 1 2 1 2 
xy

XY

e
e e

π
Θ ≡ Θ = +

− −

( )2

0
1
0

 
 =  
 
 

t( )1
1
0
0

 
 =  
 
 

t

reference 
configuration 

deformed 
configuration 
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Physical Interpretation of e 

 The increment of the angle in the reference configuration w.r.t. its value 
in the deformed one: 



xx yy

2

2
arcsin

1 2 1 2 
xy

xy xy XY

e
e e

π

θ θ∆ = −Θ = −
− −

xx yy

2
arcsin

2 1 2 1 2 
xy

XY

e
e e

π
Θ ≡ Θ = +

− −

reference 
configuration 

deformed 
configuration 
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Physical Interpretation of e 

 Similarly, the increment of the angle in the reference configuration w.r.t. 
its value in the deformed one for couples of segments oriented in the 
direction of the coordinate axes: 

 The angular strains contain information on the variation of the angles 
between segments oriented in the x, y and z-directions (in the deformed 
or actual configuration). 

xx yy

xx zz

yy zz

2
arcsin

2 1 2 1 2 

2arcsin
2 1 2 1 2 

2
arcsin

2 1 2 1 2 

xy
xy XY

xz
xz XZ

yz
yz YZ

e
e e

e
e e

e
e e

πθ

πθ

πθ

∆ = −Θ = −
− −

∆ = −Θ = −
− −

∆ = −Θ = −
− −

xx xy xz

xy yy yz

xz yz zz

e e e
e e e
e e e

 
 ≡  
  

e
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reference 
configuration 

deformed 
configuration 

Physical Interpretation of e 

 In short, 

xx yy

xx zz

yy zz

2
arcsin

2 1 2 1 2 

2arcsin
2 1 2 1 2 

2
arcsin

2 1 2 1 2 

xy
xy XY

xz
xz XZ

yz
yz YZ

e
e e

e
e e

e
e e

πθ

πθ

πθ

∆ = −Θ = −
− −

∆ = −Θ = −
− −

∆ = −Θ = −
− −

1

2

3

1 2

1 2

1 2

xx

yy

zz

dx e dx

dy e dy

dz e dz

λ

λ

λ

= −

= −

= −
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Ch.2. Deformation and Strain 

2.8 Polar Decomposition 



Polar Decomposition 

 Polar Decomposition Theorem: 
 “For any non-singular 2nd order tensor F there exist two unique

positive-definite symmetrical 2nd order tensors U and V, and a unique
orthogonal 2nd order tensor Q such that: ”

 The decomposition is unique.
 Q: Rotation tensor
 U: Right or material stretch tensor
 V: Left or spatial stretch tensor

1 1

  

not
T

not
T

− −

= ⋅ 


= ⋅ = ⋅ = ⋅
= ⋅ = ⋅ 


U F F

V F F F Q U V Q
Q F U V F

left polar 
decomposition 

right polar 
decomposition 

REMARK   
An orthogonal 2nd 
order tensor verifies: 

T T⋅ = ⋅ =Q Q Q Q 1
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 An orthogonal tensor Q when multiplied (dot product) times 
a vector rotates it (without changing its length): 
 y has the same norm as x:

 

 when Q is applied on two vectors x(1) and x(2), with the same origin,
the original angle they form is maintained: 

 Consequently, the rotation              maintains angles and 
distances. 

Properties of an orthogonal tensor 

= ⋅y Q x

[ ] [ ] [ ] [ ]2 2TT T= ⋅ = = ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ =y y y Q x Q x x Q Q x xy y


1

(1) (2) (1) (2) (1) (2)

(1) (2) (1) (2) (1) (2)

(1) (2)

cos
T

T T

α

   
      

⋅ ⋅ ⋅ ⋅ ⋅
= = =

y y

y y x Q Q x x x
y y y y x x

 

(2) (2)= ⋅y Q x

(1) (1)= ⋅y Q x

= ⋅y Q x
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Polar Decomposition of F 

 Consider the deformation gradient tensor, F: 

( ) ( )d d d d= ⋅ = ⋅ ⋅ = ⋅ ⋅x F X V Q X V Q X





stretching
rotation

(not)

( ) ( )• ≡ •F stretching rotation

( ) ( )d d d d= ⋅ = ⋅ ⋅ = ⋅ ⋅x F X Q U X Q U X





rotation
stretching

not
( )   ( )• ≡ •F rotation stretching

= ⋅ = ⋅F Q U V Q

REMARK   
For a rigid body motion: 

                  and  = =U V 1 =Q F
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Ch.2. Deformation and Strain 

2.9 Volume Variation 



 Consider the variation of a differential volume associated to a particle 
P: 

reference 
configuration 

deformed 
configuration 

Differential Volume Ratio 

( ) ( )( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2 (3)
0

1 1 1
1 2 3

2 2 2
1 2 3

3 3 3
1 2 3

det

dV d d d

dX dX dX

dX dX dX

dX dX dX

 
  

= ⋅ =

 
 

= = 
 
  

M

X X X

M



×

( ) ( )( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2 3

1 1 1
1 2 3

2 2 2
1 2 3

3 3 3
1 2 3

det

tdV d d d

dx dx dx

dx dx dx

dx dx dx

  

= ⋅ =

 
 

= = 
 
  

m

x x x

m



×

( ) ( )i i
ij j ij jM dX m dx= =
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 Consider now: 

 

 

 Then: 

 

 And, defining J (X,t) as the jacobian of the deformation,

Differential Volume Ratio 

( ) ( )i i
ij j ij jM dX m dx= =and

( ) ( )

( ) ( )

{1, 2,3}

, {1, 2,3}

i i

i i
j jk k

d d i
dx F dX i j

 = ⋅ ∈ →


= ⋅ ∈

x F X Fundamental eq. of deformation

( ) ( )i i T T
ij j jk k jk ik ik kjm dx F dX F M M F= = = = = ⋅m M F



0

0

T T
t

dV
dV dV= = ⋅ = = =m M F M F F M F 0tdV dV= F

( ) ( ), det , 0J t t= >X F X 0tdV J dV= ⋅
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Ch.2. Deformation and Strain 

2.10 Area Variation 



 Consider the variation of a differential area associated to a particle P: 

Reference (initial) 
configuration 

Deformed (current) 
configuration 

Surface Area Ratio 

( )

( )


( )

3
0

3 3

dH

d

dV dH dA d dA

d dA d d

= = ⋅ =

= ⋅ = ⋅
A

X N

X N A X



( )

( )


( )

3

3 3

t

dh

d

dV dh da d da

d da d d

= = ⋅ =

= ⋅ = ⋅
a

x n

x n a x
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:

:

d dA d dA

d da d dA

= → → =

= → → =

A N A

a n a

 "differential of area"

 "differential of area"

material vector

spatial vector

https://youtu.be/d5w62-KBimA?t=00m00s


 Consider now: 

 

Surface Area Ratio 

( )3
tdV d d= ⋅a x



( ) ( ) ( )3 3 3

00

t

tdVdV dV
dV d d d d d d d= ⋅ = ⋅ ⋅ ∀ ⇒ = ⋅

F

F A X a F X X F A a F
 

( )3(3)d d= ⋅x F X
0tdV dV= F

( )3
0dV d d= ⋅A X

1d d −= ⋅ ⋅a F A F

d dA=A N
d da=a n

1da dA−= ⋅n F N F 1da dA−= ⋅F N F
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Ch.2. Deformation and Strain 

2.11 Volumetric Strain 



Volumetric Strain 

 Volumetric Strain: 

( ) ( ) ( )
( )

def not
0 0

0

, ,
,

,
tdV t dV t dV dVe t

dV t dV
− −

= =
X X

X
X

0tdV dV= F

0 0

0

dV dV
e

dV
−

=
F

1 e = −F REMARK   
The incompressibility condition (null 
volumetric strain) takes the form 

1 0 1e J J= − = ⇒ = =F
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71 

Ch.2. Deformation and Strain 

2.12 Infinitesimal Strain 



Infinitesimal Strain Theory 

 The infinitesimal strain theory (also called 
  small strain theory) is based on the 
 simplifying hypotheses: 

 Displacements are very small w.r.t. the
typical dimensions in the continuum
medium,

 As a consequence,                           and  the reference and deformed configurations are 
considered to be practically the same, as are the material and spatial coordinates:

 Displacement gradients are infinitesimal,                            . 

0( )sizeofu << Ω

{ }1, , 1, 2,3i

j

u i j
x
∂

<< ∀ ∈
∂

0Ω ≅ Ω and ( ) ( ) ( )

( ) ( ) ( )

, , ,

, , , {1,2,3}

not

not

i i i

t t t

U t u t u t i

= ≡

= ≡ ∈

U X u X u x

X X xi i i ix X u X
= + ≅
= + ≅

x X u X

Ω0 

Ω 

t0 

P 

t 

P’ u 

X 
x 
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Infinitesimal Strain Theory 

 The material and spatial coordinates coincide, 

 Even though it is considered that  u cannot be neglected when calculating
other properties such as the infinitesimal strain tensor ε.

 There is no difference between the material and spatial 
differential operators: 

 The local an material time derivatives coincide 



≈
= + ≅

0
x X u X
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( , ) ( , ) ( , ) ( , )
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 Green-Lagrange strain tensor 

 Euler-Almansi strain tensor  

 Therefore, the infinitesimal strain tensor is defined as : 

 

Strain Tensors 
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2 2
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2

T T
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j i
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REMARK 
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Stretch and Unit Elongation 
 Stretch in terms of the strain tensors: 

 

 But in Infinitesimal Strain Theory, T ≈ t. So the linearized stretch and 
unit elongation through a direction given by the unit vector T ≈ t are: 

        

1
1 2   

λ =
− ⋅ ⋅t t e t1 2    T T E T

x
λ = + ⋅ ⋅



( )

( )
0

1

1 2

0 1
x
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d x x
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λ
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=

=
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≅ + = +
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( )
0

1

1
1 2

0 1
x

x
x

d x x
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λ

λλ
=

=

=
−

≅ + = +


Considering that                and that  it is 
infinitesimal, a Taylor linear series expansion up to 

first order terms around x = 0 yields:  

≅ ≅e E ε

1λ ≅ + ⋅ ⋅t t ε t1λ ≅ + ⋅ ⋅T T ε T

1 1ds
dS

λ = ≅ + ⋅ ⋅ ≅ + ⋅ ⋅t t T Tε ε 1ds dS
dS

ε λ−
= = − = ⋅ ⋅t tε

75 

https://youtu.be/riXN79fsZZE?t=11m08s


Physical Interpretation of 
Infinitesimal Strains 

 Consider the components of the infinitesimal strain tensor, ε: 

 For a segment parallel to the x-axis, the stretch and unit elongation are: 

11 12 13

12 22 23

13 23 33

  
xx xy xz

xy yy yz

xz yz zz

ε ε ε ε ε ε
ε ε ε ε ε ε
ε ε ε ε ε ε

   
   = ≡   
     

ε

1λ ≅ + ⋅ ⋅t tε

1 111xλ λ ε= = + Stretch in the x-direction 

[ ]
11 12 13

12 22 23 11

13 23 33

1
1 0 0     0

0

ε ε ε
ε ε ε ε
ε ε ε

   
   ⋅ ⋅ = ⋅ ⋅ =   
      

t ε t

1 111
1x xx

ε λ ε
ε λ ε
= − =
= − =

Unit elongation in the 
x-direction 0

0

ds
d d

 
 ≅ ≡  
 
 

X x(1) (1)

1
0
0

 
 ≅ ≡  
 
 

T t

reference 
configuration 
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Physical Interpretation of 
Infinitesimal Strains 

 Similarly, the stretching and unit elongation of the material in the y-
direction and the z-direction: 

 The diagonal components of the infinitesimal strain tensor are the unit 
elongations of the material when in the x, y and z-directions. 

1 11

2 22

3 33

1 1
1 1

1 1

x x xx

y y yy

z z zz

λ ε ε λ ε
λ ε ε λ ε

λ ε ε λ ε

= + ⇒ = − =
= + ⇒ = − =

= + ⇒ = − =

xx xy xz

xy yy yz

xz yz zz

ε ε ε
ε ε ε
ε ε ε

 
 =  
  

ε

77 



Physical Interpretation of 
Infinitesimal Strains 

 Consider the angle between a segment parallel to the X-axis and a 
segment parallel to the Y-axis, the angle is           .

 Applying: 

reference 
configuration 

2XY

π
=Θ

XX YY

2arcsin
2 1 2 1 2 

XY
xy

E
E E

πθ θ≡ = −
+ +

XX xx

XY xy

YY yy

E
E
E

ε
ε

ε

=
=

=

2
1 1

2
arcsin  arcsin 2 2

2 2 21 2 1 2
xy

xy xy xy
xx yy

xyε

επ π πθ ε ε
ε ε

≈
≈ ≈

= − ≅ − = −
+ + 





REMARK  
The Taylor linear series expansion of arcsin x yields 
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0

arcsinarcsin arcsin 0 ...
x

dx x x O x
dx =

≅ + + = +



Physical Interpretation of 
Infinitesimal Strains 

 

 The increment of the final angle w.r.t. its initial value: 

 Similarly, the increment of the final angle w.r.t. its initial value for 
couples of segments oriented in the direction of the coordinate axes: 

 The non-diagonal components of the infinitesimal strain tensor are equal 
to the semi-decrements produced by the deformation of the angles 
between segments initially oriented in the x, y and z-directions. 

2
2xy xy
πθ ε≅ −

2 2
2 2 2xy xy xy xy
π π πθ θ ε ε∆ = − ≅ − − = −

1 1 1  ; ;
2 2 2xy xy xz xz yz yzε θ ε θ ε θ= − ∆ = − ∆ = − ∆
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Physical Interpretation of 
Infinitesimal Strains 

 In short, 
reference 

configuration 
deformed 

configuration 

xx x

yy y

zz z

ε ε
ε ε

ε ε

=
=

=

1
2
1
2
1
2

xy xy

xz xz

yz yz

ε θ

ε θ

ε θ

= − ∆

= − ∆

= − ∆
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Engineering Strains 

 Using an engineering notation, instead of the scientific notation, the 
components of the infinitesimal strain tensor are 

 

 Because of the symmetry of  ε, the tensor can be written as a 
6-component infinitesimal strain vector, (Voigt’s notation): 

Longitudinal 
strains 

Angular 
strains 

REMARK   
Positive longitudinal strains indicate 
increase in segment length. 

Positive angular strains indicate the 
corresponding angles decrease with 
the deformation process. 

6 [ , , , , , ]
def

T
x y z xy xz yzε ε ε γ γ γ∈ =
 

R
longitudinal angular strains
strains

ε ε
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Variation of Angles 

 Consider two segments in the reference configuration with the same 
origin an angle Θ between them. 
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Variation of Angles 

 
 T(1) and T(2) are unit vectors in the directions of the original segments, 

therefore, 

 Also,                                        

(1) (2) (1) (2)cos( ) 2θΘ+ ∆ = ⋅ + ⋅ ⋅T T T Tε

(1) (2) (1) (2) cos cos⋅ = Θ = ΘT T T T

cos( ) cos cos sin sin cos sinθ θ θ θΘ+ ∆ = Θ⋅ ∆ − Θ⋅ ∆ = Θ− Θ⋅∆
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θ
θ

⋅ ⋅ ⋅ ⋅
∆ = − = −

Θ
T T t tε ε

(1) (1)≈T t
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REMARK   
The Taylor linear series expansion of sin x 
and cos x yield 
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Polar Decomposition 

84 

 Polar decomposition in finite-strain problems: 

1 1

   

not
T

not
T

− −

= ⋅ 


= ⋅ ⇒ = ⋅ = ⋅
= ⋅ = ⋅ 


U F F

V F F F Q U V Q
Q F U V F

left polar 
decomposition 

right polar 
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REMARK   
In Infinitesimal Strain Theory 
          , therefore,    ≈x X ∂

= ≈
∂

xF
X

1
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Polar Decomposition 

 In Infinitesimal Strain Theory: 
 

Similarly, 

 
REMARK   
The Taylor linear series expansion of         
and                 yield 
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Polar Decomposition 

 

 

 The infinitesimal rotation tensor Ω is defined: 
 

 

 The diagonal terms of Ω are zero:
 It can be expressed as
an infinitesimal rotation vector θ,   

( ) ( ) ( ) ( ) ( )1 1 1 1 1
2 2 2 2

T T T T−  = ⋅ = + ⋅ − + = + − + − ⋅ + = + −  
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The antisymmetric or 
skew-symmetrical 
gradient operator is 
defined as: 
 [ ]1( ) ( ) ( )

2
a • = • ⊗ − ⊗ •∇ ∇ ∇

[ ]
12 31

12 23

31 23

0
0

0

Ω −Ω 
 = −Ω Ω 
 Ω −Ω 

Ω

3 2

2 3
23

1 3
31

3 1
12

2 1

1 2

1 1
2 2

def

u u
x x
u u
x x
u u
x x

θ
θ
θ

 ∂ ∂
− ∂ ∂ −Ω   
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− ∂ ∂ 

u
1

2

3
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REMARK   
Ω is a skew-symmetric 
tensor and its components 
are infinitesimal. 

<< J = Ω
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Polar Decomposition 

 From any skew-symmetric tensor Ω,  it can be extracted a vector θ (axial 
vector of Ω) exhibiting the following property: 

As a consequence: 
 The resulting vector is orthogonal to r.

 If the components of Ω are infinitesimal, then                     is also infinitesimal 
 The vector                                can be seen as the result of applying a (infinitesimal) 

rotation (of axial vector θ) on the vector r . 

⋅ = ∀r r rΩ θ×

+ ⋅ = +r r r rΩ θ×
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Proof of 

 The result of the dot product of the infinitesimal rotation tensor, Ω, and a 
generic vector, r, is exactly the same as the result of the cross product of 
the infinitesimal rotation vector, θ, and this same vector. 

 

 Proof: 
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12 23 2 12 1 23 3

31 23 3 31 1 23 2
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Polar Decomposition 

 Using: 

 

 Consider a differential segment dX: 

 

 

= −J F 1

( )1
2

T= +J Jε

= +Q Ω1
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2 2
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Ω Ωε ε1 1

( ) ( ) ( )• ≡ • + •F stretching rotation

REMARK   
The infinitesimal rotation tensor 
characterizes the rotation and, in the 
small-strain context, maintains angles 
and distances. 

= ε = Ω
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Volumetric Deformation 

 The volumetric strain: 

 Considering:             and 

1 e = −F

= ⋅F Q U
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91 

Ch.2. Deformation and Strain 

2.13 Strain Rate 

REMARK   
We are no longer assuming an 
infinitesimal strain framework 



Spatial Velocity Gradient Tensor 

 Consider the relative velocity between two points in space at a given 
(current) instant: 
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Strain Rate and Rotation Rate (or Spin) 
Tensors 

 The spatial velocity gradient tensor can be split into a symmetrical and 
a skew-symmetrical tensor: 

{ }v , 1,2,3i
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[ ] [ ]sym skew := + = +l l l d w

( ) ( )

[ ]
11 12 31

12 22 23

31 23 33

1 1( )
2 2

vv1d , {1,2,3}
2

d d d
d d d
d d d

def not
T s

ji
ij

j i

sym

i j
x x

= = + = ⊗ + ⊗ =

 ∂∂
= + ∈ 

∂ ∂  
 
 =  
  

d v v v

d

∇ ∇ ∇l l l ( ) ( )

[ ]
12 31

12 23

31 23

1 1( )
2 2
vv1w , {1,2,3}

2

0 w w
w 0 w

w w 0

def not
T a

ji
ij

j i

skew

i j
x x

= = − = ⊗ − ⊗ =

 ∂∂
= − ∈ 

∂ ∂  
− 

 = − 
 − 

w v v v

w

∇ ∇ ∇l l l

Strain Rate Tensor Rotation Rate or Spin Tensor 
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Physical Interpretation of d 

 The strain rate measures the rate of deformation of the square of the 
differential length ds in the spatial configuration, 

 

 

 Differentiating w.r.t. time the expression                                    
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Physical Interpretation of d 

 

 

 And, rearranging terms: 

 

 There is a direct relation between the material derivative of the material strain
tensor and the strain rate tensor but they are not the same.

   and     will coincide when in the                            
reference configuration              . 

d d d d⋅ ⋅ = ⋅ ⋅X E X x d x

d d= ⋅x F X
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Physical Interpretation of w 

96 

 To determine the (skew-symmetric) rotation rate (spin) tensor only three 
different components are needed: 

 
 

 The spin vector (axial vector [w]) of can be extracted: 

 

 The vector                 is named vorticity vector. 
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Physical Interpretation of w 

 It can be proven that the equality                         holds true. 
Therefore: 
 ω is the angular velocity of a rotation movement.
 ω x r = w · r is the rotation velocity  of the point that

has r as its position vector w.r.t. the rotation centre.

 Consider now the relative velocity dv, 
 

 

= ⋅ ∀r w r rω×

d d d= ⋅ + ⋅v d x w x

d d= ⋅v xl

= +d wl
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Ch.2. Deformation and Strain 

2.14 Material time Derivatives 



Deformation Gradient Tensor F

 The material time derivative of the deformation gradient tensor, 
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∂
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Inverse Deformation Gradient Tensor F-1

 The material time derivative of the inverse deformation gradient 
tensor, 

 

 

Rearranging terms, 

REMARK   
Do not mistake the material derivative 
of the inverse tensor for the inverse of 
the material derivative of the tensor: 
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Strain Tensor E

 The material time derivative of the material strain tensor has already 
been derived for the physical interpretation of the deformation rate 
tensor:  

 A more direct procedure yields the same result: 

T= ⋅ ⋅E F d F

d
dt

( )1
2

T= ⋅ −E F F 1

( ) ( ) ( )1 1 1
2 2 2

T T T T T T T Td
dt

= = ⋅ + ⋅ = ⋅ ⋅ + ⋅ ⋅ = ⋅ + ⋅ = ⋅ ⋅

d

E E F F F F F F F F F F F d F  



l l l l

T= ⋅ ⋅E F d F

T T T
= ⋅
= ⋅

F F
F F




l
l

102 

https://youtu.be/gYxQBwK-4OU?t=01m41s


Strain Tensor e

 The material time derivative of the spatial strain tensor, 

( ) ( )1 1 1 11 1
2 2

T T T T Td
dt

− − − − − − − −= = − ⋅ + ⋅ = ⋅ ⋅ + ⋅ ⋅
e e F F F F F F F F 

 l l

( )11
2

T− −= − ⋅e F F1

d
dt

( )1 11
2

T T T− − − −= ⋅ ⋅ + ⋅ ⋅e F F F F l l

1 1

T T T

− −

− −
= ⋅
= ⋅

F F
F F




l
l
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Volume differential dV

 The material time derivative of the volume differential associated to a 
given particle, 

( ) 0( , ), ( , ) ( )dV t t t dV=x X F X X

d
dt

( ) 0 0

( , )td ddV t dV dV
dt t dt

∂
= =

∂
F X

F

( ) ( ) 0
d dV dV
dt

= ⋅ v F∇

( )( , ) ( , ) ( , )d dV t t dV t
dt

= ⋅x v x x∇

The material time derivative of the determinant of the 
deformation gradient tensor is: 

 


( )



1 1

i

i

1

v
ki

kiik kj

ij ij
ji kj ji ik

ij

ii

F

dF dFd d
F F F

dt dF dt dt

x

δ=

− −

−⋅

⋅

= = =

∂
= = = ⋅

∂

F F

v

F F
F F

F F F v



∇

∇

l

l

l ( )
d
dt

= ⋅ = ⋅
F

F v v F∇ ∇

1
ji

ijij

d d
d dA

− 
= = ⋅ 

 

A A
A A

A

For a 2nd order 
tensor A: 

dV=
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Area differential vector da

 The material time derivative of the area differential associated to a 
given particle, 

( ) 1 1( , ), ( , ) ( ) ( , )d t t t d t d− −= ⋅ ⋅ = ⋅ ⋅a x X F X A X F X F A F

d
dt

( ) ( )1 1dd dd t d d
dt dt dt

− −= ⋅ + ⋅
F

a A F F A F

( ) ( ) 1 1d d d d
dt

− −= ⋅ ⋅ − ⋅ ⋅a v F A F F A F∇ l

( )


( ) ( )( ) ( )
d

d d d d d d d
dt ⋅

= ⋅ − ⋅ = ⋅ ⋅ − ⋅ = ⋅ ⋅ −
a

a a v a a v a a v
1

1 1∇ ∇ ∇l l l

= ⋅F v∇ 1−= − ⋅F l

d= a d= a
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Ch.2. Deformation and Strain 

2.15 Other Coordinate Systems 



Curvilinear Orthogonal Coord. System 

 A curvilinear coordinate system is defined by: 

 The coordinates, generically named       

 Its vector basis,                 , formed by unit vectors                         . 

 If the elements of the basis are orthogonal is is called an orthogonal
coordinate system: 

 The orientation of the curvilinear basis may change at each point in
space,                                .

{ }, ,a b c

{ }ˆ ˆ ˆ, ,a b ce e e ˆ ˆ ˆ 1a b c= = =e e e

ˆ ˆ ˆ ˆ ˆ ˆ 0a b a c b c⋅ = ⋅ = ⋅ =e e e e e e

ˆ ˆ ( ) { , , }m m m a b c≡ ∈e e x

REMARK   
A curvilinear orthogonal coordinate system can be seen as a mobile Cartesian 
coordinate system                  , associated to a curvilinear basis                 .{ }ˆ ˆ ˆ, ,a b ce e e{ }, ,x y z′ ′ ′
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Curvilinear Orthogonal Coord. System 

 A curvilinear orthogonal coordinate system can be seen as a mobile 
Cartesian coordinate system                , associated to a curvilinear basis 

              . 
 The components of a vector and a tensor magnitude in the curvilinear

orthogonal basis will correspond to those in the given Cartesian local
system:

 The components of the curvilinear operators will not be the same as
those in the given Cartesian local system.
 They must be obtained for each specific case.

{ }ˆ ˆ ˆ, ,a b ce e e
{ }, ,x y z′ ′ ′

a x aa ab ac x x x y x z

b y ba bb bc y x y y y z

c z ca cb cc z x z y z z

v v T T T T T T
v v T T T T T T
v v T T T T T T

′ ′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′ ′

      
      ≡ ≡ ≡ ≡      

             

v T
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Cylindrical Coordinate System 

 cos  
( , , )  sin  

x r
r z y r

z z

θ
θ θ

=
≡ =
 =

x

ˆˆ ˆ ˆr
r

θ
θθ θ

∂∂
= = −

∂ ∂
ee e e

   dV r d dr dzθ=

r← − coordinate line

z← − coordinate line

θ← − coordinate line
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 Nabla operator 

 Displacement vector 

 Velocity vector 

Cylindrical Coordinate System 

1 1ˆ ˆ ˆr z

r

r r z r

z

θθ θ

∂ 
 ∂ 

∂ ∂ ∂ ∂ = + + ⇒ ≡  ∂ ∂ ∂ ∂
 ∂ 
 ∂ 

e e e∇ ∇

u
ˆ ˆ ˆu u u u

u

r

r r z z

z

θ θ θ

 
 = + + ⇒ =  
  

u e e e u

v
ˆ ˆ ˆv v v v

v

r

r r z z

z

θ θ θ

 
 = + + ⇒ =  
  

v e e e u

 cos  
( , , )  sin  

x r
r z y r

z z

θ
θ θ

=
≡ =
 =

x

111 



 Infinitesimal strain tensor 

 

Cylindrical Coordinate System 

[ ] [ ]{ }1
2

x x x y x z rr r rz
T

x y y y y z r z

x z y z z z rz z zz

θ

θ θθ θ

θ

ε ε ε ε ε ε
ε ε ε ε ε ε
ε ε ε ε ε ε

′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′

   
   = ⊗ + ⊗ ≡ =   
     

u uε ∇ ∇

 cos  
( , , )  sin  

x r
r z y r

z z

θ
θ θ

=
≡ =
 =

x

u uu1 1
2

u u1
2

u u1 1
2

r
r

r z
rz

z
z

r r r

z r

z r

θ θ
θ

θ
θ

ε
θ

ε

ε
θ

∂∂ = + − ∂ ∂ 
 ∂ ∂

= + ∂ ∂ 
∂ ∂ = + ∂ ∂ 

u

u u1

u

r
rr

r

z
zz

r

r r

z

θ
θθ

ε

ε
θ

ε

∂
=
∂
∂

= +
∂

∂
=
∂
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 Strain rate tensor 

 

 

Cylindrical Coordinate System 

[ ] [ ]{ }1
2

x x x y x z rr r rz
T

x y y y y z r z

x z y z z z rz z zz

d d d d d d
d d d d d d
d d d d d d

θ

θ θθ θ

θ

′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′

   
   = ⊗ + ⊗ ≡ =   
     

d v v∇ ∇

 cos  
( , , )  sin  

x r
r z y r

z z

θ
θ θ

=
≡ =
 =

x

v vv1 1
2

v v1
2

v v1 1
2

r
r

r z
rz

z
z

d
r r r

d
z r

d
z r

θ θ
θ

θ
θ

θ

θ

∂∂ = + − ∂ ∂ 
 ∂ ∂

= + ∂ ∂ 
∂ ∂ = + ∂ ∂ 

v

v v1

v

r
rr

r

z
zz

d
r

d
r r

d
z

θ
θθ θ

∂
=
∂
∂

= +
∂

∂
=
∂
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Spherical Coordinate System 

( )
sin  cos

, ,  sin  sin
 cos

x r
r y r

z r

θ φ
θ ϕ θ φ

θ

=
= ≡ =
 =

x x

ˆˆˆ ˆ ˆr
r

φθ
θθ θ θ

∂∂∂
= = − =

∂ ∂ ∂
eee e e 0

2 sin    dV r dr d dθ θ φ=

r− →coordinate line
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Spherical Coordinate System 

 Nabla operator 

 

 

 

 

 Displacement vector 

 

 

 

 Velocity vector 
 

 
 

1 1 1ˆ ˆ ˆ
sin

1
sin

r

r

r r r r

r

θ φθ θ φ θ

θ φ

 ∂
 ∂ 

∂ ∂ ∂ ∂ = + + ⇒ ≡  ∂ ∂ ∂ ∂
 

∂ 
 ∂ 

e e e∇ ∇

u
ˆ ˆ ˆu u u u

u

r

r r θ θ φ φ θ

φ

 
 = + + ⇒ =  
  

u e e e u

v
ˆ ˆ ˆv v v v

v

r

r r θ θ φ φ θ

φ

 
 = + + ⇒ =  
  

v e e e u

( )
sin  cos

, ,  sin  sin
 cos

x r
r y r

z r

θ φ
θ φ θ φ

θ

=
= ≡ =
 =

x x
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Spherical Coordinate System 

 Infinitesimal strain tensor 
 

 

 
 

 
 

[ ] [ ]{ }1
2

x x x y x z rr r r
T

x y y y y z r

x z y z z z r

θ φ

θ θθ θφ

φ θφ φφ

ε ε ε ε ε ε
ε ε ε ε ε ε
ε ε ε ε ε ε

′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′

   
   = ⊗ + ⊗ ≡ =   
     

u uε ∇ ∇

u

u u1

u u u1 cotg
sin

r
rr

r

r

r

r r

r r r

θ
θθ

φ θ
ϕϕ

ε

ε
θ

ε φ
θ φ

∂
=
∂
∂

= +
∂

∂
= + +

∂

u uu1 1
2

u uu1 1
2 sin

u uu1 1 1 cotg
2 sin

r
r

r
r

r r r

r r r

r r r

θ θ
θ

φ φ
φ

φ φθ
θφ

ε
θ

ε
θ φ

ε φ
θ φ θ

∂∂ = + − ∂ ∂ 
∂ ∂

= + − ∂ ∂ 
∂ ∂

= + − ∂ ∂ 

( )
sin  cos

, ,  sin  sin
 cos

x r
r y r

z r

θ φ
θ φ θ φ

θ

=
= ≡ =
 =

x x
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Spherical Coordinate System 

 Deformation rate tensor 
 

 

 
 

 
 

[ ] [ ]{ }1
2

x x x y x z rr r r
T

x y y y y z r

x z y z z z r

d d d d d d
d d d d d d
d d d d d d

θ φ

θ θθ θφ

φ θφ φφ
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   = ⊗ + ⊗ ≡ =   
     

d v v∇ ∇
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∂ ∂
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∂ ∂
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Chapter 2
Strain

2.1 Introduction

Definition 2.1. In the broader context, the concept of deformation no
longer refers to the study of the absolute motion of the particles as
seen in Chapter 1, but to the study of the relative motion, with respect
to a given particle, of the particles in its differential neighborhood.

2.2 Deformation Gradient Tensor
Consider the continuous medium in motion of Figure 2.1. A particle P in the

reference configuration Ω0 occupies the point in space P
′

in the present config-
uration Ωt , and a particle Q situated in the differential neighborhood of P has
relative positions with respect to this particle in the reference and present times
given by dX and dx, respectively. The equation of motion is given by{

x = ϕ (X, t) not
= x(X, t)

xi = ϕi (X1,X2,X3, t)
not
= xi (X1,X2,X3, t) i ∈ {1,2,3} . (2.1)

Differentiating (2.1) with respect to the material coordinates X results in the

Fundamental
equation of
deformation

⎧⎪⎨
⎪⎩

dx = F ·dX

dxi =
∂xi

∂Xj
dXj = Fi j dXj i, j ∈ {1,2,3} (2.2)
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42 CHAPTER 2. STRAIN

Figure 2.1: Continuous medium in motion.

Equation (2.2) defines the material deformation gradient tensor F(X, t) 1.

Material deformation
gradient tensor

⎧⎪⎨
⎪⎩

F not
= x⊗∇

Fi j =
∂xi

∂Xj
i, j ∈ {1,2,3} (2.3)

The explicit components of tensor F are given by

[F] =
[
x⊗∇

]
=

⎡
⎢⎢⎣

x1

x2

x3

⎤
⎥⎥⎦

︸ ︷︷ ︸
[x]

[
∂

∂X1
,

∂
∂X2

,
∂

∂X3

]
︸ ︷︷ ︸[

∇
]T

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂x1

∂X1

∂x1

∂X2

∂x1

∂X3

∂x2

∂X1

∂x2

∂X2

∂x2

∂X3

∂x3

∂X1

∂x3

∂X2

∂x3

∂X3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (2.4)

Remark 2.1. The deformation gradient tensor F(X, t) contains the
information of the relative motion, along time t, of all the material
particles in the differential neighborhood of a given particle, identi-
fied by its material coordinates X. In effect, equation (2.2) provides
the evolution of the relative position vector dx in terms of the cor-
responding relative position in the reference time, dX. Thus, if the
value of F(X, t) is known, the information associated with the gen-
eral concept of deformation defined in Section 2.1 is also known.

1 Here, the symbolic form of the material Nabla operator, ∇ ≡ ∂ êi/∂Xi, applied to the

expression of the open or tensor product, [a⊗b]i j
not
= [a b]i j = aib j, is considered.

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems

doi:10.13140/RG.2.2.25821.20961



Con
tin

uum
M

ech
an

ics
for

Engin
eer

s

Theo
ry

an
d Pro

blem
s

©
X. O

liv
er

an
d C. A

ge
let

de Sar
ac

ibar

Deformation Gradient Tensor 43

2.2.1 Inverse Deformation Gradient Tensor
Consider now the inverse equation of motion{

X = ϕ−1 (x, t) not
= X(x, t) ,

Xi = ϕ−1
i (x1,x2,x3, t)

not
= Xi (x1,x2,x3, t) i ∈ {1,2,3} . (2.5)

Differentiating (2.5) with respect to the spatial coordinates xi results in⎧⎪⎨
⎪⎩

dX = F−1 ·dx ,

dXi =
∂Xi

∂x j
dx j = F−1

i j dx j i, j ∈ {1,2,3} .
(2.6)

The tensor defined in (2.6) is named spatial deformation gradient tensor or in-
verse (material) deformation gradient tensor and is characterized by2

Spatial deformation
gradient tensor

⎧⎪⎨
⎪⎩

F−1 not
= X⊗∇

F−1
i j =

∂Xi

∂x j
i, j ∈ {1,2,3} (2.7)

Remark 2.2. The spatial deformation gradient tensor, denoted in
(2.6) and (2.7) as F−1, is in effect the inverse of the (material) defor-
mation gradient tensor F. The verification is immediate since3

∂xi

∂Xk︸︷︷︸
Fik

∂Xk

∂x j︸︷︷︸
F−1

k j

=
∂xi

∂x j

not
= δi j =⇒ F ·F−1 = 1 ,

∂Xi

∂xk︸︷︷︸
F−1

ik

∂xk

∂Xj︸︷︷︸
Fk j

=
∂Xi

∂Xj

not
= δi j =⇒ F−1 ·F = 1 .

2 Here, the symbolic form of the spatial Nabla operator, ∇ ≡ ∂ êi/∂xi, is considered. Note

the difference in notation between this spatial operator ∇ and the material Nabla ∇.
3 The two-index operator Delta Kronecker δi j is defined as δi j = 1 if i = j and δi j = 0 if
i �= j. The second-order unit tensor 1 is given by [1]i j = δi j .

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems

doi:10.13140/RG.2.2.25821.20961



Con
tin

uum
M

ech
an

ics
for

Engin
eer

s

Theo
ry

an
d Pro

blem
s

©
X. O

liv
er

an
d C. A

ge
let

de Sar
ac

ibar

44 CHAPTER 2. STRAIN

The explicit components of tensor F−1 are given by

[
F−1

]
= [X⊗∇] =

⎡
⎢⎢⎣

X1

X2

X3

⎤
⎥⎥⎦

︸ ︷︷ ︸
[X]

[
∂

∂x1
,

∂
∂x2

,
∂

∂x3

]
︸ ︷︷ ︸

[∇]T

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂X1

∂x1

∂X1

∂x2

∂X1

∂x3

∂X2

∂x1

∂X2

∂x2

∂X2

∂x3

∂X3

∂x1

∂X3

∂x2

∂X3

∂x3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (2.8)

Example 2.1 – At a given time, the motion of a continuous medium is defined
by ⎧⎪⎨

⎪⎩
x1 = X1−AX3

x2 = X2−AX3

x3 =−AX1 +AX2 +X3

.

Obtain the material deformation gradient tensor F(X, t) at this time. By
means of the inverse equation of motion, obtain the spatial deformation gra-
dient tensor F−1 (x). Using the results obtained, verify that F ·F−1 = 1.

Solution

The material deformation gradient tensor is

F = x⊗∇ not≡ [x]
[
∇
]T

=

⎡
⎢⎢⎣

X1−AX3

X2−AX3

−AX1 +AX2 +X3

⎤
⎥⎥⎦
[

∂
∂X1

,
∂

∂X2
,

∂
∂X3

]

F not≡

⎡
⎢⎣ 1 0 −A

0 1 −A

−A A 1

⎤
⎥⎦ .

The inverse equation of motion is obtained directly from the algebraic inver-
sion of the equation of motion,

X(x, t) not≡

⎡
⎢⎢⎣

X1 =
(
1+A2

)
x1−A2x2 +Ax3

X2 = A2x1 +
(
1−A2

)
x2 +Ax3

X3 = Ax1−Ax2 + x3

⎤
⎥⎥⎦ .

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems
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Displacements 45

Then, the spatial deformation gradient tensor is

F−1 = X⊗∇ not≡ [X] [∇]T =

⎡
⎢⎢⎣
(
1+A2

)
x1−A2x2 +Ax3

A2x1 +
(
1−A2

)
x2 +Ax3

Ax1−Ax2 + x3

⎤
⎥⎥⎦
[

∂
∂x1

,
∂

∂x2
,

∂
∂x3

]

F−1 not≡

⎡
⎢⎣1+A2 −A2 A

A2 1−A2 A

A −A 1

⎤
⎥⎦ .

Finally, it is verified that

F ·F−1 not≡

⎡
⎢⎣ 1 0 −A

0 1 −A

−A A 1

⎤
⎥⎦
⎡
⎢⎣1+A2 −A2 A

A2 1−A2 A

A −A 1

⎤
⎥⎦=

⎡
⎢⎣1 0 0

0 1 0

0 0 1

⎤
⎥⎦ not≡ 1 .

2.3 Displacements

Definition 2.2. A displacement is the difference between the posi-
tion vectors in the present and reference configurations of a same
particle.

The displacement of a particle P at a given time is defined by vector u, which

joins the points in space P (initial position) and P
′
(position at the present time t)

of the particle (see Figure 2.2). The displacement of all the particles in the con-
tinuous medium defines a displacement vector field which, as all properties of
the continuous medium, can be described in material form U(X, t) or in spatial
form u(x, t) as follows.{

U(X, t) = x(X, t)−X

Ui (X, t) = xi (X, t)−Xi i ∈ {1,2,3}
(2.9)

{
u(x, t) = x−X(x, t)

ui (x, t) = xi−Xi (x, t) i ∈ {1,2,3}
(2.10)
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Figure 2.2: Displacement of a particle.

2.3.1 Material and Spatial Displacement Gradient Tensors
Differentiation with respect to the material coordinates of the displacement vec-
tor Ui defined in (2.9) results in

∂Ui

∂Xj
=

∂xi

∂Xj︸︷︷︸
Fi j

− ∂Xi

∂Xj︸︷︷︸
δi j

= Fi j−δi j
de f
= Ji j , (2.11)

which defines the material displacement gradient tensor as follows.

Material displacement
gradient tensor

⎧⎪⎨
⎪⎩

J(X, t)
de f
= U(X, t)⊗∇ = F−1

Ji j =
∂Ui

∂Xj
= Fi j−δi j i, j ∈ {1,2,3} (2.12)

⎧⎪⎨
⎪⎩

U = J ·dX

dUi =
∂Ui

∂Xj
dXj = Ji j dXj i, j ∈ {1,2,3} (2.13)

Similarly, differentiation with respect to the spatial coordinates of the expres-
sion of ui given in (2.10) yields

∂ui

∂x j
=

∂xi

∂x j︸︷︷︸
δi j

− ∂Xi

∂x j︸︷︷︸
F−1

i j

= δi j−F−1
i j

de f
= ji j , (2.14)
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which defines the spatial displacement gradient tensor as follows.

Spatial displacement
gradient tensor

⎧⎪⎨
⎪⎩

j(x, t) de f
= u(x, t)⊗∇ = 1−F−1

ji j =
∂ui

∂x j
= δi j−F−1

i j i, j ∈ {1,2,3} (2.15)

⎧⎪⎨
⎪⎩

u = j ·dx

dui =
∂ui

∂x j
dx j = ji j dx j i, j ∈ {1,2,3} (2.16)

2.4 Strain Tensors
Consider now a particle of the continuous medium that occupies the point in
space P in the material configuration, and another particle Q in its differen-

tial neighborhood separated a segment dX (with length dS =
√

dX ·dX) from

the previous paticle, being dx (with length ds =
√

dx ·dx) its counterpart in
the present configuration (see Figure 2.3). Both differential vectors are related
through the deformation gradient tensor F(X, t) by means of equations (2.2) and
(2.6), ⎧⎨

⎩dx = F ·dX and dX = F−1 ·dx ,

dxi = Fi j dXj and dXi = F−1
i j dx j i, j ∈ {1,2,3} .

(2.17)

Then,⎧⎨
⎩ (ds)2 = dx ·dx not≡ [dx]T [dx] = [F ·dX]T [F ·dX]

not≡ dX ·FT ·F ·dX

(ds)2 = dxk dxk = Fki dXi Fk j dXj = dXi Fki Fk j dXj = dXi FT
ik Fk j dXj

(2.18)

or, alternatively4,⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(dS)2 = dX ·dX not≡ [dX]T [dX] =
[
F−1 ·dx

]T [F−1 ·dx
]
=

not≡ dx ·F−T ·F−1 ·dx ,

(dS)2 = dXk dXk = F−1
ki dxi F−1

k j dx j = dxi F−1
ki F−1

k j dx j =

= dxi F−T
ik F−1

k j dx j .

(2.19)

4 The convention
[
(•)−1 ]T not

= (•)−T is used.
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Figure 2.3: Differential segments in a continuous medium.

2.4.1 Material Strain Tensor (Green-Lagrange Strain Tensor)
Subtracting expressions (2.18) and (2.19) results in

(ds)2− (dS)2 = dX ·FT ·F ·dX−dX ·dX =

= dX ·FT ·F ·dX−dX ·1 ·dX =

= dX · (FT ·F−1
)︸ ︷︷ ︸

de f
= 2E

· dX = 2 dX ·E ·dX , (2.20)

which implicitly defines the material strain tensor or Green-Lagrange strain
tensor as follows.

Material
(Green-Lagrange)

strain tensor

⎧⎪⎨
⎪⎩

E(X, t) =
1

2

(
FT ·F−1

)
Ei j (X, t) =

1

2

(
Fki Fk j−δi j

)
i, j ∈ {1,2,3}

(2.21)

Remark 2.3. The material strain tensor E is symmetric. Proof is ob-
tained directly from (2.21), observing that⎧⎨
⎩ET =

1

2

(
FT ·F−1

)T
=

1

2

(
FT · (FT

)T −1T
)
=

1

2

(
FT ·F−1

)
= E ,

Ei j = E ji i, j ∈ {1,2,3} .
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2.4.2 Spatial Strain Tensor (Almansi Strain Tensor)
Subtracting expressions (2.18) and (2.19) in an alternative form yields

(ds)2− (dS)2 = dx ·dx−dx ·F−T ·F−1 ·dx =

= dx ·1 ·dx−dx ·F−T ·F−1 ·dx =

= dx · (1−F−T ·F−1
)︸ ︷︷ ︸

de f
= 2e

· dx = 2 dx · e ·dx , (2.22)

which implicitly defines the spatial strain tensor or Almansi strain tensor as
follows.

Spatial
(Almansi)

strain tensor

⎧⎪⎨
⎪⎩

e(x, t) =
1

2

(
1−F−T ·F−1

)
ei j (x, t) =

1

2

(
δi j−F−1

ki F−1
k j

)
i, j ∈ {1,2,3}

(2.23)

Remark 2.4. The spatial strain tensor e is symmetric. Proof is ob-
tained directly from (2.23), observing that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

eT =
1

2

(
1−F−T ·F−1

)T
=

1

2

(
1T − (F−1

)T · (F−T
)T
)
=

=
1

2

(
1−F−T ·F−1

)
= e ,

ei j = e ji i, j ∈ {1,2,3} .

Example 2.2 – Obtain the material and spatial strain tensors for the motion
in Example 2.1.

Solution

The material strain tensor is

E(X, t) =
1

2

(
FT ·F−1

) not≡ 1

2

⎛
⎝
⎡
⎣ 1 0 −A

0 1 A
−A −A 1

⎤
⎦
⎡
⎣ 1 0 −A

0 1 −A
−A A 1

⎤
⎦−
⎡
⎣1 0 0

0 1 0

0 0 1

⎤
⎦
⎞
⎠=

=
1

2

⎡
⎣ A2 −A2 −2A
−A2 A2 0

−2A 0 2A2

⎤
⎦
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and the spatial strain tensor is

e(X, t) =
1

2

(
1−F−T ·F−1

)
=

not≡ 1

2

⎛
⎝
⎡
⎣1 0 0

0 1 0

0 0 1

⎤
⎦−

⎡
⎣1+A2 A2 A
−A2 1−A2 −A

A A 1

⎤
⎦
⎡
⎣1+A2 −A2 A

A2 1−A2 A
A −A 1

⎤
⎦
⎞
⎠=

=
1

2

⎡
⎣−3A2−2A4 A2 +2A4 −2A−2A3

A2 +2A4 A2−2A4 2A3

−2A−2A3 2A3 −2A2

⎤
⎦ .

Observe that E �= e.

Remark 2.5. The material strain tensor E and the spatial strain ten-
sor e are different tensors. They are not the material and spatial de-
scriptions of a same strain tensor. Expressions (2.20) and (2.22),

(ds)2− (dS)2 = 2dX ·E ·dX = 2dx · e ·dx ,

clearly show this since each tensor is affected by a different vector
(dX and dx, respectively).

The Green-Lagrange strain tensor is naturally described in mate-
rial description (E(X, t)). In equation (2.20) it acts on element dX
(defined in material configuration) and, hence, its denomination as
material strain tensor. However, as all properties of the continuous
medium, it may be described, if required, in spatial form (E(x, t))
through the adequate substitution of the equation of motion.

The contrary occurs with the Almansi strain tensor: it is naturally
described in spatial form and in equation (2.22) acts on the differ-
ential vector dx (defined in the spatial configuration) and, thus, its
denomination as spatial strain tensor. It may also be described, if
required, in material form (e(X, t)).
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2.4.3 Strain Tensors in terms of the Displacement (Gradients)
Replacing expressions (2.12) and (2.15) into equations (2.21) and (2.23) yields
the expressions of the strain tensors in terms of the material displacement gradi-
ent, J(X, t), and the spatial displacement gradient, j(x, t).

E =
1

2

((
1+JT

) · (1+J)−1
)
=

1

2

(
J+JT +JT ·J)

Ei j =
1

2

(
∂Ui

∂Xj
+

∂Uj

∂Xi
+

∂Uk

∂Xi

∂Uk

∂Xj

)
i, j ∈ {1,2,3}

(2.24)

e =
1

2

(
1− (1− jT

) · (1− j)
)
=

1

2

(
j+ jT − jT · j)

ei j =
1

2

(
∂ui

∂x j
+

∂u j

∂xi
− ∂uk

∂xi

∂uk

∂x j

)
i, j ∈ {1,2,3}

(2.25)

2.5 Variation of Distances: Stretch and Unit Elongation
Consider now a particle P in the reference configuration and another particle
Q, belonging to the differential neighborhood of P (see Figure 2.4). The corre-
sponding positions in the present configuration are given by the points in space

P
′

and Q
′

such that the distance between the two particles in the reference con-
figuration, dS, is transformed into ds at the present time. The vectors T and t are

the unit vectors in the directions PQ and P′Q′
, respectively.

Definition 2.3. The stretch or stretch ratio of a material point P (or

a spatial point P
′

) in the material direction T (or spatial direction t )

is the length of the deformed differential segment P′Q′
per unit of

length of the original differential segment PQ.

The translation of the previous definition into mathematical language is

Stretch
de f
= λT = λt =

P′Q′

PQ
=

ds
dS

(0 < λ < ∞) . (2.26)
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Figure 2.4: Differential segments and unit vectors in a continuous medium.

Definition 2.4. The unit elongation, elongation ratio or extension of

a material point P (or a spatial point P
′

) in the material direction T
(or spatial direction t ) 5is the increment of length of the deformed
differential segment P′Q′

per unit of length of the original differen-
tial segment PQ.

The corresponding mathematical definition is

Unit elongation
de f
= εT = εt =

ΔPQ
PQ

=
ds−dS

dS
. (2.27)

Equations (2.26) and (2.27) allow immediately relating the values of the unit
elongation and the stretch for a same point and direction as follows.

ε =
ds−dS

dS
=

ds
dS︸︷︷︸
λ

−1 = λ −1 (⇒−1 < ε < ∞) (2.28)

5 Often, the subindices (•)T and (•)t will be dropped when referring to stretches or unit
elongations. However, one must bear in mind that both stretches and unit elongations are
always associated with a particular direction.
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Variation of Distances: Stretch and Unit Elongation 53

Remark 2.6. The following deformations may take place:

• If λ = 1 (ε = 0)⇒ ds = dS: The particles P and Q may have
moved along time, but without increasing or decreasing the dis-
tance between them.

• If λ > 1 (ε > 0)⇒ ds > dS: The distance between the particles
P and Q has lengthened with the deformation of the medium.

• If λ < 1 (ε < 0)⇒ ds < dS: The distance between the particles
P and Q has shortened with the deformation of the medium.

2.5.1 Stretches, Unit Elongations and Strain Tensors
Consider equations (2.21) and (2.22) as well as the geometric expressions
dX = T dS and dx = t ds (see Figure 2.4). Then,⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
(ds)2− (dS)2 = 2 dX︸︷︷︸

dS T

· E · dX︸︷︷︸
dS T

= 2(dS)2 T ·E ·T

(ds)2− (dS)2 = 2 dx︸︷︷︸
ds t

· e · dx︸︷︷︸
ds t

= 2(ds)2 t · e · t
(2.29)

and dividing these expressions by (dS)2 and (ds)2, respectively, results in

(
ds
dS

)
︸ ︷︷ ︸

λ

2

−1= λ 2−1= 2 T ·E ·T ⇒ λ =
√

1+2T ·E ·T
ε = λ −1 =

√
1+2T ·E ·T−1

(2.30)

1−
(

dS
ds

)
︸ ︷︷ ︸

1/λ

2

= 1−
(

1

λ

)2

= 2 t ·e ·t ⇒
λ =

1√
1−2t · e · t

ε = λ −1 =
1√

1−2t · e · t −1
(2.31)

These equations allow calculating the unit elongation and stretch for a given
direction (in material description, T, or in spatial description, t ).

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems

doi:10.13140/RG.2.2.25821.20961



Con
tin

uum
M

ech
an

ics
for

Engin
eer

s

Theo
ry

an
d Pro

blem
s

©
X. O

liv
er

an
d C. A

ge
let

de Sar
ac

ibar

54 CHAPTER 2. STRAIN

Remark 2.7. The material and spatial strain tensors, E(X, t) and
e(x, t), contain information on the stretches (and unit elongations)
for any direction in a differential neighborhood of a given particle,
as evidenced by (2.30) and (2.31).

Example 2.3 – The spatial strain tensor for a given motion is

e(x, t) not≡

⎡
⎢⎣ 0 0 −tetz

0 0 0

−tetz 0 t (2etz− et)

⎤
⎥⎦ .

Calculate the length, at time t = 0, of the segment that at time t = 2 is recti-
linear and joins points a≡ (0,0,0) and b≡ (1,1,1).

Solution

The shape and geometric position of the material segment at time t = 2 is
known. At time t = 0 (reference time) the segment is not necessarily recti-
linear and the positions of its extremes A and B (see figure below) are not
known. To determine its length, (2.31) is applied for a unit vector in the di-
rection of the spatial configuration t,

λ =
1√

1−2 t · e · t =
ds
dS

=⇒ dS =
1

λ
ds .
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To obtain the stretch in the direction t not≡ [1, 1, 1]T /
√

3, the expression t ·e · t
is computed first as

t · e · t not≡ 1√
3
[1, 1, 1]

⎡
⎢⎣ 0 0 −tetz

0 0 0

−tetz 0 t (2etz− et)

⎤
⎥⎦
⎡
⎢⎣1

1

1

⎤
⎥⎦ 1√

3
=−1

3
tet .

Then, the corresponding stretch at time t = 2 is

λ =
1√

1+ 2
3 tet

=⇒ λ
∣∣∣
t=2

=
1√

1+ 4
3 e2

=

√
3√

3+4e2
.

The length at time t = 0 of the segment AB is

lAB =
∫ B

A
dS =

∫ b

a

1

λ
ds =

1

λ

∫ b

a
ds︸ ︷︷ ︸

lab

=
1

λ
lab =

1

λ
√

3

and replacing the expression obtained above for the stretch at time t = 2
finally results in

lAB =
√

3+4e2 .

2.6 Variation of Angles
Consider a particle P and two additional particles Q and R, belonging to the dif-
ferential neighborhood of P in the material configuration (see Figure 2.5), and

the same particles occupying the spatial positions P
′
, Q

′
and R

′
. The relationship

between the angles that form the corresponding differential segments in the ref-
erence configuration (angle Θ ) and the present configuration (angle θ ) is to be
considered next.

Applying (2.2) and (2.6) on the differential vectors that separate the particles,⎧⎨
⎩dx(1) = F ·dX(1)

dx(2) = F ·dX(2)
=⇒

⎧⎨
⎩dX(1) = F−1 ·dx(1)

dX(2) = F−1 ·dx(2)
(2.32)

and using the definitions of the unit vectors T(1), T(2), t(1) and t(2) that establish
the corresponding directions in Figure 2.5,
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Figure 2.5: Angles between particles in a continuous medium.

⎧⎨
⎩dX(1) = dS(1)T(1)

dX(2) = dS(2)T(2)
=⇒

⎧⎨
⎩dx(1) = ds(1)t(1) ,

dx(2) = ds(2)t(2) .
(2.33)

Finally, according to the definition in (2.26), the corresponding stretches are

⎧⎨
⎩ds(1) = λ (1)dS(1)

ds(2) = λ (2)dS(2)
=⇒

⎧⎪⎪⎨
⎪⎪⎩

dS(1) =
1

λ (1)
ds(1) ,

dS(2) =
1

λ (2)
ds(2) .

(2.34)

Expanding now the scalar product6 of the vectors dx(1) and dx(2),

dS(1)dS(2) cosθ =
∣∣∣dx(1)

∣∣∣ ∣∣∣dx(2)
∣∣∣cosθ = dx(1) ·dx(2) not≡

[
dx(1)

]T [
dx(2)

]
=

=
[
F ·dX(1)

]T [
F ·dX(2)

]
not≡ dX(1) · (FT ·F) · dX(2) = dX(1) · (2E+1) · dX(2)

= dS(1)T(1) · (2E+1) ·T(2)dS(2) =
1

λ (1)
ds(1)T(1) · (2E+1) ·T(2) 1

λ (2)
ds(2) =

= ds(1)ds(2)
1

λ (1)

1

λ (2)
T(1) · (2E+1) ·T(2),

(2.35)

6 The scalar product of two vectors a and b is defined in terms of the angle between them, θ ,
as a ·b = |a| · |b|cosθ .
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and, comparing the initial and final terms in (2.35), yields

cosθ =
T(1) · (1+2E) ·T(2)

λ (1)λ (2)
, (2.36)

where the stretches λ (1) and λ (2) can be obtained by applying (2.30) to the

directions T(1) and T(2), resulting in

cosθ =
T(1) · (1+2E) ·T(2)√

1+2T(1) ·E ·T(1)
√

1+2T(2) ·E ·T(2)
. (2.37)

In an analogous way, operating on the reference configuration, the angle Θ
between the differential segments dX(1) and dX(2) (in terms of t(1), t(2) and e )
is obtained,

cosΘ =
t(1) · (1−2e) · t(2)√

1−2t(1) · e · t(1)
√

1−2t(2) · e · t(2)
. (2.38)

Remark 2.8. Similarly to the discussion in Remark 2.7, the material
and spatial strain tensors, E(X, t) and e(x, t), also contain informa-
tion on the variation of the angles between differential segments in
the differential neighborhood of a particle during the deformation
process. These facts will be the basis for providing a physical inter-
pretation of the components of the strain tensors in Section 2.7.

2.7 Physical Interpretation of the Strain Tensors
2.7.1 Material Strain Tensor
Consider a segment PQ, oriented parallel to the X1-axis in the reference config-
uration (see Figure 2.6). Before the deformation takes place, PQ has a known
length dS = dX .

The length of P′Q′
is sought. To this aim, consider the material strain tensor

E given by its components,

E not≡

⎡
⎢⎣EXX EXY EXZ

EXY EYY EY Z

EXZ EY Z EZZ

⎤
⎥⎦=

⎡
⎢⎣E11 E12 E13

E12 E22 E23

E13 E23 E33

⎤
⎥⎦ . (2.39)
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Figure 2.6: Differential segment in the reference configuration.

Consequently,

T ·E ·T not≡ [T]T [E] [T] = [1, 0, 0]

⎡
⎣E11 E12 E13

E12 E22 E23

E13 E23 E33

⎤
⎦
⎡
⎣1

0

0

⎤
⎦= E11 . (2.40)

The stretch in the material direction X1 is now obtained by replacing the value
T ·E ·T into the expression for stretch (2.30), resulting in λ1 =

√
1+2E11. In an

analogous manner, the segments oriented in the directions X2 ≡ Y and X3 ≡ Z
are considered to obtain the values λ2 and λ3 as follows.

λ1 =
√

1+2E11 =
√

1+2EXX ⇒ εX = λX −1 =
√

1+2EXX −1

λ2 =
√

1+2E22 =
√

1+2EYY ⇒ εY = λY −1 =
√

1+2EYY −1

λ3 =
√

1+2E33 =
√

1+2EZZ ⇒ εZ = λZ−1 =
√

1+2EZZ−1

(2.41)

Remark 2.9. The components EXX , EYY and EZZ (or E11, E22 and
E33) of the main diagonal of tensor E (denoted longitudinal strains)
contain the information on stretch and unit elongations of the dif-
ferential segments that were initially (in the reference configuration)
oriented in the directions X , Y and Z, respectively.

• If EXX = 0 ⇒ εX = 0 : No unit elongation in direction X .

• If EYY = 0 ⇒ εY = 0 : No unit elongation in direction Y .

• If EZZ = 0 ⇒ εZ = 0 : No unit elongation in direction Z.
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Figure 2.7: Angles between differential segments in the reference and present configu-

rations.

Consider now the angle between segments PQ (parallel to the X1-axis) and PR
(parallel to the X2-axis), where Q and R are two particles in the differential neigh-

borhood of P in the material configuration and P
′
, Q

′
and R

′
are the respective

positions in the spatial configuration (see Figure 2.7). If the angle (Θ = π/2)
between the segments in the reference configuration is known, the angle θ in
the present configuration can be determined using (2.37) and taking into ac-

count their orthogonality ( T(1) ·T(2) = 0 ) and the equalities T(1) ·E ·T(1) = E11,

T(2) ·E ·T(2) = E22 and T(1) ·E ·T(2) = E12. That is,

cosθ =
T(1) · (1+2E) ·T(2)√

1+2T(1) ·E ·T(1)
√

1+2T(2) ·E ·T(2)

=
2E12√

1+2E11

√
1+2E22

,

(2.42)

which is the same as

θ ≡ θxy =
π
2
− arcsin

2EXY√
1+2EXX

√
1+2EYY

. (2.43)

The increment of the final angle with respect to its initial value results in

ΔΘXY = θxy−ΘXY︸︷︷︸
π/2

=−arcsin
2EXY√

1+2EXX
√

1+2EYY
. (2.44)

Analogous results are obtained starting from pairs of segments that are ori-
ented in different combinations of the coordinate axes, resulting in
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ΔΘXY =−arcsin
2EXY√

1+2EXX
√

1+2EYY

ΔΘXZ =−arcsin
2EXZ√

1+2EXX
√

1+2EZZ

ΔΘY Z =−arcsin
2EY Z√

1+2EYY
√

1+2EZZ

. (2.45)

Remark 2.10. The components EXY , EXZ and EY Z (or E12, E13 and
E23) of the tensor E (denoted angular strains) contain the informa-
tion on variation of the angles between the differential segments that
were initially (in the reference configuration) oriented in the direc-
tions X , Y and Z, respectively.

• If EXY = 0 : The deformation does not produce a variation in the
angle between the two segments initially oriented in the direc-
tions X and Y .

• If EXZ = 0 : The deformation does not produce a variation in the
angle between the two segments initially oriented in the direc-
tions X and Z.

• If EY Z = 0 : The deformation does not produce a variation in the
angle between the two segments initially oriented in the direc-
tions Y and Z.

The physical interpretation of the components of the material strain tensor is
shown in Figure 2.8 on an elemental parallelepiped in the neighborhood of a
particle P with edges oriented in the direction of the coordinate axes.

2.7.2 Spatial Strain Tensor
Arguments similar to those of the previous subsection allow interpreting the
spatial components of the strain tensor,

e not≡

⎡
⎢⎣ exx exy exz

exy eyy eyz

exz eyz ezz

⎤
⎥⎦=

⎡
⎢⎣ e11 e12 e13

e12 e22 e23

e13 e23 e33

⎤
⎥⎦ . (2.46)

The components of the main diagonal (longitudinal strains) can be interpreted
in terms of the stretches and unit elongations of the differential segments ori-
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Figure 2.8: Physical interpretation of the material strain tensor.

ented in the direction of the coordinate axes in the present configuration,

λ1 =
1√

1−2e11

=
1√

1−2exx
⇒ εx =

1√
1−2exx

−1

λ2 =
1√

1−2e22

=
1√

1−2eyy
⇒ εy =

1√
1−2eyy

−1

λ3 =
1√

1−2e33

=
1√

1−2ezz
⇒ εz =

1√
1−2ezz

−1

, (2.47)

while the components outside the main diagonal (angular strains) contain infor-
mation on the variation of the angles between the differential segments oriented
in the direction of the coordinate axes in the present configuration,

Δθxy =
π
2
−ΘXY =−arcsin

2exy√
1−2exx

√
1−2eyy

Δθxz =
π
2
−ΘXZ =−arcsin

2exz√
1−2exx

√
1−2ezz

Δθyz =
π
2
−ΘY Z =−arcsin

2eyz√
1−2eyy

√
1−2ezz

. (2.48)

Figure 2.9 summarizes the physical interpretation of the components of the spa-
tial strain tensor.
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Figure 2.9: Physical interpretation of the spatial strain tensor.

2.8 Polar Decomposition
The polar decomposition theorem of tensor analysis establishes that, given a
second-order tensor F such that |F|> 0, there exist an orthogonal tensor Q 7and

two symmetric tensors U and V such that8

U not
=
√

FT ·F
V not
=
√

F ·FT

Q = F ·U−1 = V−1 ·F

⎫⎪⎪⎬
⎪⎪⎭ =⇒ F = Q ·U = V ·Q . (2.49)

This decomposition is unique for each tensor F and is denominated left polar
decomposition (F = Q ·U) or right polar decomposition (F = V ·Q). Tensors U
and V are named right and left stretch tensors, respectively.

Considering now the deformation gradient tensor and the fundamental re-
lation dx = F · dX defined in (2.2) as well as the polar decomposition given
in (2.49), the following is obtained9.

dx = F ·dX = (V ·Q) ·dX =

stretching︷ ︸︸ ︷
V ·

rotation︷ ︸︸ ︷
(Q ·dX)

F(•)≡ stretching
not◦ rotation(•)

(2.50)

7 A second-order tensor Q is orthogonal if QT ·Q = Q ·QT = 1 is verified.
8 To obtain the square root of a tensor, first the tensor must be diagonalized, then the square
root of the elements in the diagonal of the diagonalized component matrix are obtained and,
finally, the diagonalization is undone.
9 The notation (◦) is used here to indicate the composition of two operations ξ and ϕ:
z = ϕ ◦ξ (x).
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dx = F ·dX = (Q ·U) ·dX =

rotation︷ ︸︸ ︷
Q ·

stretching︷ ︸︸ ︷
(U ·dX)

F(•)≡ rotation
not◦ stretching(•)

(2.51)

Remark 2.11. An orthogonal tensor Q (such that |Q| = 1) is named
rotation tensor and the mapping y = Q · x is denominated rotation.
A rotation has the following properties:

• When applied on any vector x, the result is another vector
y = Q ·x with the same modulus,

‖y‖2 = y ·y not≡ [y]T · [y] = [Q ·x]T · [Q ·x] not≡ x ·QT ·Q︸ ︷︷ ︸
1

·x= x ·x= ‖x‖2 .

• The result of multiplying (mapping) the orthogonal tensor Q to

two vectors x(1) and x(2) with the same origin and that form an
angle α between them, maintains the same angle between the

images y(1) = Q ·x(1) and y(2) = Q ·x(2),
y(1) ·y(2)∥∥y(1)
∥∥∥∥y(2)

∥∥ =
x(1) ·QT ·Q ·x(2)∥∥y(1)

∥∥∥∥y(2)
∥∥ =

x(1) ·x(2)∥∥x(1)
∥∥∥∥x(2)

∥∥ = cosα .

In consequence, the mapping (rotation) y = Q · x maintains the an-
gles and distances.

Remark 2.12. Equations (2.50) establish that the relative motion in
the neighborhood of the particle during the deformation process
(characterized by tensor F ) can be understood as the composition
of a rotation (characterized by the rotation tensor Q, which main-
tains angles and distances) and a stretching or deformation in itself
(which modifies angles and distances) characterized by the tensor V
(see Figure 2.10).
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Figure 2.10: Polar decomposition.

Remark 2.13. Alternatively, equations (2.51) allow characterizing
the relative motion in the neighborhood of a particle during the de-
formation process as the superposition of a stretching or deformation
in itself (characterized by tensor U ) and a rotation (characterized by
the rotation tensor Q ).

A rigid body motion is a particular case of deformation characterized
by U = V = 1 and Q = F.

2.9 Volume Variation
Consider a particle P of the continuous medium in the reference configuration
(t = 0) which has a differential volume dV0 associated with it (see Figure 2.11).
This differential volume is characterized by the positions of another three par-
ticles Q, R and S belonging to the differential neighborhood of P, which are
aligned with this particle in three arbitrary directions. The volume differential
dVt , associated with the same particle in the present configuration (at time t),
will also be characterized by the spatial points P

′
, Q

′
, R

′
and S

′
corresponding

to Figure 2.11 (the positions of which define a parallelepiped that is no longer
oriented along the coordinate axes).

The relative position vectors between the particles in the material configura-

tion are dX(1), dX(2) and dX(3), and their counterparts in the spatial configura-
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Volume Variation 65

tion are dx(1) = F ·dX(1), dx(2) = F ·dX(2) and dx(3) = F ·dX(3). Obviously, the
relations {

dx(i) = F ·dX(i)

dx(i)j = Fjk dX (i)
k i, j,k ∈ {1,2,3}

(2.52)

are satisfied. Then, the volumes10 associated with a particle in both configura-
tions can be written as

dV0 =
(

dX(1)×dX(2)
)
·dX(3) = det

⎡
⎢⎢⎣

dX (1)
1 dX (1)

2 dX (1)
3

dX (2)
1 dX (2)

2 dX (2)
3

dX (3)
1 dX (3)

2 dX (3)
3

⎤
⎥⎥⎦

︸ ︷︷ ︸
[M]

= |M| ,

dVt =
(

dx(1)×dx(2)
)
·dx(3) = det

⎡
⎢⎢⎣

dx(1)1 dx(1)2 dx(1)3

dx(2)1 dx(2)2 dx(2)3

dx(3)1 dx(3)2 dx(3)3

⎤
⎥⎥⎦

︸ ︷︷ ︸
[m]

= |m| , (2.53)

where Mi j = dX (i)
j and mi j = dx(i)j . Considering these expressions,

mi j = dx(i)j = Fjk dX (i)
k = Fjk dMik = dMik FT

k j =⇒ m = M ·FT (2.54)

is deduced and, consequently11,

dVt = |m|=
∣∣M ·FT

∣∣= |M| ∣∣FT
∣∣= |F| |M|︸︷︷︸

dV0

= |F|dV0

dVt = dV (x(X, t) , t) = |F(X, t)|dV0 (X,0) = |F|t dV0

⎫⎪⎪⎬
⎪⎪⎭ =⇒ dVt = |F|t dV0

(2.55)

10 The volume of a parallelepiped is calculated as the scalar triple product (a×b) · c of the
concurrent edge-vectors a, b and c, which meet at any of the parallelepiped’s vertices. Note
that the scalar triple product is the determinant of the matrix constituted by the components
of the above mentioned vectors arranged in rows.
11 The expressions |A ·B|= |A| · |B| and

∣∣AT
∣∣= |A| are used here.
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Figure 2.11: Variation of a volume differential element.

2.10 Area Variation
Consider an area differential dA associated with a particle P in the reference
configuration and its variation along time. To define this area differential, con-
sider two particles Q and R in the differential neighborhood of P, whose relative

positions with respect to this particle are dX(1) and dX(2), respectively (see Fig-
ure 2.12). Consider also an arbitrary auxiliary particle S whose relative position

vector is dX(3). An area differential vector dA= dA N associated with the scalar
differential area, dA, is defined. The module of vector dA is dA and its direction
is the same as that of the unit normal vector in the material configuration N.

In the present configuration, at time t, the particle will occupy a point in

space P
′

and will have an area differential da associated with it which, in turn,
defines an area differential vector da = da n, where n is the corresponding unit
normal vector in the spatial configuration. Consider also the positions of the

other particles Q
′
, R

′
and S

′
and their relative position vectors dx(1), dx(2) and

dx(3).
The volumes dV0 and dVt of the corresponding parallelepipeds can be calcu-

lated as

dV0 = dH dA = dX(3) ·N︸ ︷︷ ︸
dH

dA = dX(3) ·NdA︸︷︷︸
dA

= dA ·dX(3)

dVt = dh da = dx(3) ·n︸ ︷︷ ︸
dh

da = dx(3) · nda︸︷︷︸
da

= da ·dx(3)
(2.56)

and, taking into account that dx(3) = F · dX(3), as well as the expression for
change in volume (2.55), results in

da ·F ·dX(3) = da ·dx(3) = dVt = |F| dV0 = |F|dA ·dX(3) ∀dX(3) . (2.57)
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Figure 2.12: Variation of an area differential.

Comparing the first and last terms12 in (2.57) and considering that the relative

position of particle S can take any value (as can, therefore, vector dX(3)), finally
yields

da ·F = |F|dA =⇒ da = |F|dA ·F−1 . (2.58)

To obtain the relation between the two area differential scalars, dA and da,
expressions dA = N dA and da = n da are replaced into (2.58) and the modules
are taken, resulting in

da n = |F|N ·dF−1dA =⇒ da = |F|∥∥N ·dF−1
∥∥dA . (2.59)

2.11 Infinitesimal Strain
Infinitesimal strain theory (also denominated small deformation theory) is based
on two simplifying hypotheses of the general theory (or finite strain theory) seen
in the previous sections (see Figure 2.13).

Definition 2.5. The simplifying hypotheses are:

1) Displacements are very small compared to the typical dimensions
in the continuous medium: ‖u‖<< ‖X‖.

2) Displacement gradients are very small (infinitesimal).

12 Here, the following tensor algebra theorem is taken into account: given two vectors a and
b, if the relation a ·x = b ·x is satisfied for all values of x, then a = b.
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Figure 2.13: Infinitesimal strain in the continuous medium.

In accordance with the first hypothesis, the reference configuration Ω0 and
the present configuration Ωt are very close together and are considered to be
indistinguishable from one another. Consequently, the material and spatial co-
ordinates coincide and discriminating between material and spatial descriptions
no longer makes sense.⎧⎨

⎩x = X+u∼= X

xi = Xi +ui ∼= Xi

=⇒
⎧⎨
⎩U(X, t)not

= u(X, t)≡ u(x, t)

Ui (X, t) not
= ui (X, t)≡ ui (x, t) i ∈ {1,2,3}

(2.60)
The second hypothesis can be written in mathematical form as∣∣∣∣∂ui

∂x j

∣∣∣∣ 1 ∀ i, j ∈ {1,2,3} . (2.61)

2.11.1 Strain Tensors. Infinitesimal Strain Tensor
The material and spatial displacement gradient tensors coincide. Indeed, in view
of (2.60),⎧⎨
⎩ x j = Xj

ui (x, t) =Ui (X, t)
=⇒ ji j =

∂ui

∂x j
=

∂Ui

∂Xj
= Ji j =⇒ j = J (2.62)

and the material strain tensor results in
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Infinitesimal Strain 69

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

E =
1

2

(
J+JT +JT ·J)∼= 1

2

(
J+JT

)
,

Ei j =
1

2

(
∂ui

∂x j
+

∂u j

∂xi
+

∂uk

∂xi

∂uk

∂x j︸ ︷︷ ︸
 1

)
∼= 1

2

(
∂ui

∂x j
+

∂u j

∂xi

)
,

(2.63)

where the infinitesimal character of the second-order term (∂uk∂uk/∂x j∂xi) has
been taken into account. Operating in a similar manner with the spatial strain
tensor, ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩
e =

1

2

(
j+ jT − jT · j)∼= 1

2

(
j+ jT

)
=

1

2

(
J+JT

)
,

ei j =
1

2

(
∂ui

∂x j
+

∂u j

∂xi
− ∂uk

∂xi

∂uk

∂x j︸ ︷︷ ︸
 1

)
∼= 1

2

(
∂ui

∂x j
+

∂u j

∂xi

)
.

(2.64)

Equations (2.63) and (2.64) allow defining the infinitesimal strain tensor (or
small strain tensor) εεε as13

Infinitesimal
strain tensor

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

εεε =
1

2

(
J+JT

) not
= ∇su

εi j =
1

2

(
∂ui

∂x j
+

∂u j

∂xi

)
i, j ∈ {1,2,3}

(2.65)

Remark 2.14. Under the infinitesimal strain hypothesis, the material
and spatial strain tensors coincide and collapse into the infinitesimal
strain tensor.

E(x, t) = e(x, t) = εεε (x, t)

Remark 2.15. The infinitesimal strain tensor is symmetric, as ob-
served in its definition in (2.65).

εεεT =
1

2

(
J+JT )T

=
1

2

(
JT +J

)
= εεε

13 The symmetric gradient operator ∇s is defined as ∇s (•) = ((•)⊗∇+∇⊗ (•))/2.
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Remark 2.16. The components of the infinitesimal strain tensor εεε are
infinitesimal (εi j  1). Proof is obvious from (2.65) and the condi-
tion that the components of J = j are infinitesimal (see (2.61)).

Example 2.4 – Determine under which conditions the motion in Example 2.1
constitutes an infinitesimal strain case and obtain the infinitesimal strain ten-
sor for this case. Compare it with the result obtained from the spatial and
material strain tensors in Example 2.2 taking into account the infinitesimal
strain hypotheses.

Solution

The equation of motion is given by⎧⎪⎨
⎪⎩

x1 = X1−AX3

x2 = X2−AX3

x3 =−AX1 +AX2 +X3

,

from which the displacement field is obtained

U(X, t) = x−X not≡

⎡
⎢⎣U1 =−AX3

U2 =−AX3

U3 =−AX1 +AX2

⎤
⎥⎦ .

It is obvious that, for the displacements to be infinitesimal, A must be in-
finitesimal (A 1). Now, to obtain the infinitesimal strain tensor, first the
displacement gradient tensor J(X, t) = j(x, t) must be computed,

J = U⊗∇ not≡

⎡
⎢⎢⎣

−AX3

−AX3

−AX1 +AX2

⎤
⎥⎥⎦
[

∂
∂X1

,
∂

∂X2
,

∂
∂X3

]
=

⎡
⎢⎣ 0 0 −A

0 0 −A

−A A 0

⎤
⎥⎦ .

Then, the infinitesimal strain tensor, in accordance to (2.65), is

εεε = ∇sU not≡

⎡
⎢⎣ 0 0 −A

0 0 0

−A 0 0

⎤
⎥⎦ .
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The material and spatial strain tensors obtained in Example 2.2 are, respec-
tively,

E(X, t) not≡ 1

2

⎡
⎢⎣ A2 −A2 −2A

−A2 A2 0

−2A 0 2A2

⎤
⎥⎦ and

e(X, t) not≡ 1

2

⎡
⎢⎣−3A2−2A4 A2 +2A4 −2A−2A3

A2 +2A4 A2−2A4 2A3

−2A−2A3 2A3 −2A2

⎤
⎥⎦ .

Neglecting the second-order and higher-order infinitesimal terms(
A4  A3  A2  A

)
results in

E not≡

⎡
⎢⎣ 0 0 −A

0 0 −A

−A A 0

⎤
⎥⎦ and e not≡

⎡
⎢⎣ 0 0 −A

0 0 −A

−A A 0

⎤
⎥⎦ =⇒ E = e = εεε ,

which is in accordance with Remark 2.14.

2.11.2 Stretch. Unit Elongation
Considering the general expression (2.30) of the unit elongation in the direction

T ∼= t
(
λt =

√
1+2t ·E · t) and applying a Taylor series expansion14 around 0

(taking into account that E = εεε is infinitesimal and, therefore, so is x = t · εεε · t ),
yields

λt =
√

1+2t · εεε · t︸ ︷︷ ︸
x

∼= 1+ t · εεε · t

εt = λt −1 = t · εεε · t
(2.66)

2.11.3 Physical Interpretation of the Infinitesimal Strains
Consider the infinitesimal strain tensor εεε and its components in the coordinate
system x1 ≡ x, x2 ≡ y, x3 ≡ z, shown in Figure 2.14,

εεε not≡

⎡
⎢⎣ εxx εxy εxz

εxy εyy εyz

εxz εyz εzz

⎤
⎥⎦=

⎡
⎢⎣ ε11 ε12 ε13

ε12 ε22 ε23

ε13 ε23 ε33

⎤
⎥⎦ . (2.67)

14 The Taylor series expansion of
√

1+ x around x = 0 is
√

1+ x = 1+ x/2+O
(
x2
)
.
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Figure 2.14: Physical interpretation of the infinitesimal strains.

Consider a differential segment PQ oriented in the reference configuration
parallel to the coordinate axis x1 ≡ x. The stretch λx and the unit elongation εx
in this direction are, according to (2.66) with t = [1, 0, 0]T ,

λx = 1+ t · εεε · t = 1+ εxx =⇒ εx = λx−1 = εxx . (2.68)

This allows assigning to the component εxx ≡ ε11 the physical meaning of unit
elongation εx in the direction of the coordinate axis x1 ≡ x. A similar interpre-
tation is deduced for the other components in the main diagonal of the tensor
εεε (εxx, εyy, εzz),

εxx = εx ; εyy = εy ; εzz = εz . (2.69)

Given now the components outside the main diagonal of εεε , consider the dif-
ferential segments PQ and PR oriented in the reference configuration parallel to
the coordinate directions x and y, respectively. Then, these two segments form
an angle Θxy = π/2 in this configuration. Applying (2.43), the increment in the

corresponding angle results in15

Δθxy = θxy− π
2
=−2arcsin

εxy√
1+2εxx︸ ︷︷ ︸
� 1

√
1+2εyy︸ ︷︷ ︸
� 1

∼=−2arcsinεxy︸ ︷︷ ︸
� εxy

=−2εxy ,

(2.70)
where the infinitesimal character of εxx, εyy and εxy has been taken into account.
Consequently, εxy can be interpreted from (2.70) as minus the semi-increment,
produced by the strain, of the angle between the two differential segments ini-
tially oriented parallel to the coordinate directions x and y. A similar interpre-
tation is deduced for the other components εxz and εyz,

εxy =−1

2
Δθxy ; εxz =−1

2
Δθxz ; εyz =−1

2
Δθyz . (2.71)

15 The Taylor series expansion of arcsinx around x = 0 is arcsinx = x+O
(
x2
)
.
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2.11.4 Engineering Strains. Vector of Engineering Strains
There is a strong tradition in engineering to use a particular denomination for
the components of the infinitesimal strain tensor. This convention is named en-
gineering notation, as opposed to the scientific notation generally used in con-
tinuum mechanics. Both notations are synthesized as follows.

εεε not≡

scientific notation︷ ︸︸ ︷⎡
⎢⎣ ε11 ε12 ε13

ε12 ε22 ε23

ε13 ε23 ε33

⎤
⎥⎦≡

⎡
⎢⎣ εxx εxy εxz

εxy εyy εyz

εxz εyz εzz

⎤
⎥⎦≡

engineering notation︷ ︸︸ ︷⎡
⎢⎢⎣

εx
1
2 γxy

1
2 γxz

1
2 γxy εy

1
2 γyz

1
2 γxz

1
2 γyz εz

⎤
⎥⎥⎦ (2.72)

Remark 2.17. The components in the main diagonal of the strain ten-
sor (named longitudinal strains) are denoted by ε(•) and coincide
with the unit elongations in the directions of the coordinate axes.
Positive values of longitudinal strains

(
ε(•) > 0

)
correspond to an

increase in length of the corresponding differential segments in the
reference configuration.

Remark 2.18. The components outside the main diagonal of the
strain tensor are characterized by the values γ(•, •) (named angu-
lar strains) and can be interpreted as the decrements of the corre-
sponding angles oriented in the Cartesian directions of the reference
configuration. Positive values of angular strains

(
γ(•, •) > 0

)
indicate

that the corresponding angles close with the deformation process.

In engineering, it is also frequent to exploit the symmetry of the infinitesimal
strain tensor (see Remark 2.15) to work only with the six components of the
tensor that are different, grouping them in the vector of engineering strains,
which is defined as follows.

εεε ∈ R
6 εεε de f

=
[

εx , εy , εx︸ ︷︷ ︸
longitudinal

strains

, γxy , γxz , γyz︸ ︷︷ ︸
angular
strains

]T

(2.73)
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2.11.5 Variation of the Angle between Two Differential Segments in
Infinitesimal Strain

Consider any two differential segments, PQ and PR, in the reference configu-
ration and the angle Θ they define (see Figure 2.15). The angle formed by the
corresponding deformed segments in the present configuration is θ = Θ +Δθ .
Applying (2.42) to this case results in

cosθ = cos(Θ +Δθ) =
T(1) · (1+2εεε) ·T(2)√

1+2T(1) · εεε ·T(1)︸ ︷︷ ︸
 1

√
1+2T(2) · εεε ·T(2)︸ ︷︷ ︸

 1

, (2.74)

where T(1) and T(2) are the unit vectors in the directions of PQ and PR and,

therefore, the relation T(1) ·T(2) =
∥∥∥T(1)

∥∥∥∥∥∥T(2)
∥∥∥cosΘ = cosΘ is fulfilled. Con-

sidering the infinitesimal character of the components of εεε and Δθ , the follow-
ing holds true16.

cosθ = cos(Θ +Δθ) = cosΘ · cosΔθ︸ ︷︷ ︸
≈ 1

−sinΘ · sinΔθ︸ ︷︷ ︸
≈ Δθ

=

= cosΘ − sinΘ ·Δθ =

= cosΘ︷ ︸︸ ︷
T(1) ·T(2)+2T(1) · εεε ·T(2)√

1+T(1) · εεε ·T(1)︸ ︷︷ ︸
≈ 1

√
1+T(2) · εεε ·T(2)︸ ︷︷ ︸

≈ 1

=

= cosΘ +2T(1) · εεε ·T(2)

(2.75)

Therefore, sinΘ ·Δθ =−2T(1) · εεε ·T(2) and

Δθ =−2T(1) · εεε ·T(2)

sinΘ
=−2t(1) · εεε · t(2)

sinθ
, (2.76)

where the infinitesimal character of the strain has been taken into account and,
thus, it follows that T(1) ≈ t(1), T(2) ≈ t(2) and Θ ≈ θ .

2.11.6 Polar Decomposition
The polar decomposition of the deformation gradient tensor F is given by (2.49)
for the general case of finite strain. In the case of infinitesimal strain, recall-

16 The following Taylor series expansions around x = 0 are considered: sinx = x+O
(
x2
)

and cosx = 1+O
(
x2
)

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems

doi:10.13140/RG.2.2.25821.20961



Con
tin

uum
M

ech
an

ics
for

Engin
eer

s

Theo
ry

an
d Pro

blem
s

©
X. O

liv
er

an
d C. A

ge
let

de Sar
ac

ibar

Infinitesimal Strain 75

Figure 2.15: Variation of the angle between two differential segments in infinitesimal

strain.

ing (2.12) and the infinitesimal character of the components of the tensor J
(see (2.61)), tensor U in (2.49) can be written as17

U =
√

FT ·F =
√

(1+JT ) · (1+J) =

=
√

1+J+JT +JT ·J︸ ︷︷ ︸
 J

≈
√

1+J+JT = 1+
1

2

(
J+JT )︸ ︷︷ ︸

εεε

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ =⇒ U = 1+ εεε .

(2.77)
In a similar manner, due to the infinitesimal character of the components of the
tensor εεε (see Remark 2.16), the inverse of tensor U results in18

U−1 = (1+ εεε)−1 = 1− εεε = 1− 1

2

(
J+JT ) . (2.78)

Therefore, the rotation tensor Q in (2.49) can be written as

Q = F ·U−1 = (1+J) ·
(

1− 1

2

(
J+JT

))
=

= 1+J− 1

2

(
J+JT

)− 1

2
J · (J+JT )︸ ︷︷ ︸
 J

= 1+
1

2

(
J−JT )︸ ︷︷ ︸
ΩΩΩ

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=⇒ Q = 1+ΩΩΩ .

(2.79)

17 The Taylor series expansions of tensor
√

1+x around x = 0 is
√

1+x = 1+x/2+O
(
x2
)
.

18 The Taylor series expansions of tensor (1+x)−1 around x = 0 is (1+x)−1 = 1− x+
O
(
x2
)
.
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Equation (2.79) defines the infinitesimal rotation tensor ΩΩΩ 19 as follows.

Infinitesimal
rotation tensor

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ΩΩΩ de f
=

1

2

(
J−JT

)
=

1

2
(u⊗∇−∇⊗u) de f

= ∇au

Ωi j =
1

2

(
∂ui

∂x j
− ∂u j

∂xi

)
 1 i, j ∈ {1,2,3}

(2.80)

Remark 2.19. The tensor ΩΩΩ is antisymmetric. Indeed,⎧⎨
⎩ΩΩΩT =

1

2

(
J−JT

)T
=

1

2

(
JT −J

)
=−ΩΩΩ

Ω ji =−Ωi j i, j ∈ {1,2,3}
.

Consequently, the terms in the main diagonal of ΩΩΩ are zero, and its
matrix of components has the structure

[ΩΩΩ] =

⎡
⎣ 0 Ω12 −Ω31

−Ω12 0 Ω23

Ω31 −Ω23 0

⎤
⎦ .

In a small rotation context, tensor ΩΩΩ characterizes the rotation (Q = 1+ΩΩΩ)
and, thus, the denomination of infinitesimal rotation tensor. Since it is an anti-
symmetric tensor, it is defined solely by three different components (Ω23, Ω31,
Ω12), which form the infinitesimal rotation vector θθθ 20,

Infinitesimal
rotation vector:

θθθ not≡

⎡
⎢⎣θ1

θ2

θ3

⎤
⎥⎦=

⎡
⎢⎣−Ω23

−Ω31

−Ω12

⎤
⎥⎦=

1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂u3

∂x2
− ∂u2

∂x3

∂u1

∂x3
− ∂u3

∂x1

∂u2

∂x1
− ∂u1

∂x2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

de f
=

1

2
∇×u . (2.81)

19 The antisymmetric gradient operator ∇a is defined as ∇a (•) = [(•)⊗∇−∇⊗ (•)]/2.
20 The operator rotational of (•) is denoted as ∇× (•).
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Expressions (2.12), (2.65) and (2.79) allow writing

F = 1+J+
1

2

(
J+JT )︸ ︷︷ ︸

εεε

+
1

2

(
J−JT )︸ ︷︷ ︸
ΩΩΩ

=⇒ F = 1+ εεε +ΩΩΩ . (2.82)

Remark 2.20. The results of performing a dot product of the in-
finitesimal rotation tensor ΩΩΩ and performing a cross product of the
infinitesimal rotation vector θθθ with any vector r ≡ [r1,r2,r3]

T (see
Figure 2.16) coincide. Indeed,

ΩΩΩ · r not≡

⎡
⎢⎣ 0 Ω12 −Ω31

−Ω12 0 Ω23

Ω31 −Ω23 0

⎤
⎥⎦
⎡
⎢⎣ r1

r2

r3

⎤
⎥⎦=

⎡
⎢⎣ Ω12 r2−Ω31 r3

−Ω12 r1 +Ω23 r3

Ω31 r1−Ω23 r2

⎤
⎥⎦ ,

θθθ × r not≡

⎡
⎢⎣ ê1 ê2 ê3

θ1 θ2 θ3

r1 r2 r3

⎤
⎥⎦=

⎡
⎢⎣ ê1 ê2 ê3

−Ω23 −Ω31 −Ω12

r1 r2 r3

⎤
⎥⎦=

=

⎡
⎢⎣ Ω12 r2−Ω31 r3

−Ω12 r1 +Ω23 r3

Ω31 r1−Ω23 r2

⎤
⎥⎦ .

Consequently, vector ΩΩΩ ·r = θθθ ×r has the following characteristics:

• It is orthogonal to vector r (because it is the result of a vector
product in which r is involved).

• Its module is infinitesimal (because θθθ is infinitesimal).

• Vector r+ΩΩΩ ·r = r+θθθ×r can be considered, except for higher-
order infinitesimals, as the result of applying a rotation θθθ on
vector r.
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Figure 2.16: Product of the infinitesimal rotation vector and tensor on a vector r.

Consider now a differential segment dX in the neighborhood of a particle P
in the reference configuration (see Figure 2.17). In accordance with (2.82), the
stretching transforms this vector into vector dx as follows.

dx = F ·dX = (1+ εεε +ΩΩΩ) ·dX =

stretching︷ ︸︸ ︷
εεε ·dX +

rotation︷ ︸︸ ︷
(1+ΩΩΩ) ·dX

F(•)≡ stretching(•)+ rotation(•)
(2.83)

Remark 2.21. Under infinitesimal strain hypotheses, the expression
in (2.83) characterizes the relative motion of a particle, in the differ-
ential neighborhood of this particle, as the following sum:

a) A stretching or deformation in itself, characterized by the in-
finitesimal strain tensor εεε .

b) A rotation characterized by the infinitesimal rotation tensor ΩΩΩ
which, in the infinitesimal strain context, maintains angles and
distances.

The superposition (stretching ◦ rotation) of the general finite strain
case (see Remark 2.12) degenerates, for the infinitesimal strain case,
into a simple addition (stretching + rotation).
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Figure 2.17: Stretching and rotation in infinitesimal strain.

2.12 Volumetric Strain

Definition 2.6. The volumetric strain is the increment produced by
the deformation of the volume associated with a particle, per unit of
volume in the reference configuration.

This definition can be mathematically expressed as (see Figure 2.18)

Volumetric strain: e(X, t)
de f
=

dV (X, t)−dV (X,0)

dV (X,0)

not
=

dVt −dV0

dV0
. (2.84)

Figure 2.18: Volumetric strain.
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Equation (2.55) allows expressing, in turn, the volumetric strain as follows:

• Finite strain

e =
dVt −dV0

dV0
=
|F|t dV0−dV0

dV0
=⇒ e = |F|−1 (2.85)

• Infinitesimal strain

Considering (2.49) and recalling that Q is an orthogonal tensor (|Q|= 1), yields

|F|= |Q ·U|= |Q| |U|= |U|= |1+ εεε|= det

⎡
⎢⎣1+ εxx εxy εxz

εxy 1+ εyy εyz

εxz εyz 1+ εzz

⎤
⎥⎦ ,

(2.86)
where (2.77) has been considered. Taking into account that the components of εεε
are infinitesimal, and neglecting in the expression of its determinant the second-
order and higher-order infinitesimal terms, results in

|F|= det

⎡
⎢⎣1+ εxx εxy εxz

εxy 1+ εyy εyz

εxz εyz 1+ εzz

⎤
⎥⎦= 1+ εxx + εyy + εzz︸ ︷︷ ︸

Tr(εεε)

+O
(
ε2
)≈ 1+Tr(εεε) .

(2.87)
Then, introducing (2.87) into (2.85) yields, for the infinitesimal strain case

dVt = (1+Tr(εεε))dV0

e =
dVt −dV0

dV0
= |F|−1

⎫⎪⎬
⎪⎭ =⇒ e = Tr(εεε) . (2.88)

2.13 Strain Rate
In the previous sections of this chapter, the concept of strain has been studied,
defined as the variation of the relative position (angles and distances) of the
particles in the neighborhood of a given particle. In the following sections, the
rate at which this relative position changes will be considered by introducing
the concept of strain rate as a measure of the variation in the relative position
between particles per unit of time.
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2.13.1 Velocity Gradient Tensor
Consider the configuration corresponding to a time t, two particles of the con-
tinuous medium P and Q that occupy the spatial points P′ and Q′ at said instant
of time (see Figure 2.19), their velocities vP = v(x, t) and vQ = v(x+dx, t), and
their relative velocity,

dv(x, t) = vQ−vP = v(x+dx, t)−v(x, t) . (2.89)

Then, ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dv =
∂v
∂x
·dx = lll ·dx

dvi =
∂vi

∂x j
dx j = li j dx j i, j ∈ {1,2,3}

, (2.90)

where the spatial velocity gradient tensor lll (x, t) has been introduced.

Spatial velocity
gradient tensor

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

lll (x, t) de f
=

∂v(x, t)
∂x

lll = v⊗∇

li j =
∂vi

∂x j
i, j ∈ {1,2,3}

(2.91)

Figure 2.19: Velocities of two particles in the continuous medium.
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82 CHAPTER 2. STRAIN

2.13.2 Strain Rate and Spin Tensors
The velocity gradient tensor can be split into a symmetric and an antisymmetric
part21,

lll = d+w , (2.92)

where d is a symmetric tensor denominated strain rate tensor,

Strain
rate

tensor

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d de f
= sym(lll) =

1

2

(
lll + lllT

)
=

1

2
(v⊗∇+∇⊗v)not

= ∇sv

di j =
1

2

(
∂vi

∂x j
+

∂v j

∂xi

)
i, j ∈ {1,2,3}

[d] =

⎡
⎣d11 d12 d13

d12 d22 d23

d13 d23 d33

⎤
⎦

(2.93)

and w is an antisymmetric tensor denominated rotation rate tensor or spin ten-
sor, whose expression is

Rotation
rate

(spin)
tensor

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w de f
= skew(lll) =

1

2

(
lll− lllT

)
=

1

2
(v⊗∇−∇⊗v)not

= ∇av

wi j =
1

2

(
∂vi

∂x j
− ∂v j

∂xi

)
i, j ∈ {1,2,3}

[w] =

⎡
⎣ 0 w12 −w31

−w12 0 w23

w31 −w23 0

⎤
⎦

(2.94)

2.13.3 Physical Interpretation of the Strain Rate Tensor
Consider a differential segment defined by the particles P and Q of Figure 2.20
and the variation of their squared length along time,

d
dt

ds2 =
d
dt

(dx ·dx) =
d
dt

(dx) ·dx+dx · d
dt

(dx) =

= d
(

dx
dt

)
· dx+dx ·d

(
dx
dt

)
= dv ·dx+dx ·dv , (2.95)

21 Every second-order tensor a can be decomposed into the sum of its symmetric part
(sym(a)) and its antisymmetric or skew-symmetric part (skew(a)) in the form:

a = sym(a)+ skew(a) with sym(a) = (a+aT )/2 and skew(a) = (a−aT )/2.
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Strain Rate 83

and using relations (2.90) and (2.93), the expression

d
dt

ds2 =
(

dx · lllT
)
·dx+dx · (lll ·dx) = dx ·

(
lllT + lll

)
·dx = 2 dx ·d ·dx (2.96)

is obtained. Differentiating now (2.20) with respect to time and taking into ac-
count (2.96) yields

2 dx ·d ·dx =
d
dt

ds2 (t) =
d
dt

(
ds2 (t)−dS2

)
=

=
d
dt

(2 dX ·E(X, t) ·dX) = 2 dX · dE
dt
· dX = 2 dX · .

E ·dX .
(2.97)

Replacing (2.2) into (2.97) results in22

dX · .
E ·dX = dx ·d ·dx not≡ [dx]T [d] [dx] = [dX]T

[
FT ·d ·F] [dX]

=⇒ dX ·
(

FT ·d ·F− .
E
)
·dX = 0 ∀ dX =⇒ FT ·d ·F− .

E = 0
.
E = FT ·d ·F . (2.98)

Remark 2.22. Equation (2.98) shows the existing relationship be-
tween the strain rate tensor d(x, t) and the material derivative of

the material strain tensor
.
E(X, t), providing a physical interpreta-

tion (and justifying the denomination) of tensor d(x, t). However,

the same equation reveals that tensors d(x, t) and
.
E(X, t) are not

exactly the same. Both tensors will coincide in the following cases:

• In the reference configuration: t = t0 ⇒ F
∣∣
t=t0

= 1.

• In infinitesimal strain theory: x≈ X ⇒ F =
∂x
∂X

≈ 1.

22 Here, the following tensor algebra theorem is used: given a second-order tensor A, if
x ·A ·x = 0 is verified for all vectors x �= 0, then A≡ 0.
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84 CHAPTER 2. STRAIN

Figure 2.20: Differential segment between particles of the continuous medium along

time.

2.13.4 Physical Interpretation of the Rotation Rate Tensor
Taking into account the antisymmetric character of w (which implies it can be
defined using only three different components), the vector

ωωω =
1

2
rot (v) =

1

2
∇×v not≡ 1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
(

∂v2

∂x3
− ∂v3

∂x2

)

−
(

∂v3

∂x1
− ∂v1

∂x3

)

−
(

∂v1

∂x2
− ∂v2

∂x1

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎣−w23

−w31

−w12

⎤
⎥⎦ (2.99)

is extracted from (2.94). Vector 2ωωω = ∇× v is named vorticiy vector 23. It can
be proven (in an analogous manner to Remark 2.20) that the equality

ωωω× r = w · r ∀ r (2.100)

is satisfied. Therefore, it is possible to characterize ωωω as the angular velocity of a
rotation motion, and ωωω× r = w · r as the rotation velocity of the point that has r
as the position vector with respect to the rotation center (see Figure 2.21). Then,
considering (2.90) and (2.92),

dv = lll ·dx = (d+w) ·dx = d ·dx︸ ︷︷ ︸
stretch

velocity

+ w ·dx︸ ︷︷ ︸
rotation
velocity

, (2.101)

which allows describing the relative velocity dv of the particles in the neigh-
borhood of a given particle P (see Figure 2.22) as the sum of a relative stretch

23 Observe the similarity in the structure of tensors ΩΩΩ and θθθ in Section 2.11.6 and of tensors
w and ωωω seen here.
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Figure 2.21: Vorticity vector.

Figure 2.22: Stretch and rotation velocities.

velocity (characterized by the strain rate tensor d) and a relative rotation velocity
(characterized by the spin tensor w or the vorticity vector 2ωωω).

2.14 Material Time Derivatives of Strain and Other
Magnitude Tensors

2.14.1 Deformation Gradient Tensor and its Inverse Tensor
Differentiating the expression of F in (2.3) with respect to time24,

Fi j =
∂xi (X, t)

∂Xj
=⇒ dFi j

dt
=

∂
∂ t

∂xi (X, t)
∂Xj

=
∂

∂Xj

∂xi (X, t)
∂ t︸ ︷︷ ︸
vi

=⇒ (2.102)

24 The Schwartz Theorem (equality of mixed partial derivatives) guarantees that
for a function Φ (x1,x2 ... xn) that is continuous and has continuous derivatives,

∂ 2Φ/(∂xi∂x j) = ∂ 2Φ/(∂x j∂xi) ∀i, j is satisfied.
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dFi j

dt
=

∂vi (X, t)
∂Xj

=
∂vi (x(X, t))

∂xk︸ ︷︷ ︸
lik

∂xk

∂Xj︸︷︷︸
Fk j

= lik Fk j =⇒

dF
dt

not
=

.
F = lll ·F

dFi j

dt
=

.
Fi j = lik Fk j i, j ∈ {1,2,3}

(2.102 (cont.))

where (2.91) has been taken into account for the velocity gradient tensor lll. To
obtain the material time derivative of tensor F−1, the time derivative of the iden-
tity F ·F−1 = 1 is performed25.

F ·F−1 = 1 =⇒ d
dt

(
F ·F−1

)
=

dF
dt
·F−1 +F · d

(
F−1

)
dt

= 0

=⇒ d
(
F−1

)
dt

=−F−1 · .
F︸︷︷︸

lll ·F
· F−1 =−F−1 · lll ·F ·F−1︸ ︷︷ ︸

1

=−F−1 · lll =⇒

d
(
F−1

)
dt

=−F−1 · lll
dF−1

i j

dt
= F−1

ik lk j i, j ∈ {1,2,3}
(2.103)

2.14.2 Material and Spatial Strain Tensors
From (2.21), (2.102) and (2.93), it follows26

E =
1

2

(
FT ·F−1

)
=⇒ dE

dt
=

.
E =

1

2

( .
FT ·F+FT · .

F
)
=

=
1

2

(
FT · lllT ·F+FT · lll ·F

)
=

1

2
FT ·

(
lll + lllT

)
︸ ︷︷ ︸

2d

· F = FT ·d ·F

=⇒ .
E = FT ·d ·F . (2.104)

25 The material time derivative of the inverse tensor d
(
F−1

)
/dt must not be confused with

the inverse of the material derivative of the tensor:
( .
F
)−1

. These two tensors are completely
different tensors.
26 Observe that the result is the same as the one obtained in (2.98) using an alternative pro-
cedure.
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Using (2.23) and (2.103) for the spatial strain tensor e yields

e =
1

2

(
1−F−T ·F−1

) ⇒ de
dt

=
.e =−1

2

(
d
dt

(
F−T ) ·F−1 +F−T · d

dt

(
F−1

))
=

=
1

2

(
lllT ·F−T ·F−1 +F−T ·F−1 · lll

)
=⇒ .e = 1

2

(
lllT ·F−T ·F−1 +F−T ·F−1 · lll

)
. (2.105)

2.14.3 Volume and Area Differentials
The volume differential dV (X, t) associated with a certain particle P varies
along time (see Figure 2.23) and, in consequence, it makes sense to calculate
its material derivative. Differentiating (2.55) for a volume differential results in

dV (X, t) = |F(X, t)| dV0 (X) =⇒ d
dt

dV (t) =
d |F|
dt

dV0 . (2.106)

Therefore, the material derivative of the determinant of the deformation gradient
tensor |F| is27

d |F|
dt

=
d |F|
dFi j

dFi j

dt
= |F|F−1

ji
dFi j

dt︸︷︷︸
likFk j

= |F|F−1
ji likFk j = |F| Fk jF−1

ji︸ ︷︷ ︸
[F·F−1]ki=δki

lik =

= |F|δki lik = |F| lii = |F| ∂vi

∂xi
= |F|∇ ·v =⇒ d |F|

dt
= |F|∇ ·v , (2.107)

where (2.102) and (2.91) have been considered. Introducing (2.107) into (2.106)
and taking into account (2.55) finally results in

d
dt

(dV ) = (∇ ·v) |F|dV0 = (∇ ·v)dV . (2.108)

Operating in a similar manner yields the material derivative of the area dif-
ferential associated with a certain particle P and a given direction n (see Fig-
ure 2.24). The area differential vector associated with a particle in the reference
configuration, dA(X) = dAN, and in the present configuration, da(x, t) = dan,

are related through da = |F| · dA ·F−1 (see (2.59)) and, differentiating this ex-

27 The derivative of the determinant of a tensor A with respect to the same tensor can be
written in compact notation as d |A|/dA = |A| ·A−T or, in index notation, as d |A|/dAi j =

|A| ·A−1
ji .
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Figure 2.23: Variation of the volume differential.

pression, results in

d
dt

(da) =
d
dt

(|F| ·dA ·F−1
)
=

d |F|
dt︸︷︷︸

|F|∇ ·v

dA ·F−1 + |F| ·dA
d
dt

(
F−1

)
︸ ︷︷ ︸
−F−1 · lll

=

= (∇ ·v) |F|dA ·F−1︸ ︷︷ ︸
da

−|F|dA ·F−1︸ ︷︷ ︸
da

· lll =⇒

d
dt

(da) = (∇ ·v)da−da · lll = da · ((∇ ·v)1− lll) , (2.109)

where (2.103) and (2.107) have been considered.

Figure 2.24: Variation of the area differential.
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2.15 Motion and Strains in Cylindrical and Spherical
Coordinates

The expressions and equations obtained in intrinsic or compact notation are in-
dependent of the coordinate system considered. However, the expressions of the
components depend on the coordinate system used. In addition to the Cartesian
coordinate system, which has been used in the previous sections, two orthogonal
curvilinear coordinate systems will be considered here: cylindrical coordinates
and spherical coordinates.

Remark 2.23. An orthogonal curvilinear coordinate system (gener-
ically referred to as {a,b,c}), is characterized by its physical unit
basis {êa, êb, êc} (‖êa‖= ‖êb‖= ‖êc‖= 1), whose components are
orthogonal to each other (êa · êb = êa · êc = êb · êc = 0), as is also the
case in a Cartesian system. The fundamental difference is that the
orientation of the curvilinear basis changes at each point in space
(êm ≡ êm (x) m ∈ {a,b,c}). Therefore, for the purposes here, an
orthogonal curvilinear coordinate system can be considered as a mo-
bile Cartesian coordinate system {x′,y′,z′} associated with a curvi-
linear basis {êa, êb, êc} (see Figure 2.25).

Remark 2.24. The components, of a certain magnitude of vectorial
character (v) or tensorial character (T) in an orthogonal curvilinear
coordinate system {a,b,c}, can be obtained as the corresponding
components in the local Cartesian system {x′,y′,z′}:

v not≡

⎡
⎢⎣va

vb

vc

⎤
⎥⎦≡

⎡
⎢⎣vx′

vy′

vz′

⎤
⎥⎦ T not≡

⎡
⎢⎣Taa Tab Tac

Tba Tbb Tbc

Tca Tcb Tcc

⎤
⎥⎦≡

⎡
⎢⎣Tx′x′ Tx′y′ Tx′z′

Ty′x′ Ty′y′ Ty′z′

Tz′x′ Tz′y′ Tz′z′

⎤
⎥⎦

Remark 2.25. The curvilinear components of the differential opera-
tors (the ∇ operator and its derivatives) are not the same as their
counterparts in the local coordinate system {x′,y′,z′}. They must be
defined specifically for each case. Their value for cylindrical and
spherical coordinates is provided in the corresponding section.
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2.15.1 Cylindrical Coordinates
The position of a certain point in space can be defined by its cylindrical coordi-
nates {r,θ ,z} (see Figure 2.25). The figure also shows the physical orthonormal
basis {êr, êθ , êz}. This basis changes at each point in space according to

∂ êr

∂θ
= êθ and

∂ êθ
∂θ

=−êr . (2.110)

Figure 2.26 shows the corresponding differential element. The expressions in
cylindrical coordinates of some of the elements treated in this chapter are:

• Nabla operator, ∇

∇ =
∂
∂ r

êr +
1

r
∂

∂θ
êθ +

∂
∂ z

êz =⇒ ∇ not≡
[

∂
∂ r

,
1

r
∂

∂θ
,

∂
∂ z

]T

(2.111)

x(r,θ ,z) not≡
⎡
⎣ x = r cosθ

y = r sinθ
z = z

⎤
⎦

Figure 2.25: Cylindrical coordinates.

Figure 2.26: Differential element in cylindrical coordinates.
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• Displacement vector, u, and velocity vector, v

u = urêr +uθ êθ +uzêz =⇒ u not≡ [ur , uθ , uz]
T (2.112)

v = vrêr +vθ êθ +vzêz =⇒ v not≡ [vr , vθ , vz]
T (2.113)

• Infinitesimal strain tensor, εεε

εεε =
1

2

(
(u⊗∇)+(u⊗∇)T

)
not≡

⎡
⎢⎣ εx′x′ εx′y′ εx′z′

εx′y′ εy′y′ εy′z′

εx′z′ εy′z′ εz′z′

⎤
⎥⎦=

⎡
⎢⎣ εrr εrθ εrz

εrθ εθθ εθz

εrz εθz εzz

⎤
⎥⎦

εrr =
∂ur

∂ r
εθθ =

1

r
∂uθ
∂θ

+
ur

r
εzz =

∂uz

∂ z

εrθ =
1

2

(
1

r
∂ur

∂θ
+

∂uθ
∂ r

− uθ
r

)
εrz =

1

2

(
∂ur

∂ z
+

∂uz

∂ r

)

εθz =
1

2

(
∂uθ
∂ z

+
1

r
∂uz

∂θ

)
(2.114)

The components of εεε are presented on the corresponding differential element in
Figure (2.26).

• Strain rate tensor, d

d =
1

2

(
(v⊗∇)+(v⊗∇)T

)
not≡

⎡
⎢⎣dx′x′ dx′y′ dx′z′

dx′y′ dy′y′ dy′z′

dx′z′ dy′z′ dz′z′

⎤
⎥⎦=

⎡
⎢⎣ drr drθ drz

drθ dθθ dθz

drz dθz dzz

⎤
⎥⎦

drr =
∂vr

∂ r
dθθ =

1

r
∂vθ
∂θ

+
vr

r
dzz =

∂vz

∂ z

drθ =
1

2

(
1

r
∂vr

∂θ
+

∂vθ
∂ r

− vθ
r

)
drz =

1

2

(
∂vr

∂ z
+

∂vz

∂ r

)

dθz =
1

2

(
∂vθ
∂ z

+
1

r
∂vz

∂θ

)
(2.115)
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2.15.2 Spherical Coordinates
A point in space is defined by its spherical coordinates {r,θ ,φ}. The physical

orthonormal basis
{

êr, êθ , êφ
}

is presented in Figure 2.27. This basis changes at
each point in space according to

∂ êr

∂θ
= êθ ,

∂ êθ
∂θ

=−êr and
∂ êφ

∂θ
= 0 . (2.116)

The expressions in spherical coordinates of some of the elements treated in this
chapter are:

• Nabla operator, ∇

∇ =
∂
∂ r

êr +
1

r
∂

∂θ
êθ +

1

r sinθ
∂

∂φ
êφ =⇒ ∇ not≡

[
∂
∂ r

,
1

r
∂

∂θ
,

1

r sinθ
∂

∂φ

]T

(2.117)

• Displacement vector, u, and velocity vector, v

u = urêr +uθ êθ +uφ êφ =⇒ u not≡ [ur , uθ , uφ
]T

(2.118)

v = vrêr +vθ êθ +vφ êφ =⇒ v not≡ [vr , vθ , vφ
]T

(2.119)

x(r,θ ,φ) not≡
⎡
⎣ x = r sinθ cosφ

y = r sinθ sinφ
z = z cosθ

⎤
⎦

Figure 2.27: Spherical coordinates.
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• Infinitesimal strain tensor, εεε

εεε =
1

2

(
(u⊗∇)+(u⊗∇)T

)
not≡

⎡
⎢⎣ εx′x′ εx′y′ εx′z′

εx′y′ εy′y′ εy′z′

εx′z′ εy′z′ εz′z′

⎤
⎥⎦=

⎡
⎢⎣ εrr εrθ εrφ

εrθ εθθ εθφ

εrφ εθφ εφφ

⎤
⎥⎦

εrr =
∂ur

∂ r
εθθ =

1

r
∂uθ
∂θ

+
ur

r

εφφ =
1

r sinθ
∂uφ

∂φ
+

uθ
r

cotφ +
ur

r

εrθ =
1

2

(
1

r
∂ur

∂θ
+

∂uθ
∂ r

− uθ
r

)
εrφ =

1

2

(
1

r sinθ
∂ur

∂φ
+

∂uφ

∂ r
− uφ

r

)

εθφ =
1

2

(
1

r sinθ
∂uθ
∂φ

+
1

r
∂uφ

∂θ
− uφ

r
cotφ

)
(2.120)

The components of εεε are presented on the corresponding differential element in
Figure 2.28.

• Strain rate tensor, d

d =
1

2

(
(v⊗∇)+(v⊗∇)T

)
not≡

⎡
⎢⎣dx′x′ dx′y′ dx′z′

dx′y′ dy′y′ dy′z′

dx′z′ dy′z′ dz′z′

⎤
⎥⎦=

⎡
⎢⎣ drr drθ drφ

drθ dθθ dθφ

drφ dθφ dφφ

⎤
⎥⎦

drr =
∂vr

∂ r
dθθ =

1

r
∂vθ
∂θ

+
vr

r

dφφ =
1

r sinθ
∂vφ

∂φ
+

vθ
r

cotφ +
vr

r

drθ =
1

2

(
1

r
∂vr

∂θ
+

∂vθ
∂ r

− vθ
r

)
drφ =

1

2

(
1

r sinθ
∂vr

∂φ
+

∂vφ

∂ r
− vφ

r

)

dθφ =
1

2

(
1

r sinθ
∂vθ
∂φ

+
1

r
∂vφ

∂θ
− vφ

r
cotφ

)
(2.121)
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Figure 2.28: Differential element in spherical coordinates.
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Problems and Exercises 95

PROBLEMS

Problem 2.1 – A deformation that takes place in a continuous medium has the
following consequences on the triangle shown in the figure below:

1. The segment OA increases its initial length in (1+ p).
2. The angle AOB decreases in q radians its initial value.
3. The area increases its initial value in (1+ r).
4. p,q,r,s 1.

The deformation is uniform and the z-axis is one of the principal directions of
the deformation gradient tensor, which is symmetric. In addition, the stretch in
this direction is known to be λz = 1+ s. Obtain the infinitesimal strain tensor.

Solution
A uniform deformation implies that the deformation gradient tensor (F) does
not depend on the spatial variables. Consequently, the strain tensor (E) and the
stretches (λ ) do not depend on them either. Also, note that the problem is to be
solved under infinitesimal strain theory.

The initial and final lengths of a segment parallel to the x-axis are related as
follows.

OA f inal =
∫ A

O
λx dX = λx

∫ A

O
dX = λx OAinitial

OA f inal = (1+ p)OAinitial

⎫⎬
⎭ =⇒ λx = 1+ p
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Also, an initial right angle (the angle between the x- and y-axes) is related to its
corresponding final angle after the deformation through

initial angle =
π
2

final angle =
π
2
+ΔΦxy

⎫⎪⎪⎬
⎪⎪⎭ =⇒ ΔΦxy =−γxy =−2εxy =−q =⇒ εxy =

q
2
.

In addition, F is symmetric and the z-axis is a principal direction, therefore

F not≡

⎡
⎢⎣F11 F12 0

F12 F22 0

0 0 F33

⎤
⎥⎦ not≡ 1+J not≡

⎡
⎢⎢⎢⎢⎢⎢⎣

1+
∂ux

∂x
∂ux

∂y
∂ux

∂ z
∂uy

∂x
1+

∂uy

∂y
∂uy

∂ z
∂uz

∂x
∂uz

∂y
1+

∂uz

∂ z

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

which reveals the nature of the components of the displacement vector,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ux

∂ z
=

∂uy

∂ z
= 0 =⇒

{
ux (x,y) ,

uy (x,y) ,
∂uz

∂x
=

∂uz

∂y
= 0 =⇒ uz (z) .

Then, the following components of the strain tensor can be computed.

εxz =
1

2

(
∂ux

∂ z
+

∂uz

∂x

)
= 0 =⇒ εxz = 0

εxz =
1

2

(
∂ux

∂ z
+

∂uz

∂x

)
= 0 =⇒ εxz = 0

εzz =
∂uz

∂ z
= λz−1

λz = 1+ s

⎫⎬
⎭ =⇒ εzz = s

In infinitesimal strain theory, F = 1+ εεε +ΩΩΩ , where Ω33 = 0 since the infinites-
imal rotation tensor is antisymmetric. Thus, Fzz = 1+ εzz results in Fzz = 1+ s .

Now, the relation between the initial and final areas is dA= |F|dA0 ·F−1 , where
the inverse tensor of F is calculated using the notation

F not≡

⎡
⎢⎣B11 B12 0

B12 B22 0

0 0 1+ s

⎤
⎥⎦ with B−1 not≡

[
C11 C12

C12 C22

]
,
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Problems and Exercises 97

which yields the inverse tensor of F,

F−1 not≡

⎡
⎢⎢⎣

C11 C12 0

C12 C22 0

0 0
1

1+ s

⎤
⎥⎥⎦ .

The area differential vector is defined as

dA0
not≡

⎡
⎢⎣ 0

0

dA0

⎤
⎥⎦ =⇒ dA0 ·F−1 not≡

⎡
⎢⎢⎣

0

0
1

1+ s
dA0

⎤
⎥⎥⎦ .

Then, taking into account that |F| = Tr(εεε) + 1, and neglecting second-order
terms results in

dA = (1+ r)dA0

dA = (1+ p+ s+ εyy)
1

1+ s
dA0

⎫⎬
⎭ =⇒ εyy = r− p .

Finally, since the strain tensor is symmetric,

εεε not≡

⎡
⎢⎢⎢⎢⎣

p
q
2

0

q
2

r− p 0

0 0 s

⎤
⎥⎥⎥⎥⎦ .

Problem 2.2 – A uniform deformation (F = F(t)) is produced on the tetrahe-
dron shown in the figure below, with the following consequences:

1. Points O, A and B do not move.
2. The volume of the solid becomes p times

its initial volume.
3. The length of segment AC becomes p/

√
2

times its initial length.
4. The final angle AOC has a value of 45◦.
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Then,

a) Justify why the infinitesimal strain theory cannot be used here.
b) Determine the deformation gradient tensor, the possible values of p and the

displacement field in its material and spatial forms.
c) Draw the deformed solid.

Solution
a) The angle AOC changes from 90◦ to 45◦ therefore, it is obvious that the
deformation involved is not infinitesimal. In addition, under infinitesimal strain
theory ΔΦ  1 is satisfied and, in this problem, ΔΦ = π/4≈ 0.7854.

Observation: strains are dimensionless; in engineering, small strains are usually

considered when these are of order 10−3−10−4.

b) The conditions in the statement of the problem must be imposed one by one:

1. Considering that F(X, t) = F(t) and knowing that dx = F ·dX, the latter
can be integrated as

x =
∫

dx =
∫

FdX = F
∫

dX = F(t) ·X+C(t)

with F not≡

⎡
⎢⎣F11 F12 F13

F21 F22 F23

F31 F32 F33

⎤
⎥⎦ and C not≡

⎡
⎢⎣C1

C2

C3

⎤
⎥⎦ ,

which results in 12 unknowns. Imposing now the conditions in the statement,

Point O does not move:⎡
⎢⎣0

0

0

⎤
⎥⎦= [F]

⎡
⎢⎣0

0

0

⎤
⎥⎦+C =⇒ C not≡

⎡
⎢⎣0

0

0

⎤
⎥⎦

Point A does not move:⎡
⎢⎣a

0

0

⎤
⎥⎦= [F]

⎡
⎢⎣a

0

0

⎤
⎥⎦=

⎡
⎢⎣aF11

aF21

aF31

⎤
⎥⎦ =⇒

⎧⎪⎨
⎪⎩

F11 = 1

F21 = 0

F31 = 0
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Point B does not move:⎡
⎢⎣0

a

0

⎤
⎥⎦= [F]

⎡
⎢⎣0

a

0

⎤
⎥⎦=

⎡
⎢⎣aF12

aF22

aF32

⎤
⎥⎦ =⇒

⎧⎪⎨
⎪⎩

F12 = 0

F22 = 1

F32 = 0

Grouping all the information obtained results in

F not≡

⎡
⎢⎣1 0 F13

0 1 F23

0 0 F33

⎤
⎥⎦ .

2. The condition in the statement imposes that Vf inal = pVinitial .

Expression dVf = |F| dV0 allows to locally relate the differential volumes at
different instants of time. In this case, F is constant for each fixed t, thus, the
expression can be integrated and the determinant of F can be moved outside the
integral,

Vf =
∫

V
dVf =

∫
V0

|F| dV0 = |F|
∫

V0

dV0 = |F|V0 .

Therefore, |F|= F33 = p must be imposed.

3. The condition in the statement imposes that lAC, f inal =
p√
2
lAC, initial .

Since F is constant, the transformation is linear, that is, it transforms straight
lines into straight lines. Hence, AC in the deformed configuration must also be a
rectilinear segment. Then,

xC = F ·XC
not≡

⎡
⎢⎣1 0 F13

0 1 F23

0 0 F33

⎤
⎥⎦
⎡
⎢⎣0

0

a

⎤
⎥⎦=

⎡
⎢⎣aF13

aF23

a p

⎤
⎥⎦ and

lAC, f inal = lA′C′ =
∣∣ [aF13, aF23, ap]− [a, 0, 0]

∣∣= ∣∣ [a(F13−1) , aF23, ap]
∣∣=

=

√
(a(F13−1))2 +(aF23)

2 +(ap)2 = a
√
(F13−1)2 +F2

23 + p2 =

=
p√
2

lAC =
p√
2

√
2a = pa .

Therefore,√
(F13−1)2 +F2

23 + p2 = p ⇒ (F13−1)2 +F2
23 = 0 ⇒ F13 = 1; F23 = 0
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and the deformation gradient tensor results in

F not≡

⎡
⎢⎣1 0 1

0 1 0

0 0 p

⎤
⎥⎦ ,

such that only the value of p remains to be found.

4. The condition in the statement imposes that AOC f inal = 45◦ = π/4.

Considering dX(1) not≡ [1, 0, 0] and dX(2) not≡ [0, 0, 1], the corresponding vectors
in the spatial configuration are computed as

dx(1) = F ·dX(1) not≡

⎡
⎢⎣1 0 1

0 1 0

0 0 p

⎤
⎥⎦
⎡
⎢⎣1

0

0

⎤
⎥⎦=

⎡
⎢⎣1

0

0

⎤
⎥⎦ ,

dx(2) = F ·dX(2) not≡

⎡
⎢⎣1 0 1

0 1 0

0 0 p

⎤
⎥⎦
⎡
⎢⎣0

0

1

⎤
⎥⎦=

⎡
⎢⎣ 1

0

p

⎤
⎥⎦ .

Then,

cos
(
AOC f inal

)
= cos45◦ =

dx(1) ·dx(2)∣∣dx(1)
∣∣ ∣∣dx(2)

∣∣ =
√

2

2

is imposed, with∣∣∣dx(1)
∣∣∣= 1 ,

∣∣∣dx(2)
∣∣∣=√1+ p2 and dx(1) ·dx(2) = 1

such that
1√

1+ p2
=

√
2

2
=

1√
2

=⇒ p =±1 .

But |F|= p> 0, and, consequently, p= 1. Then, the deformation gradient tensor
is

F not≡

⎡
⎢⎣1 0 1

0 1 0

0 0 1

⎤
⎥⎦ .
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The equation of motion is determined by means of x = F ·X,⎡
⎢⎣ x

y

z

⎤
⎥⎦=

⎡
⎢⎣1 0 1

0 1 0

0 0 1

⎤
⎥⎦
⎡
⎢⎣X

Y

Z

⎤
⎥⎦=

⎡
⎢⎣X +Z

Y

Z

⎤
⎥⎦ ,

which allows determining the displacement field in material and spatial descrip-
tions as

U(X, t) = x−X not≡

⎡
⎢⎣Z

0

0

⎤
⎥⎦ and u(x, t) not≡

⎡
⎢⎣ z

0

0

⎤
⎥⎦ .

c) The graphical representation of the deformed tetrahedron is:

Problem 2.3 – A uniform deformation is applied on the solid shown in the
figure below. Determine:

a) The general expression of the material description of the displacement field
U(X, t) in terms of the material displacement gradient tensor J.

b) The expression of U(X, t) when, in addition, the following boundary condi-
tions are satisfied:

UY =UZ = 0 , ∀ X , Y, Z

UX
∣∣
X=0

= 0 , ∀ X , Y

UX
∣∣
X=L = δ
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c) The possible values (positive and negative) that δ may take. Justify the an-
swer obtained.

d) The material and spatial strain tensors and the infinitesimal strain tensor.

e) Plot the curves EXX − δ/L, exx− δ/L and εx− δ/L for all possible values
of δ , indicating every significant value.

Solution
a) A uniform deformation implies that F(X, t) = F(t) , ∀t,X. The deformation
gradient tensor is related to the material displacement gradient tensor through
the expression F = 1+ J. Therefore, if F = F(t), then J = J(t). Taking into
account the definition of J and integrating its expression results in

J =
∂U(X, t)

∂X
=⇒ dU = JdX =⇒

∫
dU =

∫
JdX

=⇒
∫

dU = J
∫

dX =⇒ U = J ·X+C(t) .

where C(t) is an integration constant. Then, the general expression of the mate-
rial description of the displacement field is

U(X, t) = J(t) ·X+C(t) .

b) Using the previous result and applying the boundary conditions given in the
statement of the problem will yield the values of J and C.
Boundary conditions:

UY =UZ = 0 , ∀ X , Y, Z ⇒ Points only move in the X-direction.

UX
∣∣
X=0

= 0 , ∀ Y, Z ⇒ The YZ plane at the origin is fixed.

UX
∣∣
X=L = δ , ∀ Y, Z ⇒ This plane moves in a uniform manner

in the X-direction.
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If the result obtained in a) is written in component form, the equations and con-
clusions that can be reached will be understood better.

UX = J11 X + J12Y + J13 Z +C1

UY = J21 X + J22Y + J23 Z +C2

UZ = J31 X + J32Y + J33 Z +C3

From the first boundary condition:

UY = 0 , ∀ X , Y, Z =⇒ J21 = J22 = J23 =C2 = 0

UZ = 0 , ∀ X , Y, Z =⇒ J31 = J32 = J33 =C3 = 0

From the second boundary condition:

UX
∣∣
X=0

= 0 , ∀ Y, Z =⇒ J12 = J13 =C1 = 0

From the third boundary condition:

UX
∣∣
X=L = δ , ∀ Y, Z =⇒ J11 L = δ ⇒ J11 =

δ
L

Finally,

J not≡

⎡
⎢⎢⎣

δ
L

0 0

0 0 0

0 0 0

⎤
⎥⎥⎦ ; C not≡

⎡
⎢⎣0

0

0

⎤
⎥⎦ =⇒ U(X) = J ·X+C not≡

⎡
⎢⎢⎢⎣

δ
L

X

0

0

⎤
⎥⎥⎥⎦ .

c) In order to justify all the possible positive and negative values that δ may
take, the condition |F| > 0 must be imposed. Therefore, the determinant of F
must be computed,

F = 1+J not≡

⎡
⎢⎢⎣

1+
δ
L

0 0

0 1 0

0 0 1

⎤
⎥⎥⎦ =⇒ |F|= 1+

δ
L
> 0 =⇒ δ >−L .

d) To obtain the spatial and material strain tensors as well as the infinitesimal
strain tensor, their respective definitions must be taken into account.

Spatial strain tensor: e =
1

2

(
1−F−T ·F−1

)
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Material strain tensor: E =
1

2

(
FT ·F−1

)
Infinitesimal strain tensor: εεε =

1

2

(
JT ·J)

Applying these definitions using the values of F and J calculated in b) and c),
the corresponding expressions are obtained.

e not≡

⎡
⎢⎣ exx 0 0

0 0 0

0 0 0

⎤
⎥⎦ with exx =

(
δ
L
+

1

2

δ 2

L2

)/(
1+

δ
L

)2

E not≡

⎡
⎢⎢⎣

EXX 0 0

0 0 0

0 0 0

⎤
⎥⎥⎦ with EXX =

δ
L
+

1

2

δ 2

L2
; εεε not≡

⎡
⎢⎢⎢⎣

δ
L

0 0

0 0 0

0 0 0

⎤
⎥⎥⎥⎦

e) Plotting the curves EXX −δ/L , exx−δ/L and εx−δ/L together yields:

Here,
• EXX is a second-order

parabola that contains the
origin and has its mini-
mum at δ/L = −1, i.e., for
EXX =−1/2.

• εx is the identity straight line
(45◦ slope and contains the
origin).

• exx has two asymptotes, a
vertical one at δ/L=−1 and
a horizontal at exx = 1/2.

It can be concluded, then, that for small δ/L strains the three functions have a
very similar behavior and the same slope at the origin. That is, the same result
will be obtained with any of the definitions of strain tensor. However, outside
this domain (large or finite strains) the three curves are clearly different.

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems

doi:10.13140/RG.2.2.25821.20961



Con
tin

uum
M

ech
an

ics
for

Engin
eer

s

Theo
ry

an
d Pro

blem
s

©
X. O

liv
er

an
d C. A

ge
let

de Sar
ac

ibar

Problems and Exercises 105

EXERCISES

2.1 – Consider the velocity fields

v1
not≡
[

x
1+ t

,
2y

1+ t
,

3z
1+ t

]T

and v2
not≡
[

X
1+ t

,
2Y

1+ t
,

3Z
1+ t

]T

.

Determine:

a) The material description of v1 and the spatial description of v2 (consider
t = 0 is the reference configuration).

b) The density distribution in both cases (consider ρ0 is the initial density).
c) The material and spatial descriptions of the displacement field as well as

the material (Green-Lagrange) and spatial (Almansi) strain tensors for the
velocity field v1.

d) Repeat c) for configurations close to the reference configuration (t → 0).
e) Prove that the two strain tensors coincide for the conditions stated in d).

2.2 – The equation of motion in a continuous medium is

x = X +Yt , y = Y , z = Z .

Obtain the length at time t = 2 of the segment of material line that at time t = 1
is defined in parametric form as

x(α) = 0 , y(α) = α2 , z(α) = α 0≤ α ≤ 1 .

2.3 – Consider the material strain tensor

E not≡

⎡
⎢⎢⎣

0 tetX 0

tetX 0 0

0 0 tetY

⎤
⎥⎥⎦ .

Obtain the length at time t = 1 of the segment that at time t = 0 (reference
configuration) is straight and joins the points (1,1,1) and (2,2,2).

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems
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106 CHAPTER 2. STRAIN

2.4 – The equation of motion of a continuous medium is

x = X , y = Y , z = Z−Xt .

Calculate the angle formed at time t = 0 by the differential segments that at time
t = t are parallel to the x- and z-axes.

2.5 – The following information is known in relation to a certain displacement
field given in material description, U(X ,Y,Z):
1) It is lineal in X, Y , Z.
2) It is antisymmetric with re-
spect to plane Y = 0, that is, the
following is satisfied:

U(X ,Y,Z) =−U(X ,−Y,Z)

∀ X ,Y,Z

3) Under said displacement field,
the volume of the element in the
figure does not change, its an-
gle AOB remains constant, the
segment OB becomes

√
2 times

its initial length and the vertical
component of the displacement at
point B is positive (wB > 0).

Determine:

a) The most general expression of the given displacement field, such that condi-
tions 1) and 2) are satisfied.

b) The expression of U when, in addition, condition 3) is satisfied. Obtain the
deformation gradient tensor and the material strain tensor. Draw the de-
formed shape of the element in the figure, indicating the most significant
values.

c) The directions (defined by their unit vectors T) for which the deformation is
reduced to a stretch (there is no rotation).

NOTE: Finite strains must be considered (not infinitesimal ones).

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems
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2.6 – The solid in the figure undergoes a uniform deformation such that points
A, B and C do not move. Assuming an infinitesimal strain framework,

a) Express the displacement field in terms of “generic” values of the stretches
and rotations.

b) Identify the null components of the strain tensor and express the rotation
vector in terms of the stretches.

In addition, the following is known:
1) Segment AE becomes (1+ p)
times its initial length.
2) The volume becomes (1+q)
times its initial value.
3) The angle θ increases its value
in r (given in radians).
Under these conditions, deter-
mine:

c) The strain tensor, the rotation
vector and the displacement
field in terms of p, q and r.

NOTE: The values of p, q and
r are small and its second-order
infinitesimal terms can be ne-
glected.

2.7 – The solid in the figure undergoes a uniform deformation with the following
consequences:
1) The x- and z-axes are both
material lines. Point A does
not move.
2) The volume of the solid re-
mains constant.
3) The angle θxy remains con-
stant.
4) The angle θyz increases in r
radians.
5) The segment AF becomes
(1+ p) times its initial length.
6) The area of the triangle
ABE becomes (1+q) its ini-
tial value.

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems
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108 CHAPTER 2. STRAIN

Then,

a) Express the displacement field in terms of “generic” values of the stretches
and rotations.

b) Identify the null components of the strain tensor and express the rotation
vector in terms of the stretches.

c) Determine the strain tensor, the rotation vector and the displacement field in
terms of p, q and r.

NOTE: The values of p, q and r are small and its second-order infinitesimal
terms can be neglected.

2.8 – The sphere in the figure undergoes a uniform deformation (F = const.)
such that points A, B and C move to positions A′, B′ and C′, respectively. Point
O does not move. Determine:

a) The deformation gradient tensor in terms of p and q.
b) The equation of the deformed external surface of the sphere. Indicate which

type of surface it is and draw it.
c) The material and spatial strain tensors. Obtain the value of p in terms of q

when the material is assumed to be incompressible.
d) Repeat c) using infinitesimal strain theory. Prove that when p and q are small,

the results of c) and d) coincide.

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems
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Ch.3. Compatibility Equations 

3.1 Compatibility Conditions 
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Introduction 

 Given a displacement field, the corresponding strain field is 
found: 

 

 

 Is the inverse possible? 

( ), tU X

( ), tu x

1 , {1,2,3}
2

ji k k
ij

j i i j

UU U UE i j
X X X X

 ∂∂ ∂ ∂
 = + + ∈
 ∂ ∂ ∂ ∂ 

1 , {1, 2,3}
2

ji
ij

j i

uu i j
x x

ε
 ∂∂
 = + ∈
 ∂ ∂ 

( ), txε ( ), tu x

4 
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Compatibility Conditions 

 Given an (arbitrary) symmetric second order tensor field,          , 
a displacement field,            , fulfilling                           cannot 
always be obtained: 

 For          to match a symmetric strain tensor: 
 It must be integrable.
 There must exist a displacement field from which it comes from.

( ), txε
( ), tu x ( )( , ) ,s t t=u x x∇ ε

1 , {1, 2,3}
2

ji
ij

j i

uu i j
x x

ε
 ∂∂
 = + ∈
 ∂ ∂ 

6 PDEs 
3 unknowns 

OVERDETERMINED 
SYSTEM 

( ), txε

COMPATIBILITY CONDITIONS 
must be satisfied 

REMARK 
Given              , there will always exist an associated 
strain tensor,            , obtainable through 
differentiation, which will automatically satisfy the 
compatibility conditions. 

( ), txε
( ), tu x
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Compatibility Conditions 

 The compatibility conditions are the conditions a symmetric 2nd 
order tensor must satisfy in order to be a strain tensor and, thus, 
exist a displacement field which satisfies: 

 They guarantee the continuity of the continuous medium during the
deformation process.

( )t,XE

Incompatible 
strain field 

1 , {1,2,3}
2

ji
ij

j i

uu i j
x x

ε
 ∂∂
 = + ∈
 ∂ ∂ 
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Ch.3. Compatibility Equations 

3.2 Compatibility Equations of a  
Potential Vector Field 
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Preliminary example: Potential Vector Field 

 A vector field          will be a potential vector field if there 
exists a scalar function            (named potential function) such 
that: 

 Given a continuous scalar function          there will always exist a 
potential vector field          . 

 Is the inverse true?

( ), tv x
( ), tφ x

( ) ( )

( ) ( ) { }

, ,

,
v , 1, 2,3i

i

t t

t
t i

x

= φ

∂φ
= ∈

∂

v x x

x
x

∇

( ), tφ x
( ), tv x

( ), tv x ( ), t∃ φ x such that ( ) ( ), ,t tφ =x v x∇

8 
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Potential Field 

 In component form,

 

 Differentiating once these expressions with respect to    :  

( ), tv x ( ), tφ x such that ( ) ( ), ,t tφ =x v x∇

( ) ( ) ( ) ( ) { }, ,
v , v , 0 1,2,3i i

i i

t t
t t i

x x
∂φ ∂φ

= − = ∈
∂ ∂

x x
x x 3 eqns. 

1 unknown 

OVERDETERMINED 
SYSTEM 

jx

( ) { }
2 ,v , 1, 2,3

x
i

j j i

t
i j

x x x
∂ φ∂

= ∈
∂ ∂ ∂

9 eqns. 
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Schwartz Theorem 

 The Schwartz Theorem about symmetry of second  partial 
derivatives guarantees that, given a continuous function 
                   with continuous derivatives, the following holds 
true: 
( )1 2, ,..., nx x xΦ

2 2

,
i j j i

i j
x x x x
∂ Φ ∂ Φ

= ∀
∂ ∂ ∂ ∂

10 



Compatibility Equations 

 Considering the Schwartz Theorem, 

 In this system of 9 equations, only 6 different 2nd derivatives of the
unknown           appear: 

 They can be eliminated and the following identities are obtained:

2 2 2

2

2 2 2

2

2 2 2

2

v v v

v v v

v v v

x x x

y y y

z z z

x x y x y z x z

x y x y y z y z

x z x y z y z z

φ φ φ

φ φ φ

φ φ φ

∂ ∂ ∂∂ ∂ ∂
= = =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂∂ ∂ ∂

= = =
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂∂ ∂ ∂
= = =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

v vv v v vy yx x z z

y x z x z y
∂ ∂∂ ∂ ∂ ∂

= = =
∂ ∂ ∂ ∂ ∂ ∂

( ), tφ x
2

2

x∂
φ∂

2

2

y∂
φ∂

2

2

z∂
φ∂

yx∂∂
φ∂ 2

zx∂∂
φ∂ 2

zy∂∂
φ∂ 2

,        ,        ,         ,          and 
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Compatibility Equations 

 A scalar function           which satisfies                      will exist if 
the vector field            verifies: 

 

( ), tφ x
( ), tv x

( ) ( ), ,t tφ =x v x∇

y

z

v v 0

v v 0

vv 0

def
x

z

def
x z

y

def
y

x

S
x y

S
z x

S
y z

∂ ∂
− = =

∂ ∂
∂ ∂

− = =
∂ ∂

∂∂
− = =

∂ ∂

1 2 3ˆ ˆ ˆ

v v v

x

y

z
x y z

S
S

x y z
S

 
∂ ∂ ∂ ≡ ≡ ≡ ×  ∂ ∂ ∂ 

 

e e e

S v∇where 

{ }vv 0 , 1,2,3ji

j i

i j
x x

 × =
 ∂∂ − = ∈∂ ∂

v 0∇INTEGRABILITY 
(COMPATIBILITY) 

EQUATIONS     
of a potential 
vector field 

REMARK 
A functional relation can be 
established between these 
three equations.  

( ) 0⋅ × =v∇ ∇
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Ch.3. Compatibility Equations 
 

3.3 Compatibility Conditions for 
Infinitesimal Strains 

13 



Infinitesimal strains case 

 The infinitesimal strain field can be written as: 

1 1
2 2

1
2

yx x x z

xx xy xz
y y z

xy yy yz

xz yz zz

z

uu u u u
x y x z x

u u u
y z y

usymmetrical
z

ε ε ε
ε ε ε
ε ε ε

  ∂  ∂ ∂ ∂ ∂ + +    ∂ ∂ ∂ ∂ ∂   
   

 ∂ ∂  ∂   = = × +       ∂ ∂ ∂    
   ∂

× 
∂  

ε

6 PDEs 
3 unknowns 
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 The infinitesimal strain field can be written as: 

6 PDEs 
3 unknowns 

10 0
2

10 0
2

10 0
2

yx x
xx xy

y x z
yy xz

yz z
zz yz

uu u
x y x

u u u
y z x

uu u
z z y

ε ε

ε ε

ε ε

 ∂∂ ∂
− = − + =  ∂ ∂ ∂ 
∂  ∂ ∂

− = − + = ∂ ∂ ∂ 
 ∂∂ ∂

− = − + =  ∂ ∂ ∂ 

The system will have a solution only if certain 
compatibility conditions are satisfied. 
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Infinitesimal strains case 



Compatibility Conditions 

 The compatibility conditions for the infinitesimal strain field are 
obtained through double differentiation (single differentiation is 
not enough). 

2

2 2 2

2

2 2 2

, , , , ,

1
2

, , , , ,

x
xx

y z
yz

u
x

x y z xy xz yz

u u
z y

x y z xy xz yz

ε

ε

 ∂
∂ − ∂  =

∂ ∂ ∂ ∂ ∂ ∂

  ∂ ∂ ∂ − +   ∂ ∂   =
∂ ∂ ∂ ∂ ∂ ∂

 

 

6 
equations 

6 
equations 

6x6=36 
equations 
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Compatibility Conditions 

 The compatibility conditions for the infinitesimal strain field are 
obtained through: 2 32 3 3

2 3 2 2 2

2 32 3 3

2 2 2 2 3

2 32 3 3

2 2 2 3 2

2 32 3

2

1
2

1
2

1...
2

1
2

yz yxx x z

yz yxx x z

yz yxx x z

yz yxx x

uu u
x x x z x y x

uu u
y x y y z y y

uu u
z x z z z y z

uu
x y x y x y

εε

εε

εε

εε

 ∂ ∂∂ ∂ ∂
 = = +
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 ∂ ∂∂ ∂ ∂
 = = +
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 ∂ ∂∂ ∂ ∂
 = = +
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

∂ ∂∂ ∂
= =

∂ ∂ ∂ ∂ ∂ ∂

3

2

2 32 3 3

2 2

2 32 3 3

2 2

1
2

1
2

z

yz yxx x z

yz yxx x z

u
z x y y x

uu u
x z x z x z z x y x z

uu u
y z x y z y z z y y z

εε

εε

 ∂
 +
 ∂ ∂ ∂ ∂ ∂ 
 ∂ ∂∂ ∂ ∂
 = = +
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 ∂ ∂∂ ∂ ∂
 = = +
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

, ,xx yy zzε ε ε
18 equations for 

, ,xy xz yzε ε ε
18 equations for 
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Compatibility Conditions 

 All the third derivatives of           and       appear in the 
equations: 

 

 

which constitute 30 of the unknowns in the system of 36 equations: 

3

3 2 2 3 2 2 3 2 2

3

3 2 2 3 2 2 3 2 2

3

3 2 2 3 2 2 3 2 2

, , , , , , , , ,

 
, , , , , , , , ,

 
, , , , , , , , ,

x

y

z

u
x x y x z y y x y z z z x z y xyz

u
x x y x z y y x y z z z x z y xyz

u
x x y x z y y x y z z z x z y xyz

∂
=

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂
=

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂
=

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

,x y zu u u

10 derivatives 

10 derivatives 

10 derivatives 

{ }
23

, 0 1,2,...,36iji
n

j k l k l

uf n
x x x x x

ε ∂∂
= ∈  ∂ ∂ ∂ ∂ ∂ 

30 
18 



Compatibility Equations 

 Eliminating the 30 unknowns ,             , 6 equations (involving 
  only strain derivatives) are obtained: 

2 22

2 2

2 22

2 2
2 22

2 2

2

2

2 0

2 0

2 0

0

def
yy yzzz

xx

def
xx xzzz

yy

def
yy xyxx

zz

def
yz xyxzzz

xy

def
yy yz xxz

xz

S
z y y z

S
x z x z

S
y x x y

S
x y z x y z

S
x z y x y

ε εε

ε εε

ε εε

ε εεε

ε ε εε

∂ ∂∂
= + − =

∂ ∂ ∂ ∂
∂ ∂∂

= + − =
∂ ∂ ∂ ∂

∂ ∂∂
= + − =

∂ ∂ ∂ ∂
 ∂ ∂∂∂ ∂

= − + + − =  ∂ ∂ ∂ ∂ ∂ ∂ 
∂ ∂ ∂∂∂

= − + − +
∂ ∂ ∂ ∂ ∂

2

0

0

y

def
yz xyxx xz

yz

z

S
y z x x y z

ε εε ε













 
=   ∂ 

  ∂ ∂∂ ∂∂
= − + − + + =   ∂ ∂ ∂ ∂ ∂ ∂  

3
i

j k l

u
x x x
∂

∂ ∂ ∂

COMPATIBILITY 
EQUATIONS        

for the infinitesimal 
strain tensor 

( )= ∇× ×∇ =S ε 0
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Compatibility Equations 

 The six equations are not functionally  independent. They satisfy 
the equation, 

 In indicial notation:

( )( )∇ ⋅ = ∇ ⋅ ∇× ×∇ =S ε 0

0

0

0

xyxx xz

xy yy yz

yzxz zz

SS S
x y z

S S S
x y z

SS S
x y z

∂∂ ∂
+ + =

∂ ∂ ∂
∂ ∂ ∂

+ + =
∂ ∂ ∂

∂∂ ∂
+ + =

∂ ∂ ∂
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Compatibility Equations 

 The compatibility equations can be expressed in terms of the 
permutation operator,      . 
 
 
 
 

 Or, alternatively:  

 
 

 

 

, 0 , 1, 2,3ml mjq lir ij qrS m lε= = ∈e e  

ijke

{ }, , , , 0 , , , 1, 2,3ij kl kl ij ik jl jl ik i j k lε ε ε ε+ − − = ∈

REMARK 
Any linear strain tensor (1st order polynomial) with respect to 
the spatial variables will be compatible and, thus, integrable.   
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Ch.3. Compatibility Equations 
 

3.4 Integration of the Infinitesimal 
Strain Tensor 

22 



Preliminary Equations 

 Rotation tensor            : 

 Rotation vector           : 

( ),tΩ x

( ),tθ x

1( ) ( )
2

1 , {1,2,3}
2

ji
ij

j i

skew

uu i j
x x

 = ⊗∇ = ⊗∇−∇⊗

  ∂∂Ω = − ∈   ∂ ∂ 

Ω u u u

23 

[ ]
1 23 3 2

2 31 3 1

3 12 2 1

0
1 ( ) 0
2

0

yz

zx

xy

θ θ θ
θ θ θ
θ θ θ

 −Ω −Ω −     
      = ∇× = = −Ω = −Ω Ω = −      
      −Ω −Ω −      

uθ θ
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Preliminary Equations 

 Differentiating            with respect to      : 

 Adding and subtracting the term              : 

kx

1 1
2 2

j ij ji i
ij

j i k k j i

u uu u
x x x x x x

   ∂ ∂Ω ∂∂ ∂∂
Ω = − = −    ∂ ∂ ∂ ∂ ∂ ∂    

21
2

k

i j

u
x x
∂
∂ ∂

2 21 1 1
2 2 2

1 1
2 2

ij ji k k

k k j i i j i j

j jki k k ik

j k i i k j j i

uu u u
x x x x x x x x

uu u u
x x x x x x x x

εε

 ∂Ω ∂∂ ∂ ∂∂
= − + − = 

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  
 ∂ ∂ ∂ ∂ ∂ ∂∂ ∂

= + − + = −    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

( ),txΩ

jkε=
ikε=
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1

1
1

1

yz xyxz

yz yz yy

yz zyzz

x x y z

y y y z

z z y z

εεθ

ε εθθ

εθ ε

∂Ω ∂ ∂∂
= − = − ∂ ∂ ∂ ∂

 ∂Ω ∂ ∂∂∇ = − = − ∂ ∂ ∂ ∂
 ∂Ω ∂∂ ∂

= − = −
∂ ∂ ∂ ∂

Preliminary Equations 

 Using the previous results, the derivative of           is obtained: 

2

2
2

2

zx xx xz

xy yzzx

zx xz zz

x x z x

y y z x

z z z x

ε εθ

ε εθθ

εθ ε

∂Ω ∂ ∂∂ = − = − ∂ ∂ ∂ ∂
∂ ∂∂Ω∂∇ = − = − ∂ ∂ ∂ ∂

 ∂Ω ∂∂ ∂
= − = −

∂ ∂ ∂ ∂

3

3
3

3

xy xy xx

xy yy xy

xy yz xz

x x x y

y y x y

z z x y

εθ ε

ε εθθ

εθ ε

∂Ω ∂∂ ∂
= − = − ∂ ∂ ∂ ∂

 ∂Ω ∂ ∂∂∇ = − = − ∂ ∂ ∂ ∂
 ∂Ω ∂∂ ∂

= − = −
∂ ∂ ∂ ∂

( ),tθ x
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Preliminary Equations 

 Considering the displacement gradient tensor           , 
 

 Introducing the definition of           , the components of            
are rewritten: 

( )

{ }

,

1 1 , 1,2,3
2 2

j ji i i
ij ij ij

j j i j i

t

u uu u uJ i j
x x x x x

ε

∂
= = +

∂
   ∂ ∂∂ ∂ ∂

= = + + − = +Ω ∈      ∂ ∂ ∂ ∂ ∂   

u x
J

x
ε Ω

( ), tJ x

ij= Ω

ijε=

( ),tθ x ( ), tJ x

3 2

3 1

2 1

1 2 3

1:

2 :

3 :

x x x
xx xy xz

y y y
xy yy yz

z z z
xz yz zz

u u u
x y z
u u u
x

j j j

i

i
y z

u u u
x z

i
y

ε ε θ ε θ

ε θ ε ε θ

ε θ ε θ ε

∂ ∂ ∂
= = − = +

∂ ∂ ∂
∂ ∂ ∂

= + = = −
∂ ∂ ∂
∂ ∂ ∂

= − = + =
∂ ∂ ∂

= = =

=

=

=
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Integration of the Strain Field 

 The integration of the strain field            is performed in two 
steps: 
1. Integration of derivative of           using the1st order PDE system 

derived for                            . The solution will be of the type: 

The integration constants         can be obtained knowing the value of 
the rotation vector in some points of the medium (boundary conditions). 

2. Known           and          ,    is integrated using the 1st order PDE 
system derived for          . The solution will be: 

 

The integration constants         can be obtained knowing the value of 
the displacements in some point of space (boundary conditions) 

( ),tε x

( ),tθ x
1 2 3,θ θ θ∇ ∇ ∇and

( ) ( ) { }, , , 1, 2,3i i ix y z t c t iθ θ= + ∈

( )ic t

( ),tε x ( ),tθ x u

( ) ( ) { }, , , 1, 2,3i i iu u x y z t c t i′= + ∈

( )ic t′

REMARK 
If the compati-
bility equations 
are satisfied, 
these equations 
will be integra-
ble. 

⊗u ∇
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 The integration constants that appear imply that an integrable 
strain tensor           will determine the movement in any instant of 
time except for a rotation                and a translation               : 
 
 
 

 A displacement field can be constructed from this uniform rotation 
and translation: 

 
 
 

 This corresponds to a rigid solid movement. 

 
 

 

ˆˆ ˆ( , ) ( ( )) ( )t t tθ∗ = ⋅ +u x x uΩ

Integration of the Strain Field 

( ),tε x
ˆ( ) ( )

not
t t=c θ ˆ( ) ( )

not
t t′ =c u

( ) ( ) ( ) ( )
( ) ( ) ( )

ˆ, ,
,

ˆ, ,

t t t
t

t t t

 = +


= +

x x
x

u x u x u





θ θ θ
ε

* 1 1
2 2

ˆ
ˆ ˆ( ) ( ( ) ) ( )S T T

∗

∗ ∗

 ⊗∇= Ω
∇ = ⊗∇+ ⊗∇ = Ω+Ω =

u
u u u 0
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Ch.3. Compatibility Equations 
 

3.5 Integration of the Deformation 
Rate Tensor 
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Compatibility Equations in a 
Deformation Rate Field 

 There is a correspondence between 

 The concept of compatibility conditions can be extended to 
deformation rate tensor         . 

( )

1
2

1
2

1
2

ji
ij

j i

ji
ij

j i

uu
x x

uu
x x

ε
 ∂∂

= +  ∂ ∂ 
 ∂∂

Ω = −  ∂ ∂ 

= ×

u
u

u

ε

θ ∇

( )

vv1
2

vv1w
2

1
2

ji
ij

j i

ji
ij

j i

d
x x

x x

 ∂∂
= +  ∂ ∂ 

 ∂∂
= −  ∂ ∂ 

= ×

v
d v

vω ∇

( )d v
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Example 

Obtain the velocity field corresponding to the deformation rate tensor: 

such that In point            the following conditions is fulfilled: 

( )
0 0

, 0 0
0 0

ty

ty

tz

te
t te

te

 
 =    
  

d x

( )1, 1, 1

( )
( )1,1,1

2
,

t

t

t

e
t e

e=

 
 

=  
 
 

x
v x ( )

( )1,1,1

0
1, 0
2

t

t
te=

 
 = ∇× =  
 − 

x
ω x v
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Example - Solution 

Consider the correspondence: 

 

 

Take the expressions derived for                             substitute            with     
and           with            : 

 

( )
1
2

= ×

u
u

u

ε

θ ∇

( )
1
2

= ×

v
d v

vω ∇

1 2 3,θ θ θ∇ ∇ ∇and ( ), tθ x ( ), tω x
( ), txε ( ), td x

1

1
1

1

0 0

0 0

0 0

xyxz

yz yy

zyzz

dd
x y z

d d
y y z

dd
z y z

∂ ∂∂ω
= − = − ∂ ∂ ∂

 ∂ ∂∂ω∇ω = − = − ∂ ∂ ∂
 ∂∂ω ∂

= − = −
∂ ∂ ∂

( )
0 0

, 0 0
0 0

ty

ty

tz

te
t te

te

 
 =    
  

d x

( ) ( )1 1t C tω =
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Example - Solution 

2

2
2

2

0 0

0 0

0 0

xx xz

xy yz

xz zz

d d
x z x

d d
y z x

d d
z z x

∂ ∂∂ω = − = − ∂ ∂ ∂
∂ ∂∂ω∇ω = − = − ∂ ∂ ∂

 ∂∂ω ∂
= − = −

∂ ∂ ∂

3

23
3

3

0 0

0  

0 0

xy xx

yy xy ty

yz xz

d d
x x y

d d
t e

y x y
d d

z x y

∂∂ω ∂
= − = − ∂ ∂ ∂
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0 0
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( ) ( )2 2t C tω =
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Example - Solution 

For point            : 

 

 

 

So,  
 

 

 

 

Therefore, for any point,  

( )1 1C tω =

( )2 2C tω =

( )3 3
tyte C tω = − +

( )1, 1, 1

( ){ }
0

1, 0
2

t
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ω x v
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C t

C t
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, 0
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Example - Solution 

Taking the expressions 
 

 

 

 

 

 

The components of the velocities can be obtained:  

3 2

3 1
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Example - Solution 

The components of the velocities can be obtained:  
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Example - Solution 

For point            : 

 

 

 

So,  
 

 

 

 

Therefore, for any point,  
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Chapter 3
Compatibility Equations

3.1 Introduction
Given a sufficiently regular displacement field U(X, t), it is always possible to
find the corresponding strain field (for example, the Green-Lagrange strain field)
by differentiating this strain field with respect to its coordinates (in this case, the
material ones)1,

Ei j =
1

2

(
∂Ui

∂Xj
+

∂Uj

∂Xi
+

∂Uk

∂Xi

∂Uk

∂Xj

)
not
=

1

2

(
Ui, j +Uj,i +Uk,i Uk, j

)
i, j ∈ {1,2,3}.

(3.1)

In the infinitesimal strain case, given a displacement field u(x, t), the strain
field

εi j =
1

2

(
∂ui

∂x j
+

∂u j

∂xi

)
not
=

1

2
(ui, j +u j,i) i, j ∈ {1,2,3} (3.2)

is obtained.
The question can be formulated in reverse, that is, given a strain field εεε (x, t),

is it possible to find a displacement field u(x, t) such that εεε (x, t) is its infinites-
imal strain tensor? This is not always possible and the answer provides the so-
called compatibility equations.

Expression (3.2) constitutes a system of 6 (due to symmetry) partial differen-
tial equations (PDEs) with 3 unknowns: u1 (x, t), u2 (x, t), u3 (x, t). This system
is overdetermined because there exist more conditions than unknowns, and it
may not have a solution.

Therefore, for a second-order symmetric tensor εεε (x, t) to correspond to a
strain tensor (and, thus, be integrable and there exist a displacement field from
which it comes) it is necessary that this tensor verifies certain conditions. These
conditions are denominated compatibility conditions or equations and guarantee

1 Here, the simplified notation ∂Ui/∂Xj
not
=Ui, j is used.
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110 CHAPTER 3. COMPATIBILITY EQUATIONS

Figure 3.1: Non-compatible strain field.

the continuity of the continuous medium during the deformation process (see
Figure 3.1).

Definition 3.1. The compatibility conditions are conditions that a
second-order tensor must satisfy in order to be a strain tensor and,
therefore, for there to exist a displacement field from which it comes.

Remark 3.1. Note that, to define a strain tensor, the 6 components of
a symmetric tensor cannot be written arbitrarily. These must satisfy
the compatibility conditions.

Remark 3.2. Given a displacement field, one can always obtain,
through differentiation, an associated strain field that automatically
satisfies the compatibility conditions. Therefore, in this case, there is
no sense in verifying that the compatibility conditions are satisfied.

3.2 Preliminary Example: Compatibility Equations of a
Potential Vector Field

A given vector field v(x, t) is a potential field if there exists a scalar function
φ (x, t) (named potential function) such that its gradient is v(x, t),⎧⎪⎨

⎪⎩
v(x, t) = ∇φ (x, t) ,

vi (x, t) =
∂φ (x, t)

∂xi
i ∈ {1,2,3} .

(3.3)

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems

doi:10.13140/RG.2.2.25821.20961
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Preliminary Example: Compatibility Equations of a Potential Vector Field 111

Therefore, given a scalar (continuous) function φ (x, t), it is always possible to
define a potential vector field v(x, t) such that the scalar function is its potential,
as defined in (3.3).

Now, the reverse question is posed: given a vector field v(x, t), does there
exist a scalar function φ (x, t) such that ∇φ (x, t) = v(x, t)? This is written in
component form as

vx =
∂φ
∂x

=⇒ vx− ∂φ
∂x

= 0 ,

vy =
∂φ
∂y

=⇒ vy− ∂φ
∂y

= 0 ,

vz =
∂φ
∂ z

=⇒ vz− ∂φ
∂ z

= 0 ,

(3.4)

which corresponds to a system of PDEs with 3 equations and 1 unknown
(φ (x, t)), thus, the system is overdetermined and may not have a solution.

Differentiating once (3.4) with respect to (x,y,z) yields

∂vx

∂x
=

∂ 2φ
∂x2

,
∂vx

∂y
=

∂ 2φ
∂x∂y

,
∂vx

∂ z
=

∂ 2φ
∂x∂ z

,

∂vy

∂x
=

∂ 2φ
∂y∂x

,
∂vy

∂y
=

∂ 2φ
∂y2

,
∂vy

∂ z
=

∂ 2φ
∂y∂ z

,

∂vz

∂x
=

∂ 2φ
∂ z∂x

,
∂vz

∂y
=

∂ 2φ
∂ z∂y

,
∂vz

∂ z
=

∂ 2φ
∂ z2

,

(3.5)

which represents a system of 9 equations. Considering the equality of mixed
partial derivatives, it is observed that 6 different functions (second derivatives)
of the unknown φ are involved in these 9 equations,

∂ 2φ
∂x2

,
∂ 2φ
∂y2

,
∂ 2φ
∂ z2

,
∂ 2φ
∂x∂y

,
∂ 2ϕ
∂x∂ z

and
∂ 2φ
∂y∂ z

. (3.6)

So, they can be removed from the original system (3.5) and 3 relations, named
compatibility conditions, can be established between the first partial derivatives
of the components of v(x, t).

Hence, for there to exist a scalar function φ (x, t) such that ∇φ (x, t) = v(x, t),
the given vector field v(x, t) must satisfy the following compatibility conditions.

∂vy

∂x
− ∂vx

∂y
= 0

de f
= Sz

∂vx

∂ z
− ∂vz

∂x
= 0

de f
= Sy

∂vz

∂y
− ∂vy

∂ z
= 0

de f
= Sx

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

where S not≡

⎡
⎢⎢⎣

Sx

Sy

Sz

⎤
⎥⎥⎦≡

∣∣∣∣∣∣∣∣∣∣∣

ê1 ê2 ê3

∂
∂x

∂
∂y

∂
∂ z

vx vy vz

∣∣∣∣∣∣∣∣∣∣∣
not≡ rot v not

= ∇×v

(3.7)

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems
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112 CHAPTER 3. COMPATIBILITY EQUATIONS

In consequence, from (3.7), the compatibility equations can be written as

Compatibility equations
of a potential vector field

⎧⎨
⎩

∇×v = 0
∂vi

∂x j
− ∂v j

∂xi
= 0 i, j ∈ {1,2,3} (3.8)

Remark 3.3. The 3 compatibility equations (3.7) or (3.8) are not in-
dependent of one another and a functional relation can be established
between them. Indeed, applying the condition that the divergence of
the rotational of a vector field is null2, ∇ · (∇×v) = 0 .

3.3 Compatibility Conditions for Infinitesimal Strains
Consider the infinitesimal strain field εεε (x, t) with components

εi j =
1

2

(
∂ui

∂x j
+

∂u j

∂xi

)
not
=

1

2
(ui, j +u j,i) i, j ∈ {1,2,3} , (3.9)

which may be written in matrix form as

[εεε] =

⎡
⎢⎣ εxx εxy εxz

εxy εyy εyz

εxz εyz εzz

⎤
⎥⎦=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂ux

∂x
1

2

(
∂ux

∂y
+

∂uy

∂x

)
1

2

(
∂ux

∂ z
+

∂uz

∂x

)

× ∂uy

∂y
1

2

(
∂uy

∂ z
+

∂uz

∂y

)

(symm) × ∂uz

∂ z

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

(3.10)
Due to the symmetry in (3.10), only 6 different equations are obtained,

εxx− ∂ux

∂x
= 0 , εxy− 1

2

(
∂ux

∂y
+

∂uy

∂x

)
= 0 ,

εyy− ∂uy

∂y
= 0 , εxz− 1

2

(
∂ux

∂ z
+

∂uz

∂x

)
= 0 ,

εzz− ∂uz

∂ z
= 0 , εyz− 1

2

(
∂uy

∂ z
+

∂uz

∂y

)
= 0 .

(3.11)

2 A theorem of differential geometry states that the divergence of the rotational of any field
is null, ∇ · [∇× (•)] = 0.

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems
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Compatibility Conditions for Infinitesimal Strains 113

Equation (3.11) is a system of 6 PDEs with 3 unknowns, which are the compo-

nents of the displacement vector u(x, t) not≡ [ux, uy, uz]
T . In general, this problem

will not have a solution unless certain compatibility conditions are satisfied. To
obtain these conditions, the equations in (3.11) are differentiated twice with re-
spect to their spatial coordinates,

∂ 2

(
εxx− ∂ux

∂x

)
∂x2, ∂y2, ∂ z2, ∂xy, ∂xz, ∂yz

= 6 equations

...
...

∂ 2

(
εyz− 1

2

(
∂uy

∂ z
+

∂uz

∂y

))
∂x2, ∂y2, ∂ z2, ∂xy, ∂xz, ∂yz

= 6 equations ,

(3.12)

providing a total of 36 equations,

∂ 2εxx

∂x2
=

∂ 3ux

∂x3

∂ 2εyz

∂x2
=

1

2

(
∂ 3uy

∂ z∂x2
+

∂ 3uz

∂y∂x2

)
∂ 2εxx

∂y2
=

∂ 3ux

∂x∂y2

∂ 2εyz

∂y2
=

1

2

(
∂ 3uy

∂ z∂y2
+

∂ 3uz

∂y3

)
∂ 2εxx

∂ z2
=

∂ 3ux

∂x∂ z2
· · · ∂ 2εyz

∂ z2
=

1

2

(
∂ 3uy

∂ z3
+

∂ 3uz

∂y∂ z2

)
∂ 2εxx

∂x∂y
=

∂ 3ux

∂x2∂y
∂ 2εyz

∂x∂y
=

1

2

(
∂ 3uy

∂ z∂x∂y
+

∂ 3uz

∂y2∂x

)
∂ 2εxx

∂x∂ z
=

∂ 3ux

∂x2∂ z
∂ 2εyz

∂x∂ z
=

1

2

(
∂ 3uy

∂ z2∂x
+

∂ 3uz

∂y∂x∂ z

)
∂ 2εxx

∂y∂ z
=

∂ 3ux

∂x∂y∂ z︸ ︷︷ ︸
(18 eqns for εxx, εyy, εzz )

∂ 2εyz

∂y∂ z
=

1

2

(
∂ 3uy

∂ z2∂y
+

∂ 3uz

∂y2∂ z

)
︸ ︷︷ ︸

(18 eqns for εxy, εxz, εyz)

(3.13)

All the possible third derivatives of each component of the displacements ux, uy
and uz are involved in these 36 equations. Thus, there are 30 different derivatives,

∂ 3ux

∂x3, ∂x2y, ∂x2z, ∂y3, ∂y2x, ∂y2z, ∂ z3, ∂ z2x, ∂ z2y, ∂xyz
= 10 derivatives ,

∂ 3uy

∂x3, ∂x2y, ∂x2z, ∂y3, ∂y2x, ∂y2z, ∂ z3, ∂ z2x, ∂ z2y, ∂xyz
= 10 derivatives ,

∂ 3uz

∂x3, ∂x2y, ∂x2z, ∂y3, ∂y2x, ∂y2z, ∂ z3, ∂ z2x, ∂ z2y, ∂xyz
= 10 derivatives ,

(3.14)
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114 CHAPTER 3. COMPATIBILITY EQUATIONS

which constitute the 30 unknowns in the system of 36 equations

fn

(
∂ 3ui

∂x j∂xk∂xl︸ ︷︷ ︸
30

,
∂ 2εi j

∂xk∂xl

)
n ∈ {1,2 ... 36} (3.15)

defined in (3.13). Therefore, the 30 unknowns, which are the displacement
derivatives ∂ 3ui/(∂x j∂xk∂xl), can be eliminated from this system and 6 equa-
tions are obtained. In these equations, the third derivatives mentioned above
do not appear, but there will be 21 second derivatives of the strain tensor
∂ 2εi j/(∂xk∂xl). After the corresponding algebraic operations, the resulting equa-
tions are

Compatibility
equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sxx
de f
=

∂ 2εyy

∂ z2
+

∂ 2εzz

∂y2
−2

∂ 2εyz

∂y∂ z
= 0

Syy
de f
=

∂ 2εzz

∂x2
+

∂ 2εxx

∂ z2
−2

∂ 2εxz

∂x∂ z
= 0

Szz
de f
=

∂ 2εxx

∂y2
+

∂ 2εyy

∂x2
−2

∂ 2εxy

∂x∂y
= 0

Sxy
de f
= −∂ 2εzz

∂x∂y
+

∂
∂ z

(
∂εyz

∂x
+

∂εxz

∂y
− ∂εxy

∂ z

)
= 0

Sxz
de f
= −∂ 2εyy

∂x∂ z
+

∂
∂y

(
∂εyz

∂x
− ∂εxz

∂y
+

∂εxy

∂ z

)
= 0

Syz
de f
= −∂ 2εxx

∂y∂ z
+

∂
∂x

(
−∂εyz

∂x
+

∂εxz

∂y
+

∂εxy

∂ z

)
= 0

(3.16)

which constitute the compatibility equations for the infinitesimal strain tensor εεε .
The compact expression corresponding to the 6 equations in (3.16) is

Compatibility equations
for the infinitesimal

strain tensor

{
S = ∇× (εεε×∇) = 0 (3.17)

Another way of expressing the compatibility conditions (3.16) is in terms of
the three-index operator named permutation operator

(
ei jk

)
. In this case, the

compatibility equations can be written as

Smn = em jqenirεi j,qr = 0 . (3.18)
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Compatibility Conditions for Infinitesimal Strains 115

Remark 3.4. The 6 equations (3.16) are not functionally independent
and, taking again into account the fact that the divergence of the rota-
tional of a field is intrinsically null, the following functional relations
can be established between them.

∇ ·S = ∇ · (∇× (εεε×∇)) = 0 =⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Sxx

∂x
+

∂Sxy

∂y
+

∂Sxz

∂ z
= 0

∂Sxy

∂x
+

∂Syy

∂y
+

∂Syz

∂ z
= 0

∂Sxz

∂x
+

∂Syz

∂y
+

∂Szz

∂ z
= 0

Remark 3.5. The three-index operator denominated permutation op-
erator is given by

ei jk =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 → if an index is repeated,
i = j or i = k or j = k

1 → positive (clockwise) direction of the indexes,
i, j,k ∈ {123,231,312}

−1 → negative (counterclockwise) direction of the indexes,
i, j,k ∈ {132,321,213}

This definition is summarized in graphic form in Figure 3.2.

Figure 3.2: Definition of the permutation operator, ei jk.
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116 CHAPTER 3. COMPATIBILITY EQUATIONS

Finally, another possible expression of the compatibility conditions is

εi j,kl + εkl,i j− εik, jl− ε jl,ik = 0 i, j,k, l ∈ {1,2,3} . (3.19)

Remark 3.6. Since the compatibility equations (3.16) only involve
the second spatial derivatives of the components of the strain ten-
sor εεε (x, t), every strain tensor that is linear (first-order polynomial)
with respect to the spatial variables will be compatible and, there-
fore, integrable. As a particular case, every uniform strain tensor
εεε (t) is integrable.

3.4 Integration of the Infinitesimal Strain Field
3.4.1 Preliminary Equations
Consider the rotation tensor ΩΩΩ(x, t) for the infinitesimal strain case (see Chap-
ter 2 , Section 2.11.6),⎧⎪⎨

⎪⎩
ΩΩΩ =

1

2
(u⊗∇−∇⊗u) ,

Ωi j =
1

2

(
∂ui

∂x j
− ∂u j

∂xi

)
i, j ∈ {1,2,3} .

(3.20)

and the infinitesimal rotation vector θθθ (x, t), associated with said rotation tensor,

defined as3

θθθ =
1

2
rot u =

1

2
∇×u not≡

⎡
⎢⎣θ1

θ2

θ3

⎤
⎥⎦=

⎡
⎢⎣−Ω23

−Ω31

−Ω12

⎤
⎥⎦=

⎡
⎢⎣−Ωyz

−Ωzx

−Ωxy

⎤
⎥⎦ . (3.21)

Differentiating the infinitesimal rotation tensor in (3.20) with respect to a
coordinate xk yields

Ωi j =
1

2

(
∂ui

∂x j
− ∂u j

∂xi

)
=⇒ ∂Ωi j

∂xk
=

1

2

∂
∂xk

(
∂ui

∂x j
− ∂u j

∂xi

)
. (3.22)

3 The tensor ΩΩΩ is skew-symmetric, i.e., ΩΩΩ not≡

⎡
⎢⎣ 0 Ω12 −Ω31

−Ω12 0 Ω23

Ω31 −Ω23 0

⎤
⎥⎦.
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Integration of the Infinitesimal Strain Field 117

Adding and subtracting in (3.22) the term ∂ 2uk/(2∂xi∂x j) and rearranging the
expression obtained results in

∂Ωi j

∂xk
=

1

2

∂
∂xk

(
∂ui

∂x j
− ∂u j

∂xi

)
+

1

2

∂ 2uk

∂xi∂x j
− 1

2

∂ 2uk

∂xi∂x j
=

=
∂

∂x j

1

2

(
∂ui

∂xk
+

∂uk

∂xi

)
︸ ︷︷ ︸

εik

− ∂
∂xi

1

2

(
∂u j

∂xk
+

∂uk

∂x j

)
︸ ︷︷ ︸

ε jk

=
∂εik

∂x j
− ∂ε jk

∂xi
.

(3.23)

This expression can now be used to calculate the Cartesian derivatives of the
components of the infinitesimal rotation vector, θθθ (x, t), given in (3.21), as fol-
lows.

∇θ1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂θ1

∂x
=−∂Ωyz

∂x
=

∂εxz

∂y
− ∂εxy

∂ z

∂θ1

∂y
=−∂Ωyz

∂y
=

∂εyz

∂y
− ∂εyy

∂ z

∂θ1

∂ z
=−∂Ωyz

∂ z
=

∂εzz

∂y
− ∂εzy

∂ z

(3.24)

∇θ2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂θ2

∂x
=−∂Ωzx

∂x
=

∂εxx

∂ z
− ∂εxz

∂x

∂θ2

∂y
=−∂Ωzx

∂y
=

∂εxy

∂ z
− ∂εyz

∂x

∂θ2

∂ z
=−∂Ωzx

∂ z
=

∂εxz

∂ z
− ∂εzz

∂x

(3.25)

∇θ3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂θ3

∂x
=−∂Ωxy

∂x
=

∂εxy

∂x
− ∂εxx

∂y

∂θ3

∂y
=−∂Ωxy

∂y
=

∂εyy

∂x
− ∂εxy

∂y

∂θ3

∂ z
=−∂Ωxy

∂ z
=

∂εyz

∂x
− ∂εxz

∂y

(3.26)

Assume the value of the infinitesimal rotation vector θθθ (x, t) is known and,
through it by means of (3.21), the value of the infinitesimal rotation tensor
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118 CHAPTER 3. COMPATIBILITY EQUATIONS

ΩΩΩ(x, t) is also known. Then, the displacement gradient tensor J(x, t) (see Chap-
ter 2, Section 2.11.6) becomes⎧⎪⎪⎪⎨

⎪⎪⎪⎩
J =

∂u(x, t)
∂x

= εεε +ΩΩΩ

Ji j =
∂ui

∂x j
=

1

2

(
∂ui

∂x j
+

∂u j

∂xi

)
︸ ︷︷ ︸

εi j

+
1

2

(
∂ui

∂x j
− ∂u j

∂xi

)
︸ ︷︷ ︸

Ωi j

= εi j +Ωi j

i, j ∈ {1,2,3} .

(3.27)
Finally, writing in explicit form the different components in (3.27) and taking
into account (3.21), the following is obtained4.

j = 1 j = 2 j = 3

i = 1 :
∂ux

∂x
= εxx

∂ux

∂y
= εxy−θ3

∂ux

∂ z
= εxz +θ2

i = 2 :
∂uy

∂x
= εxy +θ3

∂uy

∂y
= εyy

∂uy

∂ z
= εyz−θ1

i = 3 :
∂uz

∂x
= εxz−θ2

∂uz

∂y
= εyz +θ1

∂uz

∂ z
= εzz

(3.28)

3.4.2 Integration of the Strain Field
Consider εεε (x, t) is the infinitesimal strain field one wants to integrate. This op-
eration is performed in two steps:

1) Using (3.24) through (3.26), the infinitesimal rotation vector θθθ (x, t) is in-
tegrated. The integration, with respect to space, of the infinitesimal rotation
vector in (3.24) through (3.26) leads to a solution of the type

θi = θ̃i (x,y,z, t)+ ci (t) i ∈ {1,2,3} , (3.29)

where the integration constants ci (t), which, in general, may be a function
of time, can be determined if the value (or the evolution along time) of the
infinitesimal rotation vector at some point of the medium is known.

2) Once the infinitesimal strain tensor εεε (x, t) and the infinitesimal rotation
vector θθθ (x, t) are known, the displacement field u(x, t) is integrated. The
system of first-order PDEs defined in (3.28) is used, resulting in

ui = ũi (x,y,z, t)+ c′i (t) i ∈ {1,2,3} . (3.30)

4 According to (3.21), ΩΩΩ not≡
⎡
⎣ 0 Ω12 −Ω31

−Ω12 0 Ω23

Ω31 −Ω23 0

⎤
⎦=

⎡
⎣ 0 −θ3 θ2

θ3 0 −θ1

−θ2 θ1 0

⎤
⎦.
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Integration of the Infinitesimal Strain Field 119

Again, the integration constants c′i (t) that appear, which, in general, will be
a function of time, are determined when the value (or the evolution along
time) of the displacements at some point of space is known.

Remark 3.7. The integration processes in steps 1) and 2) involve in-
tegrating systems of first-order PDEs. If the compatibility equations
in (3.16) are satisfied, these systems will be integrable (without lead-
ing to contradictions in their integration process) and will finally al-
low obtaining the displacement field.

Remark 3.8. The presence of the integration constants in (3.29) and
(3.30) shows that an integrable strain tensor, εεε (x, t), determines the
motion of each instant of time except for a rotation c(t)not

= θ̂θθ (t) and
a translation c′ (t) not

= û(t).

εεε (x, t)
{

θθθ (x, t) = θ̃θθ (x, t)+ θ̂θθ (t)
u(x, t) = ũ(x, t)+ û(t)

From these uniform rotation θ̂θθ (t) and translation û(t) the displace-
ment field

u∗ (x, t) = Ω̂ΩΩ(t)x+ û(t) =⇒ u∗ ⊗∇ = Ω̂ΩΩ

can be defined, which corresponds to a rigid body motion5. Indeed,
the strain associated with this displacement is null,

εεε∗ (x, t) = ∇su∗ =
1

2
(u∗ ⊗∇+∇⊗u∗) =

1

2

(
Ω̂ΩΩ+ Ω̂ΩΩT︸︷︷︸

−Ω̂ΩΩ

)
= 0 ,

as corresponds to the concept of rigid body (without deformation).
Consequently, it is concluded that every compatible strain field de-
termines the displacements of the continuous medium except for a
rigid body motion, which must be determined by means of the ap-
propriate boundary conditions.

5 The rigid body rotation tensor Ω̂ΩΩ(t) (antisymmetric) is defined based on the rotation vector

θ̂θθ (t) as Ω̂ΩΩ not≡
⎡
⎣ 0 Ω̂12 −Ω̂31

−Ω̂12 0 Ω̂23

Ω̂31 −Ω̂23 0

⎤
⎦=

⎡
⎣ 0 −θ̂3 θ2

θ3 0 −θ1

−θ2 θ1 0

⎤
⎦ .
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120 CHAPTER 3. COMPATIBILITY EQUATIONS

Example 3.1 – A certain motion is defined by the infinitesimal strain tensor

εεε (x, t) not≡

⎡
⎢⎢⎢⎢⎣

8x − y
2

3

2
x2z

− y
2

x 0

3

2
x2z 0 x3

⎤
⎥⎥⎥⎥⎦ .

Obtain the corresponding displacement vector u(x, t) and the infinitesimal
rotation tensor ΩΩΩ(x, t) taking into account that u(x, t)|x=[0,0,0]T

not≡ [3t, 0, 0]T

and ΩΩΩ(x, t)|x=[0,0,0]T = 0.

Solution

Infinitesimal rotation vector

Posing the systems of equations defined in (3.24) through (3.26) results in

∂θ1

∂x
= 0 ;

∂θ1

∂y
= 0 ;

∂θ1

∂ z
= 0 ⇒ θ1 =C1 (t) ,

∂θ2

∂x
=−3xz ;

∂θ2

∂y
= 0 ;

∂θ2

∂ z
=−3

2
x2 ⇒ θ2 =−3

2
x2z+C2 (t) ,

∂θ3

∂x
= 0 ;

∂θ3

∂y
=

3

2
;

∂θ3

∂ z
= 0 ⇒ θ3 =

3

2
y+C3 (t) .

The integration constants Ci (t) are determined by imposing that
ΩΩΩ(x, t)|x=(0,0,0)T = 0 (and, therefore, the infinitesimal rotation vector

θθθ (x, t)|x=(0,0,0)T = 0), that is,

C1 (t) =C2 (t) =C3 (t) = 0 =⇒ θθθ (x) not≡
[

0 , −3

2
x2z ,

3

2
y
]T

and the infinitesimal rotation tensor is

ΩΩΩ(x) not≡

⎡
⎢⎣ 0 −θ3 θ2

θ3 0 −θ1

−θ2 θ1 0

⎤
⎥⎦=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 −3

2
y −3

2
x2z

3

2
y 0 0

3

2
x2z 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.
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Compatibility Equations and Integration of the Strain Rate Field 121

Displacement vector

Posing, and integrating, the systems of equations in (3.28) produces

∂u1

∂x
= 8x ;

∂u1

∂y
=−2y ;

∂u1

∂ z
= 0 ⇒ u1 = 4x2− y2 +C′1 (t) ,

∂u2

∂x
= y ;

∂u2

∂y
= x ;

∂u2

∂ z
= 0 ⇒ u2 = xy+C′2 (t) ,

∂u3

∂x
= 3x2z ;

∂u3

∂y
= 0 ;

∂u3

∂ z
= x3 ⇒ u3 = x3z+C′3 (t) .

and imposing that u(x, t)|x=(0,0,0)T
not≡ [3t, 0, 0]T yields

C1 (t) = 3t ; C2 (t) =C3 (t) = 0 =⇒ u(x) not≡ [
4x2− y2 +3t , xy , x3z

]T
.

3.5 Compatibility Equations and Integration of the Strain
Rate Field

Given the definitions of the infinitesimal strain tensor εεε , the infinitesimal rotation
tensor ΩΩΩ and the infinitesimal rotation vector θθθ , there exists a clear correspon-
dence between these magnitudes and a) the strain rate tensor d, b) the rotation
rate (or spin) tensor w and c) the spin vector ωωω given in Chapter 2. These corre-
spondences can be established in the following manner:

u

εεε (u)

εi j =
1

2

(
∂ui

∂x j
+

∂u j

∂xi

)

Ωi j =
1

2

(
∂ui

∂x j
− ∂u j

∂xi

)

θθθ =
1

2
∇×u

⇐⇒

v

d(v)

di j =
1

2

(
∂vi

∂x j
+

∂v j

∂xi

)

wi j =
1

2

(
∂vi

∂x j
− ∂v j

∂xi

)

ωωω =
1

2
∇×v

(3.31)

Then, it is obvious that the concept of compatibility of a strain field εεε in-
troduced in Section 3.1 can be extended, by virtue of the correspondence with
(3.31), to the compatibility of a strain rate field d(x, t).
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122 CHAPTER 3. COMPATIBILITY EQUATIONS

To integrate this field, the same procedure as that seen in Section 3.4.2 can be
used, replacing εεε by d, u by v, ΩΩΩ by w and θθθ by ωωω . Certainly, this integration
can only be performed if the compatibility equations in (3.16) are satisfied for
the components of d(x, t).

Remark 3.9. The resulting compatibility equations and the integra-
tion process of the strain rate vector d(x, t) are not, in this case,
restricted to the infinitesimal strain case.
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PROBLEMS

Problem 3.1 – Determine the spatial description of the velocity field that cor-
responds to the strain rate tensor

d(x, t) not≡

⎡
⎢⎢⎣

tetx 0 0

0 0 tey +1

0 tey +1 0

⎤
⎥⎥⎦ .

For x = 0, ωωω0
not≡ [t−1, 0, 0]T and v0

not≡ [t, 0, t]T f or ∀t is satisfied.

Solution

The problem is solved by integrating the corresponding differential equations,
taking into account the existent parallelism between the variables:

u
εεε
θθθ

⎫⎪⎬
⎪⎭ ⇐⇒

⎧⎪⎨
⎪⎩

v
d
ωωω

Angular velocity of the rotation vector

∂ω1

∂x
= 0 ;

∂ω1

∂y
= tey ;

∂ω1

∂ z
= 0 ⇒ ω1 =C1 (t)+ tey ,

∂ω2

∂x
= 0 ;

∂ω2

∂y
= 0 ;

∂ω2

∂ z
= 0 ⇒ ω2 =C2 (t) ,

∂ω3

∂x
= 0 ;

∂ω3

∂y
= 0 ;

∂ω3

∂ z
= 0 ⇒ ω3 =C3 (t) .

The boundary conditions are imposed for x = 0,

ωωω0
not≡

⎡
⎢⎣ t−1

0

0

⎤
⎥⎦=

⎡
⎢⎣ t +C1

C2

C3

⎤
⎥⎦ =⇒

⎧⎪⎨
⎪⎩

C1 =−1

C2 = 0

C3 = 0

,

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems
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124 CHAPTER 3. COMPATIBILITY EQUATIONS

and the final result is

ωωω (x, t) not≡

⎡
⎢⎣ tey−1

0

0

⎤
⎥⎦ .

Velocity vector

∂v1

∂x
= tetx ;

∂v1

∂y
= 0 ;

∂v1

∂ z
= 0 ⇒ v1 = C

′
1 (t)+ etx ,

∂v2

∂x
= 0 ;

∂v2

∂y
= 0 ;

∂v2

∂ z
= 2 ⇒ v2 = C

′
2 (t)+2z ,

∂v3

∂x
= 0 ;

∂v3

∂y
= 2tey ;

∂v3

∂ z
= 0 ⇒ v3 = C

′
3 (t)+2tey .

The boundary conditions are imposed for x = 0,

v0
not≡

⎡
⎢⎣ t

0

t

⎤
⎥⎦=

⎡
⎢⎣ 1+C

′
1

C
′
2

2t +C
′
3

⎤
⎥⎦ =⇒

⎧⎪⎨
⎪⎩

C
′
1 = t−1

C
′
2 = 0

C
′
3 =−t

,

and the spatial description of the velocity field is

v(x) not≡

⎡
⎢⎣ etx + t−1

2z

2tey− t

⎤
⎥⎦ .

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems
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EXERCISES

3.1 – Deduce the displacement field that corresponds to the infinitesimal strain
tensor

εεε (x, t) not≡

⎡
⎢⎢⎣

0 tety 0

tety 0 0

0 0 tetz

⎤
⎥⎥⎦ .

At point (1,1,1) , u not≡ [2et , et , et ]T and θθθ not≡ [0, 0, −tet ]T is verified.

3.2 – Determine the spatial description of the velocity field that corresponds to
the strain rate tensor

d(x, t) not≡

⎡
⎢⎢⎣

0 0 tetz

0 tety 0

tetz 0 0

⎤
⎥⎥⎦ .

The following is known:{
for z = 0 : vx = vz = 0 , ∀t , x,y

for y = 1 : vy = 0 , ∀t , x,z

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems

doi:10.13140/RG.2.2.25821.20961
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Ch.4. Stress 
 

4.1. Forces on a Continuum Body 
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Forces acting on a continuum body: 
 Body forces.  
 Act on the elements of volume or mass inside the body.
 “Action-at-a-distance” force.
 E.g.: gravity, electrostatic forces, magnetic forces

 Surface forces. 
 Contact forces acting on the body at its boundary surface.
 E.g.: contact forces between bodies, applied point or distributed

loads on the surface of a body

Forces Acting on a Continuum Body 

( ),V V
t dVρ= ∫f b x

( ),S V
t dS

∂
= ∫f xt

body force per unit 
mass 

(specific body forces) 

surface force 
per unit surface (traction vector) 

https://youtu.be/Pkg5fAtpQ5s?t=00m00s
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Ch.4. Stress 

4.2. Cauchy’s Postulates 
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1. Cauchy’s 1st postulate.
The traction vector    remains unchanged 
for all surfaces passing through the point  
and having the same normal vector     at    . 

2. Cauchy’s fundamental lemma
      (Cauchy reciprocal theorem) 

The traction vectors  acting at point     
on opposite sides of the same surface 
are equal in magnitude and opposite  
in direction. 

Cauchy’s Postulates 

t

n
P
P

( ),P=t t n

REMARK   
The traction vector (generalized to 
internal points) is not influenced by 
the curvature of the internal surfaces. 

( ) ( ), ,P P= − −t n t n

P

REMARK   
Cauchy’s fundamental lemma is equivalent to 
Newton's 3rd law (action and reaction). 

https://youtu.be/9c9jhomP13A?t=00m00s
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Ch.4. Stress 

4.3. Stress Tensor 
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 The areas of the faces of the tetrahedron 
    are: 

 The “mean” stress vectors acting on these  faces are 

    
   

 The surface normal vectors of the planes perpendicular to the axes are

 Following Cauchy’s fundamental lemma:

Stress Tensor 

1 1

2 2

3 3

S n S
S n S
S n S

=
=
=

( ) ( ) ( )
1 2 3

1 * 2 * 3 ** * * * *
1 2 3

* *

ˆ ˆ ˆ( , ), ( , ), ( , ), ( , )

1, 2,3 ;

t t x n t t x e t t x e t t x e

x x
i

S S S S

S i SS i S

 = − = − − = − − = −


∈ = ∈ → mean value theorem

REMARK   

The asterisk indicates an 
mean value over the area. 

{ }T
1 2 3n , n , n≡nwith 

1 1 2 2 3 3ˆ ˆ ˆ; ;= − = − = −n e n e n e

( ) ( ) ( ) ( ) { }
not

i
i iˆ ˆ, , i 1, 2,3t x e t x e t x− = − =− ∈

https://youtu.be/S-2-rYkEfho?t=00m00s
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 Let                   be a continuous function on the closed interval 
           , and differentiable on the open interval         , where        . 

Then, there exists some     in         such that: 

 I.e.:                     gets its 
“mean value”          at the interior 
 of   

Mean Value Theorem 

[ ]: a, bf → R

[ ]a,b ( )a,b
( )a,b

a b<
*x

( ) ( )* 1 df x f x
Ω

= Ω
Ω ∫

[ ]: a, bf → R

( )*f x
[ ]a,b

https://youtu.be/S-2-rYkEfho?t=02m10s
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 From equilibrium of forces, i.e. Newton’s 2nd law of motion: 
 
 
 

 Considering the mean value theorem, 

 Introducing                         and             , 

Stress Tensor 

( ) ( ) ( )

1 2 3

1 2 3       
V S S S S V

dV dS dS dS dS dVρ ρ+ + − + − + − =∫ ∫ ∫ ∫ ∫ ∫b t t t t a

( ) ( ) ( )1 2 3* * * * * *
1 2 3( ) V S S S S ( ) Vρ ρ+ − − − =b t t t t a

resultant 
body forces 

resultant 
surface forces 

{ }1,2,3i iS n S i= ∈
1
3

V Sh=

( ) ( ) ( )1 2 3* * * * * *
1 2 3

1 1( ) S S S S ( )
3 3

h S n n n hSρ ρ+ − − − =b t t t t a



   i i i
i i V V V V

m dV dS dV dV
dm

ρ ρ ρ
∂

= = + = =∑ ∑ ∫ ∫ ∫ ∫R f a b t a a
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 If the tetrahedron shrinks to point O, 

 
 

 The limit of the expression for the equilibrium of forces becomes, 

Stress Tensor 

( ) ( ), i
iO n− =t n t 0( ) ( ) ( )1 2 3* * * * * *

1 2 3
1 1( ) ( )
3 3

h n n n hρ ρ+ − − − =b t t t t a

* *

h 0 h 0

1 1lim ( ) lim ( )
3 3

  h  hρ ρ
→ →

   = =   
   

b a 0

( ),= t nO

( )1= t ( )2= t ( )3= t

( ) ( ) ( ) ( ) { }

( ) ( )
i i

i i* * *
S S i i

* * *
S S

h 0

h 0

ˆ ˆlim , i 1, 2,3

lim , ,

x x t x e t e

x x t x n t n

O

O

O,

O
→

→

 → = ∈ 
 → = 

https://youtu.be/S-2-rYkEfho?t=14m14s
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P 

 Considering the traction vector’s Cartesian components : 
 
 

 

 In the matrix form: 

( ) ( )

( )


( ) ( )

( )

,

,

,

i
i

i
j j i i ij

ij

P n

P n n

P P

σ
σ

= ⇒

 = =


 = ⋅

t n t

t n t

t n n σ

( ) ( )
( ) ( ) ( )

{ }
( ) ˆ ˆ( )

, 1, 2,3
i i

j j ij j

i
ij j

P t P
i j

P t P

σ

σ

 = = ∈
=

t e e

ˆ ˆσ= ⊗e eij i jσ
Cauchy’s Stress Tensor 

[ ] [ ] [ ]
{1,2,3}

T
j i ij ji i

T

t n n
j

σ σ = =
 ∈


= t nσ

( )1t ( )2t ( )3t

( )1
1t

( )2
1t

( )3
1t

Stress Tensor 

https://youtu.be/AaO37g-0zYo?t=00m00s
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REMARK 2   
The Cauchy stress tensor is constructed from the traction vectors on three 
coordinate planes passing through point P. 

Yet, this tensor contains information on the traction vectors acting on any plane 
(identified by its normal n) which passes through point P. 

Stress Tensor 

REMARK 1 
The expression                         is consistent with Cauchy’s postulates: ( ) ( ),t n n σP P= ⋅

( ),t n n σP = ⋅
( ),t n n σP − = − ⋅

( ) ( ), ,P P= − −t n t n

11 12 13

21 22 23

31 32 33

σ
σ σ σ
σ σ σ
σ σ σ

 
 ≡  
  

https://youtu.be/AaO37g-0zYo?t=06m30s
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Ch.4. Stress 
 

4.4.Stress Tensor Components 
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 Cauchy’s stress tensor in scientific notation 

 Each component      is characterized by its sub-indices: 
 Index i designates the coordinate plane on which the component acts.
 Index j identifies the coordinate direction in which the component acts.

Scientific Notation 

11 12 13

21 22 23

31 32 33

σ σ σ
σ σ σ
σ σ σ

 
 ≡  
  

σ

σ ij

https://youtu.be/WHEmfz8ks4Y?t=00m00s
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 Cauchy’s stress tensor in engineering notation 

 Where: 
     is the normal stress acting on plane a.
      is the tangential (shear) stress acting on the plane perpendicular to

the a-axis in the direction of the b-axis. 

Engineering Notation 

x xy xz

yx y yz

zx zy z

σ τ τ
τ σ τ
τ τ σ

 
 ≡  
  

σ

σ a
τ ab

https://youtu.be/WHEmfz8ks4Y?t=03m45s
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 The stress vector acting on point P of an 
    arbitrary plane may be resolved into: 

 a vector normal to the plane  

 an in-plane (shear) component which acts on the plane.

 The sense of     with respect to     defines the normal stress character: 
 

 The sign criterion for the stress components is: 
 

Tension and compression 

( )n σ= nσ

( ; )n n τ=τ τ

nσ

nσ = ⋅nσ
<0 compressive stress (compression) 
>0 tensile stress (tension) 

ij aσ σor
tensile stress 
compressive stress 

positive (+) 
negative (−) 

τ ab

positive (+) 
negative (−) 

positive direction of the b-axis 
negative direction of the b-axis 

n

https://youtu.be/WHEmfz8ks4Y?t=07m28s
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Ch.4. Stress 

4.5.Properties of the Cauchy Stress 
Tensor  
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 Consider an arbitrary material volume, 
 Cauchy’s equation of motion is:

 
 
 

 In engineering notation:

Cauchy’s Equation of Motion 

{ }

        

1,2,3ij
j j

i

V

b a j
x

ρ ρ
σ

ρ ρ

+ = ∀ ∈
∂ + = ∈ ∂

b a x∇ ⋅ σ

yxx zx
x x

xy y zy
y y

yzxz z
z z

b a
x y z

b a
x y z

b a
x y z

τσ τ ρ ρ

τ σ τ
ρ ρ

ττ σ ρ ρ

∂∂ ∂
+ + + =

∂ ∂ ∂
∂ ∂ ∂

+ + + =
∂ ∂ ∂

∂∂ ∂
+ + + =

∂ ∂ ∂

( )
( )*

, t V

, t V

∈

∈∂

b x x

t x x

REMARK   
Cauchy’s equation of motion is derived 
from the principle of balance of linear 
momentum. 

https://youtu.be/H0AZ81WPLZw?t=00m03s
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 For a body in equilibrium          , 
 Cauchy’s equation of motion becomes 

 
 
 

 The traction vector is now known at 
 the boundary 

 
 

 The stress tensor symmetry is derived from the principle of balance of 
angular momentum: 

Equilibrium Equations 

{ }

   

0 1, 2,3ij
j

i

V

b j
x

ρ
σ

ρ

+ = ∀ ∈
∂ + = ∈ ∂

b 0 x∇ ⋅σ

=a 0

( ) ( ) ( )
{ }
*

*

, , ,
1, 2,3i ij j

t t t V
n t j
 ⋅ = ∀ ∈∂
 σ = ∈

n x x t x xσ equilibrium equation 
at the boundary 

internal equilibrium 
equation 

{ } , 1, 2,3
T

ij ji i jσ σ
 =
 = ∈
σ σ

https://youtu.be/H0AZ81WPLZw?t=02m39s
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 Taking into account the symmetry of the 
    Cauchy Stress Tensor, 
 Cauchy’s equation of motion

 
 
 

 Boundary conditions

Cauchy’s Equation of Motion 

( )
( )*

, t V

, t V

∈

∈∂

b x x

t x x

{ }

      

1, 2,3ij ji
j j j

i i

V

b b a j
x x

ρ ρ ρ
σ σ

ρ ρ ρ

+ = + = ∀ ∈
∂ ∂ + = + = ∈ ∂ ∂

b b a x∇ ⋅ σ σ ⋅∇

( ) { }

*

*

( , )
, , 1, 2,3i ij ji i j

t V
n n t t V i j

 ⋅ = ⋅ = ∀ ∈∂


σ = σ = ∀ ∈∂ ∈

n n t x x
x x

σ σ
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 Regardless of the state of stress, it is always possible to choose a 
special set of axes (principal axes of stress or principal stress 
directions) so that the shear stress components vanish when the 
stress components are referred to this system.  

 The three planes perpendicular to the principal axes are the 
principal planes. 

 The normal stress components in the principal planes are the 
principal stresses.  

Principal Stresses and Principal 
Stress Directions 

[ ]
1

2

3

0 0
0 0
0 0

σ
σ

σ

 
 =  
  

σ
1σ

2σ

3σ

1x
2x

3x

1x
2x

3x

1x′

2x′

3x′

11σ
13σ

12σ
22σ

23σ
21σ

33σ
32σ31σ

https://youtu.be/H0AZ81WPLZw?t=07m24s
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1σ
2σ

3σ

1x
2x

3x

1x
2x

3x

1x′

2x′

3x′

11σ
13σ

12σ
22σ

23σ
21σ

33σ
32σ31σ

 The Cauchy stress tensor is a symmetric 2nd order tensor so it will 
diagonalize in an orthonormal basis and its eigenvalues are 
real numbers.  
 For the eigenvalue     and its corresponding eigenvector    :

Principal Stresses and Principal 
Stress Directions 

λ v
λ⋅ =v vσ [ ]λ− ⋅ =v 0σ 1

[ ]det 0λ λ− = − =σ σ
not

1 1

1 1

2 2

3 3

λ σ
λ σ
λ σ

≡
≡
≡

3 2
1 2 3( ) ( ) ( ) 0I I Iλ λ λ− − − =σ σ σ characteristic

equation 

INVARIANTS 

REMARK   
The invariants associated with a 
tensor are values which do not change 
with the coordinate system being used. 
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 Given the Cauchy stress tensor     and its principal stresses, the 
following is defined: 
 Mean stress

 Mean pressure

 A spherical or hydrostatic
state of stress:

Mean Stress and Mean Pressure 

σ

( ) ( )1 2 3
1 1 1
3 3 3m iiTrσ σ σ σ σ= = = + +σ

( )1 2 3
1
3mp σ σ σ σ= − = − + +

1 2 3σ σ σ= =
0 0

0 0
0 0

σ
σ σ

σ

 
 ≡ = 
  

σ 1

REMARK   
In a hydrostatic state of stress, the 
stress tensor is isotropic and, thus, 
its components are the same in 
any Cartesian coordinate system. 
As a consequence, any direction 
is a principal direction and the 
stress state (traction vector) is the 
same in any plane. 

11 12 13

21 22 23

31 32 33

σ σ σ
σ σ σ
σ σ σ

 
 ≡  
  

σ

https://youtu.be/H0AZ81WPLZw?t=16m18s
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 The Cauchy stress tensor     can be split into: 

 The spherical stress tensor:
 Also named mean hydrostatic stress tensor or volumetric stress tensor or

mean normal stress tensor.
 Is an isotropic tensor and defines a hydrostatic state of stress.
 Tends to change the volume of the stressed body

 

 The stress deviator tensor:
 Is an indicator of how far from a hydrostatic state of stress the state is.
 Tends to distort  the volume of the stressed body

Spherical and Deviatoric Parts of a 
Stress Tensor 

σ
sph ′+σ = σ σ

( )1 1:
3 3sph m iiTrσ σ= = =σ σ1 1 1

dev mσ′ = =σ σ σ − 1

REMARK   
The principal directions of a stress tensor 
and its deviator stress component coincide. 

https://youtu.be/H0AZ81WPLZw?t=20m22s
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 Principal stresses are invariants of the stress state: 
 invariant w.r.t. rotation of the coordinate axes to which the stresses are

referred. 

 The principal stresses are combined to form the stress invariants I : 

 These invariants are combined, in turn, to obtain the invariants J : 

Stress Invariants 

( )1 1 2 3iiI Tr σ σ σ σ= = = + +σ

( ) ( )2
2 1 1 2 1 3 2 3

1 :
2

I I σ σ σ σ σ σ= − = − + +σ σ

( )3 detI = σ

1 1 iiJ I σ= =

( ) ( )2
2 1 2

1 1 12 :
2 2 2ij jiJ I I σ σ= + = = σ σ

( ) ( )3
3 1 1 2 3

1 1 13 3
3 3 3 ij jk kiJ I I I I Tr σ σ σ= + + = ⋅ ⋅ =σ σ σ

REMARK 
The J invariants can be 
expressed in the unified form: 

( ) { }1 1, 2,3i
iJ Tr i

i
= ∈σ

REMARK   
The I invariants are obtained 
from the characteristic equation 
of the eigenvalue problem. 

https://youtu.be/sq0625Wk5PM?t=00m00s
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 The stress invariants of the stress deviator tensor: 

 These correspond exactly with the invariants J of the same stress 
deviator tensor: 

Stress Invariants of the Stress 
Deviator Tensor 

1 1 0J I′ ′= =

2
2 1

1
2

J I′ ′= ( ) ( )2 2
12 :
2

I I′ ′ ′ ′+ = = σ σ

3
3 1

1
3

J I′ ′= 1 23I I′ ′+( ) ( ) ( )3 3
1 13
3 3 ij jk kiI I Tr σ σ σ′ ′ ′ ′ ′ ′ ′ ′+ = = ⋅ ⋅ =σ σ σ

( )1 0I Tr′ ′= =σ
2

2 1
1 :
2

I I′ ′ ′= −σ σ( ) 12 12 13 13 23 23σ σ σ σ σ σ′ ′ ′ ′ ′ ′= + +

( ) ( )2 2 2
3 11 22 33 12 23 13 12 33 23 11 13 22

1det 2
3 ij jk kiI σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= = + − − − =σ

https://youtu.be/sq0625Wk5PM?t=06m23s
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Ch.4. Stress 

4.6. Stress Tensor in Different 
Coordinate Systems 
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 The cylindrical coordinate system is defined by: 

 The components of the stress tensor are then:

Stress Tensor in a Cylindrical 
Coordinate System 
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https://youtu.be/4yBrjDzm82M?t=00m00s
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 The cylindrical coordinate system is defined by: 

 The components of the stress tensor are then:

Stress Tensor in a Spherical 
Coordinate System 
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https://youtu.be/4yBrjDzm82M?t=04m34s
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Ch.4. Stress 

4.7. Mohr´s Circle 
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 Introduced by Otto Mohr in 1882. 
 Mohr´s Circle is a two-dimensional graphical representation of 

the state of stress at a point that: 
 will differ in form for a state of stress in 2D or 3D.
 illustrates principal stresses and maximum shear stresses as well as stress

transformations.
 is a useful tool to rapidly grasp

the relation between stresses for a
given state of stress.

Mohr’s Circle 

https://youtu.be/79rbGpRn_jE?t=00m00s
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Ch.4. Stress 

4.8. Mohr´s Circle for a 3D State of 
Stress 
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 Consider the system of Cartesian axes linked to the principal 
directions of the stress tensor at an arbitrary point P of a 
continuous medium: 
 The components of the stress tensor are

 The components of the traction vector are

where     is the unit normal to the base associated to the principal directions 

Determination of Mohr’s Circle 
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https://youtu.be/JNM93noleY4?t=00m00s
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 The normal component of stress     is

 

 The squared modulus of the traction vector is
 

 
 The unit vector      must satisfy

 Locus of all possible          points? 

Determination of Mohr’s Circle 

[ ]


1
2 2 2

1 1 2 2 3 3 2 1 1 2 2 3 3

3

, ,
T

n
n n n n n n n

n
σ σ σ σ σ σ σ

 
  

 
 

 
 = ⋅ = = + + 
  

n
t

t n


1=n 2 2 2
1 2 3 1n n n+ + =

n σ= ⋅nσ

σ

n

2 2 2 2 2 2 2
1 1 2 2 3 3 2 2 2 2 2 2 2 2

1 1 2 2 3 32 2 2 : : n

n n n
n n n

σ σ σ
σ σ σ σ τ

σ τ τ

= ⋅ = + +  + + = +
= + = 

t t t

t τ

( ),σ τ
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 The previous system of equations can be written as a matrix 
equation which can be solved for any couple 

 
 

 
 

 A feasible solution for                      requires that              for the 
 expression                         to hold true. 

 Every couple of numbers         which leads to a solution    , will be 
considered a feasible point of the half-space. 
 The feasible point is representative of the traction vector         on a 

plane of normal                       which passes through point P. 

 The locus of all feasible points is called the feasible region.

Determination of Mohr’s Circle 
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https://youtu.be/JNM93noleY4?t=07m39s
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 The system 

can be re-written as 

Determination of Mohr’s Circle 
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 Consider now equation       : 
 

 It can be written as:
 

which is the equation of a semicircle of center      and radius      : 

Determination of Mohr’s Circle 
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https://youtu.be/JNM93noleY4?t=11m01s
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 Following a similar procedure with      and      , a total of three 
semi-annuli with the following centers and radii are obtained: 

Determination of Mohr’s Circle 
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 Superposing the three annuli, 

 The final feasible region must be the intersection of these semi-annuli 

 Every point of the feasible region in the Mohr’s space, corresponds to 
the stress (traction vector) state on a certain plane at the considered 
point  

Determination of Mohr’s Circle 

https://youtu.be/JNM93noleY4?t=17m24s
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Ch.4. Stress 

4.9. Mohr´s Circle for a 2D State of 
Stress 
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2D State of Stress 

3D general state of stress 2D state of stress 
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σREMARK   
In 2D state of stress problems, the 
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direction is known (or assumed) a priori. 
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https://youtu.be/Tx_eR_SBHrs?t=00m00s
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 Given a plane whose unit normal    forms an angle    with the    
axis, 
 Traction vector

 

 Normal stress
 

 Shear stress

 Tangential stress      is now endowed with sign  
 Pay attention to the “positive” senses given in the figure

Stresses in a oblique plane 
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 Direct Problem: Find the principal 
stresses and principal stress directions 
given     in a certain set of axes. 

 Inverse Problem: Find the stress state    
on any plane, given the principal 
stresses and principal stress directions. 

Direct and Inverse Problems 

σ
equivalent stresses 

σ

https://youtu.be/cOTJfCvAGqI?t=00m00s
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 In the    and    axes,          then, 
 

 Using known trigonometric relations, 

Direct Problem 
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These define the principal stress 
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(The third direction is perpendicular to 
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https://youtu.be/cOTJfCvAGqI?t=00m39s
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 The angles         and         are then introduced into the equation 

to obtain the principal stresses  
(orthogonal to the plane of analysis): 

Direct Problem 
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 Given the directions and principal stresses     and    , to find the 
stresses in a plane characterized by the angle    : 
 Take the equations

 Replace  ,  ,  and        
to obtain:

Inverse Problem 

1σ 2σ

θ β≡

( )

( )

1 2 1 2

1 2

cos 2
2 2

sin 2
2

β

β

σ σ σ σσ β

σ στ β

+ −
= +

−
=

β

https://youtu.be/cOTJfCvAGqI?t=08m15s
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 Considering a reference system           
    and characterizing the inclination of a 
    plane by    ,  
 From the inverse problem equations:

 Squaring both equations and adding them:

Mohr’s Circle for a 2D State of Stress 
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center     and radius    . 

Mohr’s Circle 
RC

https://youtu.be/3xIGagdCfZo?t=00m00s
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 The locus of the points representative of the 
    state of stress on any of the planes passing 
    through a given point P is a circle. 
        (Mohr’s Circle) 
 The inverse is also true: 
 Given a point         in Mohr’s Circle, there is a plane passing through 

P whose normal and tangential stresses are      and    , respectively. 

Mohr’s Circle for a 2D State of Stress 
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 Interactive applets and animations: 
 by M. Bergdorf:

 

 from MIT OpenCourseware:
 

 from Virginia Tech:
 

 From Pennsilvania State University:

Construction of Mohr’s Circle 

http://www.zfm.ethz.ch/meca/applets/mohr/Mohrcircle.htm 

http://ocw.mit.edu/ans7870/3/3.11/tools/mohrscircleapplet.html 

http://web.njit.edu/~ala/keith/JAVA/Mohr.html 

http://www.esm.psu.edu/courses/emch13d/design/animation/animation.htm

http://www.zfm.ethz.ch/meca/applets/mohr/Mohrcircle.htm
http://ocw.mit.edu/ans7870/3/3.11/tools/mohrscircleapplet.html
http://web.njit.edu/%7Eala/keith/JAVA/Mohr.html
http://www.esm.psu.edu/courses/emch13d/design/animation/animation.htm
https://youtu.be/3xIGagdCfZo?t=12m02s
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A.  To obtain the point in Mohr’s Circle representative of the state of 
stress on a plane which forms an angle    with the principal stress 
direction     : 

1. Begin at the point  on the circle (representative of the plane where      
acts).

2. Rotate twice the angle in the sense               .    
3. This point represents the shear and normal stresses at the desired plane

(representative of the stress state at the plane where      acts).

Mohr’s Circle’s Properties 

β
1σ

1σ σβ→

1. 

3. 

2. 

1σ

https://youtu.be/k5Co-Arw-IQ?t=00m00s
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B.  The representative points of the state of stress on two 
orthogonal planes are aligned with the centre of Mohr’s Circle: 

 This is a consequence of property A as                  . 

Mohr’s Circle’s Properties 

2 1 2
πβ β= +
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C.  If the state of stress on two orthogonal planes is known, Mohr’s 
Circle can be easily drawn: 

1. Following property B, the two points representative of these planes will
be aligned with the centre of Mohr’s Circle.

2. Joining the points, the intersection with the     axis will give the centre of
Mohr’s Circle.

3. Mohr’s Circle can be drawn.

Mohr’s Circle’s Properties 

3. 

2. 
1. 

σ

https://youtu.be/k5Co-Arw-IQ?t=03m37s
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D.  Given the components of the stress tensor in a particular 
orthonormal base, Mohr’s Circle can be easily drawn: 

 This is a particular case of property C in which the points
representative of the state of stress on the Cartesian planes is known.

1. Following property B, the two points representative of these planes will
be aligned with the centre of Mohr’s Circle.

2. Joining the points, the intersection with the     axis will give the centre of
Mohr’s Circle.

3. Mohr’s Circle can be drawn.

Mohr’s Circle’s Properties 

σ

x xy

xy y

σ τ
τ σ
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σ

3. 

2. 
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https://youtu.be/k5Co-Arw-IQ?t=05m30s
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 The radius and the diametric points of the circle can be obtained:

Mohr’s Circle’s Properties 
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xy y

σ τ
τ σ
 

=  
 

σ

2
x y 2

xy2
R
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 Note that the application of property A for the point
representative of the vertical plane implies rotating in
the sense contrary to angle.

Mohr’s Circle’s Properties 

x xy

xy y

σ τ
τ σ
 

=  
 

σ
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 The point called pole or origin of planes in Mohr’s circle has the 
following characteristics: 
 Any straight line drawn from the pole will intersect the Mohr circle at a

point that represents the state of stress on a plane parallel in space to
that line.

The Pole or the Origin of Planes 

1. 

2.

https://youtu.be/NbyBSEslOz8?t=00m00s
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 The point called pole or origin of planes in Mohr’s circle has the 
following characteristics: 
 If a straight line, parallel to a given plane,  is drawn from the pole, the

intersection point represents the state of stress on this particular plane.

The Pole or the Origin of Planes 

1. 

2.
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 The sign criterion used in soil mechanics, is the inverse of the one 
used in continuum mechanics: 
 In soil mechanics,

 But the sign criterion for angles is the same:
positive angles are measured counterclockwise

Sign Convention in Soil Mechanics 

continuum mechanics 

soil mechanics 

βσ
tensile stress 
compressive stress positive (+) 

negative (−) 

βτ negative (-) 
positive (+) counterclockwise rotation 

clockwise rotation 

*

*

β β

β β

τ τ

σ σ

= −

= −

https://youtu.be/4D1XCZ97bPE?t=00m00s
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 For the same stress state, the principal stresses will be inverted.

 
 The expressions for the normal and shear stresses are

 

 The Mohr’s circle construction and properties are the same in both
cases

Sign Convention in Soil Mechanics 
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Ch.4. Stress 

4.10. Particular Cases of Mohr’s Circle 



66 

 Hydrostatic state of stress 

 Mohr’s circles of a stress tensor and its deviator 

 

 Pure shear state of stress 

Particular Cases of Mohr’s Circles 

sph ′= +σ σ σ
1 m 1

2 m 2

3 m 3

σ σ σ
σ σ σ
σ σ σ

′= +
′= +
′= +

( )sph mσ=σ 1

https://youtu.be/4oHsHfLbgKg?t=00m00s
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Chapter 4
Stress

4.1 Forces Acting on a Continuum Body
Two types of forces that can act on a continuous medium will be considered:
body forces and surface forces.

4.1.1 Body Forces

Definition 4.1. The body forces are the forces that act at a distance
on the internal particles of a continuous medium. Examples of this
kind of forces are the gravitational, inertial or magnetic attraction
forces.

Figure 4.1: Body forces on a continuous medium.
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128 CHAPTER 4. STRESS

Consider b(x, t) is the spatial description of the vector field of body forces
per unit of mass. Multiplying the vector of body forces b(x, t) by the density ρ ,
the vector of body forces per unit of volume ρb(x, t) (density of body forces) is
obtained. The total resultant, fV , of the body forces on the material volume V in
Figure 4.1 is

fV =
∫
V

ρb(x, t)dV . (4.1)

Remark 4.1. In the definition of body forces given in (4.1), the exis-
tence of the vector density of body forces ρb(x, t) is implicitly ac-
cepted. This means that, given an arbitrary sequence of volumes ΔVi
that contain the particle P, and the corresponding sequence of body
forces fΔVi , there exists the limit

ρb(x, t) = lim
ΔVi→0

fΔVi
ΔVi

and, in addition, it is independent of the sequence of volumes con-
sidered.

Example 4.1 – Given a continuous medium with volume V placed on the
Earth’s surface, obtain the value of the total resultant of the body forces in
terms of the gravitational constant g.

Solution

Assuming a system of Cartesian axes (see figure above) such that the x3-
axis is in the direction of the vertical from the center of the Earth, the vector
field b(x, t) of gravitational force per unit of mass is

b(x, t) not≡ [0 , 0 , −g ]T

and, finally, the vector of body forces is

fV =
∫
V

ρb(x, t)dV not≡
[

0 , 0 , −
∫
V

ρg dV
]T

.

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems

doi:10.13140/RG.2.2.25821.20961
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Forces Acting on a Continuum Body 129

4.1.2 Surface Forces

Definition 4.2. The surface forces are the forces that act on the
boundary of the material volume considered. They can be regarded
as produced by the contact actions of the particles located in the
boundary of the medium with the exterior of this medium.

Consider the spatial description of the vector field of surface forces per unit of
surface t(x, t) on the continuous medium shown in Figure 4.2. The resultant
force on a differential surface element dS is tdS and the total resultant of the
surface forces acting on the boundary ∂V of volume V can be written as

fS =
∫

∂V

t(x, t)dS . (4.2)

Remark 4.2. In the definition of surface forces given in (4.2), the ex-
istence of the vector of surface forces per unit of surface t(x, t) (trac-

tion vector1) is implicitly accepted. In other words, if a sequence of
surfaces ΔSi, each containing point P, and the corresponding surface
forces fΔSi are considered (see Figure 4.3), there exists the limit

t(x, t) = lim
ΔSi→0

fΔSi
ΔSi

and it is independent of the chosen sequence of surfaces.

Figure 4.2: Surface forces on a continuous medium.

1 In literature, the vector of surface forces per unit of surface t(x, t) is often termed traction
vector, although this concept can be extended to points in the interior of the continuous
medium.

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems

doi:10.13140/RG.2.2.25821.20961
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130 CHAPTER 4. STRESS

Figure 4.3: Traction vector.

4.2 Cauchy’s Postulates
Consider a continuous medium on which body and surface forces are acting (see
Figure 4.4). Consider also a particle P in the interior of the continuous medium
and an arbitrary surface containing point P and with a unit normal vector n at
this point, which divides the continuous medium into two parts (material vol-
umes). The surface forces due to the contact between volumes will act on the
imaginary separating surface, considered now a part of the boundary of each of
these material volumes.

Consider the traction vector t that acts at the chosen point P as part of the
boundary of the first material volume. In principle, this traction vector (de-
fined now at a material point belonging to the interior of the original continuous
medium) will depend on

1) the particle being considered,
2) the orientation of the surface (defined by means of the normal n) and
3) the separating surface itself.

Figure 4.4: Cauchy’s postulates.

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems

doi:10.13140/RG.2.2.25821.20961
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Cauchy’s Postulates 131

The following postulate2 makes it independent of this last condition.

Definition 4.3. Cauchy’s 1st postulate establishes that the traction
vector that acts at a material point P of a continuous medium ac-
cording to a plane with unit normal vector n depends only on the
point P and the normal n.

t = t(P,n)

Remark 4.3. Consider a particle P of a continuous medium and dif-
ferent surfaces that contain this point P such that they all have the
same unit normal vector n at said point. In accordance with Cauchy’s
postulate, the traction vectors at point P, according to each of these
surfaces, coincide. On the contrary, if the normal to the surfaces at P
is different, the corresponding traction vectors will not coincide (see
Figure 4.5).

Figure 4.5: Traction vector at a point according to different surfaces.

2 A postulate is a fundamental ingredient of a theory that is formulated as a principle of this
theory and, as such, does not need proof.
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Definition 4.4. Cauchy’s 2nd postulate - action and reaction law es-
tablishes the traction vector at point P of a continuous medium, ac-
cording to a plane with unit normal vector n, has the same magnitude
and opposite direction to the traction vector at the same point P ac-
cording to a plane with unit normal vector −n at the same point (see
Figure 4.4).

t(P,n) =−t(P,−n)

4.3 Stress Tensor
4.3.1 Application of Newton’s 2nd Law to a Continuous Medium
Consider a discrete system of particles in motion such that a generic particle i
of this system has mass mi, velocity vi and acceleration ai = dvi/dt. In addition,
a force fi acts on each particle i, which is related to the particle’s acceleration
through Newton’s second law3,

fi = miai . (4.3)

Then, the resultant R of the forces that act on all the particles of the system is

R = ∑
i

fi = ∑
i

miai . (4.4)

The previous concepts can be generalized for the case of continuous mediums
when these are understood as discrete systems constituted by an infinite number
of particles. In this case, the application of Newton’s second law to a continu-
ous medium with total mass M, on which external forces characterized by the
vector density of body forces ρb(x, t) and the traction vector t(x, t) are acting,
whose particles have an acceleration a(x, t), and that occupies at time t the space
volume Vt results in

R =
∫
Vt

ρb dV

︸ ︷︷ ︸
Resultant of

the body
forces

+
∫

∂Vt

t dS

︸ ︷︷ ︸
Resultant of
the surface

forces

=
∫
M

a dm︸︷︷︸
ρdV

=
∫
Vt

ρa dV . (4.5)

3 The Einstein notation introduced in (1.1) is not used here.
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4.3.2 Stress Tensor
Consider now the particular case of a material volume constituted by an ele-
mental tetrahedron placed in the neighborhood of an arbitrary particle P of the
interior of the continuous medium and oriented according to the scheme in Fig-
ure 4.6. Without loss of generality, the origin of coordinates can be placed at P.

The tetrahedron has a vertex at P and its faces are completely defined by

means of a plane with normal n = [n1,n2,n3]
T that intersects with the coordi-

nate planes, defining a generic surface with area S (the base of the tetrahedron)
at a distance h (the height of the tetrahedron) of point P. In turn, the coordinate
planes define the other faces of the tetrahedron with areas S1, S2 and S3, and
(outward) normals −ê1, −ê2 and −ê3, respectively. Through geometric consid-
erations, the relations

S1 = n1S S2 = n2S S3 = n3S (4.6)

can be established. The notation for the traction vectors on each of the faces of
the tetrahedron is introduced in Figure 4.7 as well as the corresponding normals
with which they are associated.

According to Cauchy’s second postulate (see Definition 4.4), the traction vec-
tor on a generic point x belonging to one of the surfaces Si (with outward nor-
mal −êi) can be written as

t(x,−êi) =−t(x, êi)
not
=−t(i) (x) i ∈ {1,2,3} . (4.7)

Figure 4.6: Elemental tetrahedron in the neighborhood of a material point P.
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Figure 4.7: Traction vectors on an elemental tetrahedron.

Remark 4.4. The mean value theorem establishes that, given a
(scalar, vectorial o tensorial) function that is continuous in the in-
terior of a (compact) domain, the function reaches its mean value
in the interior of said domain. In mathematical terms, given f (x)
continuous in Ω ,

∃ x∗ ∈Ω |
∫
Ω

f (x) dΩ = Ω · f (x∗)

where f (x∗) is the mean value of f in Ω . Figure 4.8 shows the
graphical interpretation of the mean value theorem in one dimen-
sion.

Figure 4.8: Mean value theorem.
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In virtue of the mean value theorem, the vector field t(i) (x), assumed to be
continuous in the domain Si, attains its mean value in the interior of this domain.

Let x∗sI
∈ Si be the point where the mean value is reached and t(i)

∗
= t(i)

(
x∗sI

)
this mean value. Analogously, the vectors t∗ = t

(
x∗S
)
, ρ∗ b∗ = ρ (x∗V ) b(x∗V )

and ρ∗a∗ = ρ (x∗V ) a(x∗V ) are the mean values corresponding to the vector fields:
traction vector t(x) in S, density of body forces ρb(x) and inertial forces ρa(x),
respectively. These mean values are attained, again according to the mean value
theorem, at points x∗s ∈ S and x∗V ∈ V of the interior of the corresponding do-
mains. Therefore, one can write

∫
Si

t(i) (x)dS = t(i)
∗
Si i ∈ {1,2,3} ,

∫
S

t(x)dS = t∗S ,

∫
V

ρ (x)b(x)dV = ρ∗b∗V and

∫
V

ρ (x)a(x)dV = ρ∗a∗V .

(4.8)

Applying now (4.5) on the tetrahedron considered, results in∫
V

ρbdV +
∫
S

tdS+
∫
S1

tdS+
∫
S2

tdS+
∫
S3

tdS =

=
∫
V

ρbdV +
∫
S

tdS+
∫
S1

−t(1)dS+
∫
S2

−t(2)dS+
∫
S3

−t(3)dS =
∫
V

ρadV,
(4.9)

where (4.7) has been taken into account. Replacing (4.8) in (4.9), the latter can
be written in terms of the mean values as

ρ∗b∗V + t∗ S− t(1)
∗
S1− t(2)

∗
S2− t(3)

∗
S3 = ρ∗ a∗V . (4.10)

Introducing now (4.6) and expressing the total volume of the tetrahedron as
V = Sh/3, the equation above becomes

1

3
ρ∗b∗ hS+ t∗ S− t(1)

∗
n1 S− t(2)

∗
n2 S− t(3)

∗
n3 S =

1

3
ρ∗ a∗ hS =⇒

1

3
ρ∗b∗ h+ t∗ − t(1)

∗
n1− t(2)

∗
n2− t(3)

∗
n3 =

1

3
ρ∗ a∗ h .

(4.11)

Expression (4.11) is valid for any tetrahedron defined by a plane with unit
normal vector n placed at a distance h of point P. Consider now an infinites-
imal tetrahedron, also in the neighborhood of point P, by making the value

of
∣∣PP′

∣∣= h tend to zero but maintaining the orientation of the plane constant
(n=constant). Then, the domains Si, S and V in (4.11) collapse into point P (see
Figure 4.7). Therefore, the points of the corresponding domains in which the

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems

doi:10.13140/RG.2.2.25821.20961



Con
tin

uum
M

ech
an

ics
for

Engin
eer

s

Theo
ry

an
d Pro

blem
s

©
X. O

liv
er

an
d C. A

ge
let

de Sar
ac

ibar

136 CHAPTER 4. STRESS

mean values are obtained also tend to point P,

x∗Si
→ xP =⇒ lim

h→0
t(i)

∗ (
x∗Si

)
= t(i) (P) i ∈ {1,2,3} ,

x∗S → xP =⇒ lim
h→0

t∗ (x∗S,n) = t(P,n) ,
(4.12)

and, in addition,

lim
h→0

(
1

3
ρ∗b∗ h

)
= lim

h→0

(
1

3
ρ∗ a∗ h

)
= 0 . (4.13)

Taking the limit of (4.11) and replacing expressions (4.12) and (4.13) in it
leads to

t(P,n)− t(1)n1− t(2)n2− t(3)n3 = 0 =⇒ t(P,n)− t(i)ni = 0 . (4.14)

The traction vector t(1) can be written in terms of its corresponding Cartesian
components (see Figure 4.9) as

t(1) = σ11ê1 +σ12ê2 +σ13ê3 = σ1iêi . (4.15)

Operating in an analogous manner on traction vectors t(2) and t(3) (see Fig-
ure 4.10) results in

t(2) = σ21ê1 +σ22ê2 +σ23ê3 = σ2iêi (4.16)

t(3) = σ31ê1 +σ32ê2 +σ33ê3 = σ3iêi (4.17)

and, for the general case,

t(i) (P) = σi j ê j i, j ∈ {1,2,3} . (4.18)

σi j (P) = t(i)j (P) i, j ∈ {1,2,3} (4.19)

Remark 4.5. Note that in expression (4.19) the functions σi j are

functions of (the components of) the traction vectors t(i)j (P) on the
surfaces specifically oriented at point P. Thus, it is emphasized that
these functions depend on point P but not on the unit normal vec-
tor n.

σi j = σi j (P)
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Figure 4.9: Decomposition of the traction vector t(1) into its components.

Figure 4.10: Traction vectors t(2) and t(3) .

Replacing (4.19) in (4.14) yields

t(P,n) = ni t(i) =⇒ t j (P,n) = ni t
(i)
j (P) = ni σi j (P) i, j ∈ {1,2,3} =⇒

t(P,n) = n ·σσσ (P) (4.20)

where the Cauchy stress tensor σσσ is defined as

σσσ = σi j êi⊗ ê j . (4.21)

Remark 4.6. Note that expression (4.20) is consistent with Cauchy’s
first postulate (see Definition 4.3) and that the second postulate (see
Definition 4.4) is satisfied from

t(P,n) = n ·σσσ
t(P,−n) =−n ·σσσ

⎫⎬
⎭ =⇒ t(P,n) =−t(P,−n) .
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Figure 4.11: Traction vectors for the construction of the Cauchy stress tensor.

Remark 4.7. In accordance with (4.18) and (4.21), the Cauchy stress
tensor is constructed from the traction vectors according to three co-
ordinate planes that include point P (see Figure 4.11). However, by
means of (4.20), the stress tensor σσσ (P) is seen to contain informa-
tion on the traction vectors corresponding to any plane (identified by
its normal n) that contains this point.

4.3.3 Graphical Representation of the Stress State in a Point
It is common to resort to graphical representations of the stress tensor based on
elemental parallelepipeds in the neighborhood of the particle considered, with
faces oriented in accordance to the Cartesian planes and in which the corre-
sponding traction vectors are decomposed into their normal and tangent compo-
nents following expressions (4.15) through (4.20) (see Figure 4.12).

4.3.3.1 Scientific Notation

The representation in Figure 4.12 corresponds to what is known as scientific
notation. In this notation, the matrix of components of the stress tensor is written
as

σσσ not≡

⎡
⎢⎣σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

⎤
⎥⎦ (4.22)

and each component σi j can be characterized in terms of its indices:

− Index i indicates the plane on which the stress acts (plane perpendicular to
the xi-axis).

− Index j indicates the direction of the stress (direction of the x j-axis).
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Figure 4.12: Graphical representation of the stress tensor (scientific notation).

4.3.3.2 Engineering Notation

In engineering notation, the components of the Cauchy stress tensor (see Fig-
ure 4.13) are written as

σσσ not≡

⎡
⎢⎣ σx τxy τxz

τyx σy τyz

τzx τyz σz

⎤
⎥⎦ (4.23)

and each component can be characterized as follows:

− The component σa is the normal stress acting on the plane perpendicular to
the a-axis.

− The component τab is the tangential (shear) stress acting on the plane per-
pendicular to the a-axis in the direction of the b-axis.

Figure 4.13: Graphical representation of the stress tensor (engineering notation).
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4.3.3.3 Sign Criterion

Consider a particle P of the continuous medium and a plane with unit normal
vector n that contains this particle (see Figure 4.14). The corresponding traction
vector t can be decomposed into its normal component σσσn and its tangential
component τττn. The sign of the projection of t on n (σ = t ·n) defines the tensile
(σσσ n tends to pull on the plane ) or compressive (σσσn tends to compress the plane)
character of the normal component.

This concept can be used to define the sign of the components of the stress
tensor. For this purpose, in the elemental parallelepiped of Figure 4.12, the dis-
tinction is made between the positive or visible faces (its outward normal has
the same direction as the positive base vector and the faces can be seen in the
figure) and the negative or hidden faces.

The sign criterion for the visible faces is

Normal stresses σi j or σa

{
positive (+) ⇒ tension

negative (−) ⇒ compression
and

Tangential stresses τab

{
positive (+) ⇒ direction of b-axis

negative (−) ⇒ opposite direction to b-axis

In accordance with this criterion, the directions of the stresses represented in
Figure 4.13 (on the visible faces of the parallelepiped) correspond to positive
values of the respective components of the stress tensor4.

In virtue of the action and reaction law (see Definition 4.4) and for the hidden
faces of the parallelepiped, the aforementioned positive values of the compo-
nents of the stress tensor correspond to opposite directions in their graphical
representation (see Figure 4.15).

σσσn = σn

σ = t ·n
{
> 0 tension

< 0 compression

Figure 4.14: Decomposition of the traction vector.

4 It is obvious that the negative values of the components of the stress tensor will result in
graphical representations of opposite direction to the positive values indicated in the figures.
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Figure 4.15: Positive stresses in the hidden faces.

4.4 Properties of the Stress Tensor
Consider an arbitrary material volume V in a continuous medium and its bound-
ary ∂V . The body forces b(x, t) act on V and the prescribed traction vector
t∗ (x, t) acts on ∂V . The acceleration vector field of the particles is a(x, t) and
the Cauchy stress tensor field is σσσ (x, t) (see Figure 4.16).

Figure 4.16: Forces acting on a continuous medium.

4.4.1 Cauchy Equation. Internal Equilibrium Equation
The stress tensor, the body forces and the accelerations are related through
Cauchy’s equation,

Cauchy’s
equation

⎧⎪⎨
⎪⎩

∇ ·σσσ +ρb = ρa ∀x ∈V
∂σi j

∂xi
+ρb j = ρa j j ∈ {1,2,3}

(4.24)
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whose explicit expression in engineering notation is⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂σx

∂x
+

∂τyx

∂y
+

∂τzx

∂ z
+ρbx = ρax ,

∂τxy

∂x
+

∂σy

∂y
+

∂τzy

∂ z
+ρby = ρay ,

∂τxz

∂x
+

∂τyz

∂y
+

∂σz

∂ z
+ρbz = ρaz .

(4.25)

If the system is in equilibrium, the acceleration is null (a = 0), and (4.24) is
reduced to

Internal
equilibrium

equation

⎧⎨
⎩

∇ ·σσσ +ρb = 0 ∀x ∈V
∂σi j

∂xi
+ρb j = 0 j ∈ {1,2,3} (4.26)

which is known as the internal equilibrium equation of the continuous medium.
Cauchy’s equation of motion is derived from the principle of balance of linear

momentum, which will be studied in Chapter 5.

4.4.2 Equilibrium Equation at the Boundary
Equation (4.20) is applied on the boundary points taking into account that the
traction vector is now known in said points (t = t∗). The result is denoted as
equilibrium equation at the boundary.

Equilibrium
equation at

the boundary

{
n(x, t) ·σσσ (x, t) = t∗ (x, t) ∀x ∈ ∂V

ni σi j = t∗j j ∈ {1,2,3} (4.27)

4.4.3 Symmetry of the Cauchy Stress Tensor
The Cauchy stress tensor is proven to be symmetric by applying the principle of
balance of angular momentum (see Chapter 5).{

σσσ = σσσ T

σi j = σ ji i, j ∈ {1,2,3} (4.28)
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Remark 4.8. The symmetry of the stress tensor allows the Cauchy’s
equation (4.24) and the equilibrium equation at the boundary (4.27)
to be written, respectively, as⎧⎨

⎩
∇ ·σσσ +ρb = σσσ ·∇+ρb = ρa ∀x ∈V
∂σi j

∂xi
+ρb j =

∂σ ji

∂xi
+ρb j = ρa j j ∈ {1,2,3}

{
n ·σσσ = σσσ ·n = t∗ (x, t) ∀x ∈ ∂V
ni σi j = σ ji ni = t∗j j ∈ {1,2,3}

Example 4.2 – A continuous medium moves with a velocity field whose spa-
tial description is v(x, t) not≡ [z, x, y]T . The Cauchy stress tensor is

σσσ not≡

⎡
⎢⎣ y g(x,z, t) 0

h(y) z(1+ t) 0

0 0 0

⎤
⎥⎦ .

Determine the functions g, h and the spatial form of the body forces b(x, t)
that generate the motion.

Solution

The stress tensor is symmetric, therefore

σσσ = σσσT =⇒ h(y) = g(x,z, t) =⇒
{

h(y) =C ,

g(x,z, t) =C ,

where C is a constant. In addition, the divergence of the tensor is null,

∇ ·σσσ not≡
[

∂
∂x

,
∂
∂y

,
∂
∂ z

]⎡⎢⎣ y C 0

C z(1+ t) 0

0 0 0

⎤
⎥⎦= [0, 0, 0] .

Thus, Cauchy’s equation is reduced to

∇ ·σσσ +ρb = ρa
∇ ·σσσ = 0

}
=⇒ b = a .
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Applying the expression for the material derivative of velocity,

a =
dv
dt

=
∂v
∂ t

+v ·∇v with

∂v
∂ t

= 0 and ∇v = ∇⊗v not≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂
∂x
∂
∂y
∂
∂ z

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
[z, x, y] =

⎡
⎣0 1 0

0 0 1

1 0 0

⎤
⎦ .

the acceleration

a = v ·∇v not≡ [z, x, y]

⎡
⎣0 1 0

0 0 1

1 0 0

⎤
⎦= [y, z, x]

is obtained. Finally, the body forces are

b(x, t) = a(x, t) not≡ [y, z, x]T .

4.4.4 Diagonalization. Principal Stresses and Directions
Consider the stress tensor σσσ . Since it is a symmetric second-order tensor, it
diagonalizes5 in an orthonormal basis and its eigenvalues are real. Consider,
then, its matrix of components in the Cartesian basis {x, y, z} (see Figure 4.17),

σσσ not≡

⎡
⎢⎣ σx τxy τxz

τyx σy τyz

τzx τyz σz

⎤
⎥⎦
{x, y, z}

. (4.29)

In the Cartesian system {x′, y′, z′} in which σσσ diagonalizes, its matrix of com-
ponents will be

σσσ not≡

⎡
⎢⎣σ1 0 0

0 σ2 0

0 0 σ3

⎤
⎥⎦
{x′, y′, z′}

. (4.30)

5 A theorem of tensor algebra guarantees that all symmetric second-order tensor diagonalizes
in an orthonormal basis and its eigenvalues are real.
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Figure 4.17: Diagonalization of the stress tensor.

Definition 4.5. The principal stress directions are the directions, as-
sociated with the axes {x′, y′, z′}, in which the stress tensor diago-
nalizes.
The principal stresses are the eigenvalues of the stress tensor
(σ1, σ2, σ3). In general, they will be assumed to be arranged in the
form σ1 ≥ σ2 ≥ σ3.

To obtain the principal stress directions and the principal stresses, the eigen-
value problem associated with tensor σσσ must be posed. That is, if λ and v are an
eigenvalue and its corresponding eigenvector, respectively, then

σσσ ·v = λv =⇒ (σσσ −λ1) ·v = 0 . (4.31)

The solution to this system will not be trivial (will be different to v = 0) when
the determinant of (4.31) is equal to zero, that is

det(σσσ −λ1) not
= |σσσ −λ1|= 0 . (4.32)

Equation (4.32) is a third-grade polynomial equation in λ . Since tensor σσσ
is symmetric, its three solutions (λ1 ≡ σ1, λ2 ≡ σ2, λ3 ≡ σ3) are real. Once the
eigenvalues have been found and ordered according to the criterion σ1 ≥ σ2 ≥ σ3,

the eigenvector v(i)can be obtained for each stress σi by resolving the system in
(4.31),

(σσσ −σi1) ·v(i) = 0 i ∈ {1,2,3} . (4.33)

This equation provides a non-trivial solution of the eigenvectors v(i), orthogo-
nal between themselves, which, once it has been normalized, defines the three
elements of the base corresponding to the three principal directions.
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Remark 4.9. In accordance with the graphical interpretation of the
components of the stress tensor in Section 4.3.3, only normal stresses
act on the faces of the elemental parallelepiped associated with the
principal stress directions, which are, precisely, the principal stresses
(see Figure 4.17).

4.4.5 Mean Stress and Mean Pressure

Definition 4.6. The mean stress is the mean value of the principal
stresses.

σm =
1

3
(σ1 +σ2 +σ3)

Considering the matrix of components of the stress tensor in the principal stress
directions (4.30), results in

σm =
1

3
(σ1 +σ2 +σ3) =

1

3
Tr(σσσ) . (4.34)

Definition 4.7. The mean pressure is the mean stress with its sign
changed.

mean pressure
not
= p̄ =−σm =−1

3
(σ1 +σ2 +σ3)

Definition 4.8. A spherical or hydrostatic stress state is a state in
which all three principal stress directions have the same value.

σ1 = σ2 = σ3 =⇒ σσσ not≡
⎡
⎣σ 0 0

0 σ 0

0 0 σ

⎤
⎦ not≡ σ1
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Remark 4.10. In a hydrostatic stress state, the stress tensor is
isotropic6 and, thus, its components are the same in every Cartesian
coordinate system.
As a consequence, any direction is a principal stress direction and
the stress state (traction vector) is the same in any plane.

4.4.6 Decomposition of the Stress Tensor into its Spherical and
Deviatoric Parts

The stress tensor σσσ can be split7 into a spherical part (or component) σσσ sph and
a deviatoric part σσσ ′,

σσσ = σσσ sph︸︷︷︸
spherical

part

+ σσσ ′︸︷︷︸
deviatoric

part

. (4.35)

The spherical part is defined as

σσσ sph :
de f
=

1

3
Tr(σσσ)1 = σm1 not≡

⎡
⎢⎣σm 0 0

0 σm 0

0 0 σm

⎤
⎥⎦ , (4.36)

where σm is the mean stress defined in (4.34). According to definition (4.35), the
deviatoric part of the stress tensor is

σσσ ′ = σσσ −σσσ sph
not≡

⎡
⎢⎣ σx τxy τxz

τxy σy τyz

τxz τyz σz

⎤
⎥⎦−

⎡
⎢⎣σm 0 0

0 σm 0

0 0 σm

⎤
⎥⎦ (4.37)

resulting in

σσσ ′ not≡

⎡
⎢⎣σx−σm τxy τxz

τxy σy−σm τyz

τxz τyz σz−σm

⎤
⎥⎦=

⎡
⎢⎣ σx

′ τxy
′ τxz

′

τxy
′ σy

′ τyz
′

τxz
′ τyz

′ σz
′

⎤
⎥⎦ . (4.38)

6 A tensor is defined as isotropic when it remains invariant under any change of orthogonal
basis. The general expression of an isotropic second-order tensor is T = α1 where α can be
any scalar.
7 This type of decomposition can be applied to any second-order tensor.
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Remark 4.11. The spherical part of the stress tensor σσσ sph is an
isotropic tensor (and defines a hydrostatic stress state), therefore, it
remains invariant under any change of orthogonal basis.

Remark 4.12. The deviatoric component of the tensor is an indica-
tor of how far from a hydrostatic stress state the present state is
(see (4.37) and Remark 4.11).

Remark 4.13. The principal directions of the stress tensor and of its
deviatoric tensor coincide. Proof is trivial considering that, from Re-
mark 4.11, the spherical part σσσ sph is diagonal in any coordinate sys-
tem. Consequently, if σσσ diagonalizes for a certain basis in (4.37), σσσ ′
will also diagonalize for that basis.

Remark 4.14. The trace of the deviatoric (component) tensor is null.
Taking into account (4.34) and (4.37),

Tr
(
σσσ ′
)
= Tr

(
σσσ −σσσ sph

)
= Tr(σσσ)−Tr

(
σσσ sph

)
= 3σm−3σm = 0 .

4.4.7 Tensor Invariants
The three fundamental invariants of the stress tensor8(or I invariants) are

I1 = Tr(σσσ) = σii = σ1 +σ2 +σ3 , (4.39)

I2 =
1

2

(
σσσ : σσσ − I2

1

)
=−(σ1σ2 +σ1σ3 +σ2σ3) , (4.40)

I3 = det(σσσ) . (4.41)

8 The tensor invariants are scalar algebraic combinations of the components of a tensor that
do not vary when the basis changes.
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Any combination of the I invariants is, in turn, another invariant. In this manner,
the J invariants

J1 = I1 = σii , (4.42)

J2 =
1

2

(
I2
1 +2I2

)
=

1

2
σi jσ ji =

1

2
(σσσ : σσσ) , (4.43)

J3 =
1

3

(
I3
1 +3I1I2 +3I3

)
=

1

3
Tr(σσσ ·σσσ ·σσσ) =

1

3
σi jσ jkσki , (4.44)

are defined.

Remark 4.15. For a purely deviatoric tensor σσσ ′, the corresponding J
invariants are (see Remark 4.14 and equations (4.39) to (4.44))

J1 = I1 = 0

J2 = I2

J3 = I3

⎫⎪⎬
⎪⎭ =⇒ σσσ ′ =⇒

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

J1
′ = I1

′ = 0

J2
′ = I2

′ =
1

2
(σσσ ′ : σσσ ′) =

1

2
σ ′i jσ ′ ji

J3
′ = I3

′ =
1

3

(
σ ′i jσ ′ jkσ ′ki

)

4.5 Stress Tensor in Curvilinear Orthogonal Coordinates
4.5.1 Cylindrical Coordinates
Consider a point in space defined by the cylindrical coordinates {r,θ ,z} (see
Figure 4.18). A physical (orthonormal) basis {êr, êθ , êz} and a Cartesian system
of local axes {x′,y′,z′} defined as dextrorotatory are considered at this point.

The components of the stress tensor in this basis are

σσσ not≡

⎡
⎢⎣ σx′ τx′y′ τx′z′

τx′y′ σy′ τy′z′

τx′z′ τy′z′ σz′

⎤
⎥⎦=

⎡
⎢⎣ σr τrθ τrz

τrθ σθ τθz

τrz τθz σz

⎤
⎥⎦ . (4.45)

The graphical representation on an elemental parallelepiped is shown in Fig-
ure 4.19, where the components of the stress tensor have been drawn on the
visible faces. Note that, here, the visible faces of the figure do not coincide with
the positive faces, defined (in the same direction as in Section 4.3.3.3) as those
whose unit normal vector has the same direction as a vector of the physical basis.
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x(r,θ ,z) not≡
⎡
⎣ x = r cosθ

y = r sinθ
z = z

⎤
⎦

Figure 4.18: Cylindrical coordinates.

Figure 4.19: Differential element in cylindrical coordinates.

4.5.2 Spherical Coordinates
A point in space is defined by the spherical coordinates {r,θ ,φ} (see Fig-

ure 4.20). A physical (orthonormal) basis
{

êr, êθ , êφ
}

and a Cartesian system

of local axes {x′,y′,z′} defined as dextrorotatory are considered at this point.
The components of the stress tensor in this basis are

σσσ not≡

⎡
⎢⎣ σx′ τx′y′ τx′z′

τx′y′ σy′ τy′z′

τx′z′ τy′z′ σz′

⎤
⎥⎦=

⎡
⎢⎣ σr τrθ τrφ

τrθ σθ τθφ

τrφ τθφ σφ

⎤
⎥⎦ . (4.46)

The graphical representation on an elemental parallelepiped is shown in Fig-
ure 4.21, where the components of the stress tensor have been drawn on the
visible faces.
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x(r,θ ,φ) not≡
⎡
⎣ x = r sinθ cosφ

y = r sinθ sinφ
z = z cosθ

⎤
⎦

Figure 4.20: Spherical coordinates.

Figure 4.21: Differential element in spherical coordinates.

4.6 Mohr’s Circle in 3 Dimensions
4.6.1 Graphical Interpretation of the Stress States
The stress tensor plays such a crucial role in engineering that, traditionally, sev-
eral procedures have been developed, essentially graphical ones, to visualize and
interpret it. The most common are the so-called Mohr’s circles.

Consider an arbitrary point in the continuous medium P and the stress tensor
σσσ (P) at this point. Consider also an arbitrary plane, with unit normal vector n,
that contains P (see Figure 4.22). The traction vector acting on point P corre-
sponding to this plane is t = σσσ ·n. This vector can now be decomposed into its
components σσσ n, normal to the plane considered, and τττn, tangent to said plane.
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Figure 4.22: Decomposition of the traction vector.

Consider now the normal component σσσn = σ n, where σ is the normal com-
ponent of the stress on the plane, defined in accordance with the sign criterion
detailed in Section 4.3.3.3,

σσσn = σ ·n
{

σ > 0 tension ,

σ < 0 compression .
(4.47)

Consider now the tangential component τττn, of which only its module is of inter-
est, τττn = t−σσσn |τττn|= τ ≥ 0 . (4.48)

The stress state on the plane with unit normal vector n at the point considered
can be characterized by means of the pair

(σ ,τ) →
{

σ ∈ R

τ ∈ R
+ (4.49)

which, in turn, determine a point of the half-plane (x≡ σ ,y≡ τ) ∈ R×R
+ in

Figure 4.23. If the infinite number of planes that contain point P are now con-
sidered (characterized by all the possible unit normal vectors n(i)) and the corre-
sponding values of the normal stress σi and tangential stress τi are obtained and,
finally, are represented in the half-space mentioned above, a point cloud is ob-
tained. One can then wonder whether the point cloud occupies all the half-space
or is limited to a specific locus. The answer to this question is provided by the
following analysis.

n1 → (σ 1,τ 1)

n2 → (σ 2,τ 2)
· · ·

ni → (σ i,τ i)

Figure 4.23: Locus of points (σ ,τ).
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4.6.2 Determination of the Mohr’s Circles
Consider the system of Cartesian axes associated with the principal directions
of the stress tensor. In this basis, the components of the stress tensor are

σσσ not≡

⎡
⎢⎣σ1 0 0

0 σ2 0

0 0 σ3

⎤
⎥⎦ with σ1 ≥ σ2 ≥ σ3 (4.50)

and the components of the traction vector are

t = σσσ ·n not≡

⎡
⎢⎣σ1 0 0

0 σ2 0

0 0 σ3

⎤
⎥⎦
⎡
⎢⎣n1

n2

n3

⎤
⎥⎦=

⎡
⎢⎣σ1 n1

σ2 n2

σ3 n3

⎤
⎥⎦ , (4.51)

where n1,n2,n3 are the components of the unit normal vector n in the basis as-
sociated with the principal stress directions. In view of (4.51), the normal com-
ponent of the stress (σ), defined in (4.47), is

t ·n not≡ [σ1 n1, σ2 n2, σ3 n3]

⎡
⎢⎣n1

n2

n3

⎤
⎥⎦= σ1 n2

1 +σ2 n2
2 +σ3 n2

3 = σ (4.52)

and the module of the traction vector is

|t|2 = t · t = σ2
1 n2

1 +σ2
2 n2

2 +σ2
3 n2

3 . (4.53)

The modules of the traction vector and of its normal and tangential components
can also be related through

|t|2 = σ2
1 n2

1 +σ2
2 n2

2 +σ2
3 n2

3 = σ2 + τ2 , (4.54)

where (4.53) has been taken into account. Finally, the condition that n is a unit
normal vector can be expressed in terms of its components as

|n|= 1 =⇒ n2
1 +n2

2 +n2
3 = 1 . (4.55)

Equations (4.54), (4.52) and (4.55) can be summarized in the following ma-
trix equation.⎡

⎢⎣σ2
1 σ2

2 σ2
3

σ1 σ2 σ3

1 1 1

⎤
⎥⎦

︸ ︷︷ ︸
A

⎡
⎢⎣n2

1

n2
2

n2
3

⎤
⎥⎦

︸ ︷︷ ︸
x

=

⎡
⎢⎣σ 2 + τ2

σ
1

⎤
⎥⎦

︸ ︷︷ ︸
b

=⇒ A ·x = b (4.56)
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System (4.56) can be interpreted as a linear system with:

a) A matrix of coefficients, A(σσσ), defined by the stress tensor at point P
(by means of the principal stresses).

b) An independent term, b, defined by the coordinates of a certain point
in the half-space σ − τ (representative, in turn, of the stress state on a
certain plane).

c) A vector of unknowns x that determines (by means of the components
of the unit normal vector n) in which plane the values of the selected σ
and τ correspond.

Remark 4.16. Only the solutions of system (4.56) whose compo-

nents x not≡ [n2
1, n2

2, n2
3

]T
are positive and smaller than 1 will be fea-

sible (see (4.55)), i.e.,

0≤ n2
1 ≤ 1 , 0≤ n2

2 ≤ 1 and 0≤ n2
3 ≤ 1 .

Every pair (σ ,τ) that leads to a solution x that satisfies this require-
ment will be considered a feasible point of the half-space σ − τ ,
which is representative of the stress state on a plane that contains P.
The locus of feasible points (σ ,τ) is named feasible zone of the half-
space σ − τ .

Consider now the goal of finding the feasible region. Through some algebraic
operations, system (4.56) can be rewritten as⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σ2 + τ2− (σ1 +σ3)σ +σ1 σ3− A
(σ1−σ3)

n2
1 = 0 (I)

σ2 + τ2− (σ2 +σ3)σ +σ2 σ3− A
(σ2−σ3)

n2
2 = 0 (II)

σ2 + τ2− (σ1 +σ2)σ +σ1 σ2− A
(σ1−σ2)

n2
3 = 0 (III)

with A = (σ1−σ2)(σ2−σ3)(σ1−σ3) .

(4.57)

Given, for example, equation (III) of the system in (4.57), it is easily verifiable
that it can be written as

(σ −a)2 + τ2 = R2 with a =
1

2
(σ1 +σ2)

and R =

√
1

4
(σ1−σ2)

2 +(σ2−σ3)(σ1−σ3)n2
3 ,

(4.58)
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which corresponds to the equation of a semicircle in the half-space σ − τ of
center C3 and a radius R3, given by

C3 =

(
1

2
(σ1 +σ2) , 0

)
and

R3 =

√
1

4
(σ1−σ2)

2 +(σ2−σ3)(σ1−σ3)n2
3 .

(4.59)

The different values of n2
3 ∈ [0,1] determine a set of concentric semicircles

of center C3 and radii R3 (n3) belonging to the half-space σ − τ and whose
points occupy a certain region of this half-space. This region is delimited by
the maximum and minimum values of R3 (n3). Observing that the radical in the

expression of R3 in (4.59) is positive, these values are obtained for n2
3 = 0 (the

minimum radius) and n2
3 = 1 (the maximum radius).

n2
3 = 0 =⇒ R min

3 =
1

2
(σ1−σ2)

n2
3 = 1 =⇒ R max

3 =
1

2
(σ1 +σ2)−σ3

(4.60)

The domain delimited by both semicircles defines an initial limitation of the
feasible domain, shown in Figure 4.24.

This process is repeated for the other two equations, (I) and (II), in (4.57),
resulting in:

− Equation (I) : C1 =
( 1

2
(σ2 +σ3)︸ ︷︷ ︸

a1

, 0
)

=⇒
⎧⎨
⎩R min

1 =
1

2
(σ2−σ3)

R max
1 = |σ1−a1|

Figure 4.24: Initial limitation of the feasible domain.
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Figure 4.25: Feasible region.

− Equation (II) : C2 =
( 1

2
(σ1 +σ3)︸ ︷︷ ︸

a2

, 0
)

=⇒
⎧⎨
⎩R min

2 =
1

2
(σ1−σ3)

R max
2 = |σ2−a2|

− Equation (III) : C3 =
( 1

2
(σ1 +σ2)︸ ︷︷ ︸

a3

, 0
)

=⇒
⎧⎨
⎩R min

3 =
1

2
(σ1−σ2)

R max
3 = |σ3−a3|

For each case, a feasible region that consists in a semi-annulus defined by the
minimum and maximum radii is obtained. Obviously, the final feasible region
must be in the intersection of these semi-annuli, as depicted in Figure 4.25.

Figure 4.26 shows the final construction that results of the three Mohr’s semi-
circles that contain points σ1, σ2 and σ3. It can also be shown that every point
within the domain enclosed by the Mohr’s circles is feasible (in the sense that
the corresponding values of σ and τ correspond to stress states on a certain plane
that contains point P).

The construction of Mohr’s circle is trivial (once the three principal stresses
are known) and is useful for discriminating possible stress states on planes, de-
termining maximum values of shear stresses, etc.

Figure 4.26: Mohr’s circle in three dimensions.
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Example 4.3 – The principal stresses at a certain point in a continuous
medium are

σ1 = 10 , σ2 = 5 and σ3 = 2 .

The normal and tangential stresses on a plane that contains this point are σ
and τ , respectively. Justify if the following values of σ and τ are possible or
not.

a) σ = 10 and τ = 1.

b) σ = 5 and τ = 4.

c) σ = 3 and τ = 1.

Solution

The Mohr’s circle for the defined stress state is drawn and the given points
are marked in the half-space σ − τ .

Only the points belonging to the gray zone represent stress states (feasible
points). It is verified that none of the given points are feasible.

4.7 Mohr’s Circle in 2 Dimensions
Many real-life problems in engineering are assimilated to an ideal bi-dimensional
stress state9 in which one of the principal stress directions is known (or assumed)
a priori. In these cases, the Cartesian axis x3 (or z-axis) is made to coincide with
said principal direction (see Figure 4.25) and, thus, the components of the stress
tensor can be written as

σσσ not≡

⎡
⎢⎣σ11 σ12 0

σ12 σ22 0

0 0 σ33

⎤
⎥⎦=

⎡
⎢⎣ σx τxy 0

τxy σy 0

0 0 σz

⎤
⎥⎦ . (4.61)

9 This type of problems will be analyzed in depth in Chapter 7, dedicated to bi-dimensional
elasticity.

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems

doi:10.13140/RG.2.2.25821.20961



Con
tin

uum
M

ech
an

ics
for

Engin
eer

s

Theo
ry

an
d Pro

blem
s

©
X. O

liv
er

an
d C. A

ge
let

de Sar
ac

ibar

158 CHAPTER 4. STRESS

Consider now only the family of planes parallel to the x3-axis (therefore, the
component n3 of its unit normal vector is null). The corresponding traction vec-
tor is

t(P,n) = σσσ ·n =⇒

⎡
⎢⎣ t1

t2
0

⎤
⎥⎦=

⎡
⎢⎣σ11 σ12 0

σ12 σ22 0

0 0 σ33

⎤
⎥⎦
⎡
⎢⎣n1

n2

0

⎤
⎥⎦ (4.62)

and its component t3 vanishes. In (4.61) and (4.62) the components of the stress
tensor, σσσ , of the unit normal vector defining the plane, n, and of the traction
vector, t, associated with direction x3 are either well known (this is the case for
σ13, σ23, n3 or t3), or do not intervene in the problem (as is the case for σ33). This
circumstance suggests ignoring the third dimension and reducing the analysis to
the two dimensions associated with the x1- and x2-axes (or x- and y-axes), as
indicated in Figure 4.27. Then, the problem can be defined in the plane through
the components of the stress tensor

σσσ not≡
[

σ11 σ12

σ12 σ22

]
=

[
σx τxy

τxy σy

]
(4.63)

and the components of the traction vector

t(P,n) = σσσ ·n not≡
[

t1

t2

]
=

[
σ11 σ12

σ12 σ22

][
n1

n2

]
. (4.64)

Figure 4.27: Reduction of the problem from three to two dimensions.
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4.7.1 Stress State on a Given Plane
Consider a plane (always parallel to the z-axis) whose unit normal vector n forms
an angle θ with the x-axis. A unit vector m is defined in the tangential direction
to the trace of the plane as indicated in Figure 4.28.

Remark 4.17. The unit normal vector n, the unit tangent vector m,
and the angle θ in Figure 4.28 have the following positive directions
associated with them.

• Unit normal vector n: towards the exterior of the plane (with re-
spect to the position of point P).

• Unit tangent vector m: generates a clockwise rotation with re-
spect to point P.

• Angle θ : defined as counterclockwise.

Consider σσσ , the stress tensor at a given point, whose components are defined
in a Cartesian base,

σσσ not≡
[

σx τxy

τxy σy

]
. (4.65)

Using (4.64), the traction vector on the given point, which belongs to the plane
considered, is

t = σσσ ·n not≡
[

σx τxy

τxy σy

][
cosθ
sinθ

]
=

[
σx cosθ + τxy sinθ
τxy cosθ +σy sinθ

]
. (4.66)

Figure 4.28: Stress state on a given plane.
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Taking into consideration the expression t = σθ n+ τθ m, the normal stress
σθ and the tangent stress τθ on the plane with inclination θ (see Figure 4.28)
are defined, respectively, as

σθ = t ·n not≡ [σx cosθ + τxy sinθ , τxy cosθ +σy sinθ ]
[

cosθ
sinθ

]
=

= σx cos2 θ + τxy2sinθ cosθ +σy sin2 θ
(4.67)

and

τθ = t ·m not≡ [σx cosθ + τxy sinθ , τxy cosθ +σy sinθ ]
[

sinθ
−cosθ

]
=

= σx sinθ cosθ −σy sinθ cosθ + τxy
(
sin2 θ − cos2 θ

)
,

(4.68)

which can be rewritten as10

σθ =
σx +σy

2
+

σx−σy

2
cos(2θ)+ τxy sin(2θ)

τθ =
σx−σy

2
sin(2θ)− τxy cos(2θ)

(4.69)

Direct problem

Inverse problem

Figure 4.29: Direct and inverse problems.

10 The following trigonometric relations are used here: sin(2θ) = 2sinθ cosθ ,

cos2 θ = (1+ cos(2θ))/2 and sin2 θ = (1− cos(2θ))/2.
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4.7.2 Direct Problem: Diagonalization of the Stress Tensor
The direct problem consists in obtaining the principal stresses and the principal
stress directions given the components of the stress tensor (4.65) in a certain
system of axes x− y (see Figure 4.29).

The principal stress directions associated with the x′- and y′-axes defined by
the angles α and π/2+α (see Figure 4.29) determine the inclinations of the
two planes on which the stresses only have a normal component σα , being the
tangent component τα null. Imposing this condition on (4.69) yields

τα =
σx−σy

2
sin(2α)− τxy cos(2α) = 0 =⇒ tan(2α) =

τxy
σx−σy

2

,

sin(2α) =± 1√
1+

1

tan2 (2α)

=± τxy∣∣∣∣∣∣
√(

σx−σy

2

)2

+ τ2
xy

∣∣∣∣∣∣
,

cos(2α) =± 1√
1+ tan2 (2α)

=±
σx−σy

2∣∣∣∣∣∣
√(

σx−σy

2

)2

+ τ2
xy

∣∣∣∣∣∣
.

(4.70)

Equation (4.70) provides two solutions (associated with the + and− signs) α1

and α2 = α1+π/2, which define the two principal stress directions (orthogonal)

to the plane being analyzed11. The corresponding principal stress directions are
obtained replacing the angle θ = α in (4.70) in (4.69), resulting in

σα =
σx +σy

2
+

σx−σy

2
cos(2α)+ τxy sin(2α) . (4.71)

σα →

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

σ1 =
σx +σy

2
+

√(
σx−σy

2

)2

+ τ2
xy

σ2 =
σx +σy

2
−
√(

σx−σy

2

)2

+ τ2
xy

(4.72)

11 The third principal stress direction is the direction perpendicular to the plane being ana-
lyzed (z- or x3-axis), see (4.61) and Figure 4.27.
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Figure 4.30: Inverse problem.

4.7.3 Inverse Problem
The problem consists in obtaining the stress state on any plane given the prin-
cipal stresses and the principal stress directions σ1 and σ2 in the plane being
analyzed. The stress state on any plane is characterized by the angle β that
forms the unit normal vector of the plane with the principal stress direction cor-
responding to σ1. As a particular case, the components of the stress tensor on
an elemental rectangle associated with the system of axes x− y can be obtained
(see Figure 4.29).

Consider now the Cartesian system x′ −y′, associated with the principal stress
directions (see Figure 4.30). Applying (4.69) with σx′ = σ1, σy′′ = σ2, τx′y′ = 0

and θ ≡ β results in

σβ =
σ1 +σ2

2
+

σ1−σ2

2
cos(2β )

τβ =
σ1−σ2

2
sin(2β )

(4.73)

4.7.4 Mohr’s Circle for Plane States (in 2 Dimensions)
Consider all the possible planes that contain point P and the values of the normal
and tangent stresses, σθ and τθ , defined in (4.69) for all the possible values of
θ ∈ [0,2π]. The stress state in the point for an inclined plane θ can now be
characterized by means of the pair

(σ = σθ , τ = τθ ) where σ ∈ R and τ ∈ R , (4.74)

which, in turn, determines a point (x≡ σ , y≡ τ) ∈ R×R of the plane σ − τ
in Figure 4.31. To determine the locus of points of said plane that characterizes
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all the possible stress states for planes that contain the point being analyzed, the
ensuing procedure is followed.

Considering a reference system that coincides with the principal stress di-
rections (as in Figure 4.30) and characterizing the inclination of the planes
by means of the angle β with the principal stress direction σ1, one obtains
from (4.73) ⎧⎪⎪⎨

⎪⎪⎩
σ − σ1 +σ2

2
=

σ1−σ2

2
cos(2β )

τ =
σ1−σ2

2
sin(2β )

(4.75)

and, squaring both equations and adding them up results in(
σ − σ1 +σ2

2

)2

+ τ2 =

(
σ1−σ2

2

)2

. (4.76)

Note that this equation, which will be valid for any value of the angle β , or,
in other words, for any arbitrarily oriented plane that contains the point, corre-
sponds to a circle with center C and radius R in the plane σ − τ given by (see
Figure 4.31)

C =

(
σ1 +σ2

2
, 0

)
and R =

σ1−σ2

2
. (4.77)

Consequently, the locus of points representative of a stress state on the planes
that contain P is a circle (named Mohr’s circle), whose construction is defined
in Figure 4.31.

The inverse proposition is also true: given a point of Mohr’s circle with co-
ordinates (σ , τ), there exists a plane that contains P whose normal and tangent
stresses are σ and τ , respectively. In effect, using (4.75) the following trigono-
metric expressions are obtained.

Figure 4.31: Mohr’s circle for plane stress states.
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Figure 4.32: Interpretation of the angle β .

cos(2β ) =

(
σ − σ1 +σ2

2

)
(

σ1−σ2

2

) =
σ −a

R

sin(2β ) =
τ(

σ1−σ2

2

) =
τ
R

(4.78)

These expressions uniquely define the angle β between the normal direction to
the plane and the principal stress direction σ1. The plane obtained corresponds
to the aforementioned stresses σ and τ . Figure 4.32 provides an interpretation
of the angle 2β in the Mohr’s circle itself.

4.7.5 Properties of the Mohr’s Circle
a) Obtaining the point in Mohr’s circle that is representative of the stress state

on a plane whose normal direction forms an angle β with the principal stress
direction σ1.

Take a representative point of the plane on which the principal stress direc-
tion σ1 acts (point (σ1, 0)) and rotate an angle 2β in the direction going
from σ1 to σβ (see Figure 4.32 and Figure 4.33).

b) The representative points in Mohr’s circle of two orthogonal planes are
aligned with the center of the circle (as a consequence of property a) ) for
β2 = β1 +π/2 (see Figure 4.34).
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Figure 4.33: Representative point associated with angle β in Mohr’s circle.

Figure 4.34: Representative points for two orthogonal planes in Mohr’s circle.

c) Mohr’s circle can be drawn if the stress state on two orthogonal planes is
known.

In effect, by means of property b) the points representative of these two or-
thogonal planes in plane σ − τ are aligned with the center of Mohr’s circle.
Therefore, joining both points provides the intersection with the σ -axis that
corresponds to the center of the circle. Since two additional points of the
circle are known, the circle can be drawn.

d) Mohr’s circle can be drawn if the components of the stress tensor in a certain
orthonormal base are known.

This is a particular case of property c) in which the points representative
of a stress state on Cartesian planes are known (see Figure 4.35). Note, in
this figure, how the radius and the diametrical points of the circle can be
obtained. In addition, note that the application of property a) on the point
representative of the plane perpendicular to the x-axis implies moving in the
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Figure 4.35: Calculation of the radius and diametrical points of Mohr’s circle for a stress

state on Cartesian planes.

opposite direction to that of angle α (angle of σx with σ1= - angle of σ1 with
σx =−α).

4.7.6 The Pole of Mohr’s Circle

Theorem 4.1. There exists a point in Mohr’s circle denoted pole or
origin of planes that has the following properties:

• Any straight line drawn from the pole P will intersect Mohr’s cir-
cle at a point A that represents the stress state on a plane parallel
in space to that line (see Figure 4.36).

• The inverse is also verified, that is, if a straight line, paral-
lel to a given plane, is drawn from the pole P, the intersection
point B represents the stress state on this particular plane (see
Figure 4.37).
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Figure 4.36: First property of the pole of Mohr’s circle.

Figure 4.37: Second property of the pole of Mohr’s circle.

Proof

Consider the stress tensor at the point being analyzed and its graphical rep-
resentation on the Cartesian planes of Figure 4.38 (left)12 denoted as plane A
(vertical plane) and plane B (horizontal plane). A and B are the corresponding
points in the Mohr’s circle drawn in Figure 4.38 (right).

1) Assuming property a) is verified, the pole of Mohr’s circle can be obtained
by drawing a vertical line from point A (parallel to plane A). Then, the pole P
is located at the intersection of this line with the Mohr’s circle. Also, drawing
a horizontal line from point B (parallel to plane B) determines the location of

12 Note that, following the sign criterion of Mohr’s circle, the tangent stress on plane A is
τ =−τxy.
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Figure 4.38: Proof of the properties of the pole of Mohr’s circle (1).

the pole at the intersection of this line with the Mohr’s circle. The same point
P is obtained in both cases, as is verified in the Figure 4.38.

2) Consider now an arbitrary plane whose normal direction forms an angle θ
with the horizontal direction (see Figure 4.39, left) and consider also the
normal and tangent stresses, σθ and τθ , respectively, according to this plane.
Assuming that the major principal stress direction σ1 forms an angle α with
the direction of stress σx, then, the direction of stress σθ forms an angle
(θ −α) with the major principal stress direction σ1.

Figure 4.39: Proof of the properties of the pole of Mohr’s circle (2).
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3) Consider the Mohr’s circle and the pole P obtained in step 1) (see Figure 4.39,
right)13. Using property a) of Section 4.7.5, point C can be obtained. This
point is representative of the Mohr’s circle that corresponds to the plane con-
sidered, obtained by rotating from point M a double angle equal to 2(θ −α)
such that the angle MOC is 2(θ −α). By construction, angle AOM is 2α
and angle AOC, the sum of both, is 2(θ −α)+ 2α = 2θ . The arc included
by this angle is AMC = 2θ . Then, the angle semi-inscribed in APC, which
includes arc AMC, will be θ , which proves that the straight line PC is paral-
lel to the trace of the plane considered. Since this plane could be any plane,
the validity of the property is proven.

Example 4.4 – Calculate the stresses acting on state III = I + II:

Solution

To be able to add states I and II, the stresses must act on the same planes.
Since the two states present planes with different orientations, the stresses
acting in state II must be found for the planes given in state I. To this aim, the
Mohr’s circle for state II must be drawn.

13 The following geometric properties are used here: a) the value of a central angle of a circle
is the same as the arc it includes; and b) the value of an angle semi-inscribed in a circle is
equal to half the arc it includes.
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To draw the circle, planes a and b are represented since their stress states are
known. The corresponding points in the Mohr’s circle belong to the abscissa
and determine, thus, the diameter of the circle.
The pole is obtained as the intersection of the lines that are parallel to the two
planes inclined at 45◦ and that contain the points that they represent. Once
the pole is determined, a horizontal line is drawn from it, whose intersection
with the Mohr’s circle (because it is tangent to the point, the intersection in
this case is the same pole) determines the point representative of the horizon-
tal plane (2,1). The same procedure is repeated for a vertical plane to obtain
point (2,−1). With this information, state II can be reconstructed on the hor-
izontal and vertical planes. Then, the stresses obtained are added to those of
state I to finally obtain state III.
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continuum mechanics soil mechanics

Figure 4.40: Differences in the sign criterion for continuum mechanics and soil mechan-

ics.

4.7.7 Mohr’s Circle with the Soil Mechanics Sign Criterion
The sign criterion, with respect to the normal and tangent stresses, used in soil
mechanics is the inverse of the one used in continuum mechanics (see Fig-
ure 4.40). The differences are:

• The positive stresses in soil mechanics are in the opposite direction (normal
stresses are positive when they are compressive, and the direction of the pos-
itive tangent stresses is defined by a counterclockwise rotation with respect
to the plane).

• The sign criterion for angles is the same (counterclockwise angles are posi-
tive).

Consequently, if the order of the principal stresses is respected (σ1 ≥ σ2), the
order of the principal stresses will be inverted in soil mechanics with respect to
continuum mechanics for a same stress state (see Figure 4.41).

Consider the fundamental expressions in (4.73), which are the starting point
in the construction and determination of the properties of the Mohr’s circle.
Using the two sign criteria for a same stress state results in:

continuum mechanics soil mechanics

Figure 4.41: Direction of the principal stresses for continuum mechanics and soil me-

chanics.
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Continuum mechanics: σβ , τβ , σ1, σ2, β

Soil mechanics:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

σ∗β =−σβ

τ∗β =−τβ

σ∗1 =−σ2

σ∗2 =−σ1

β ∗ = β +π/2

(4.79)

Replacing (4.79) in (4.73) yields

−σ∗β =
−σ∗2 −σ∗1

2
+
−σ∗2 +σ∗1

2
cos(2β ∗ −π)︸ ︷︷ ︸
−cos(2β ∗)

,

−τ∗β =
−σ∗2 +σ∗1

2
sin(2β ∗ −π)︸ ︷︷ ︸
−sin(2β ∗)

,
(4.80)

and, operating on these expressions finally results in

σ∗β =
σ∗1 +σ∗2

2
+

σ∗1 −σ∗2
2

cos(2β ∗) ,

τ∗β =
σ∗1 −σ∗2

2
sin(2β ∗) .

(4.81)

Note that the fundamental expressions in (4.81), obtained on the basis of the sign
criterion in soil mechanics, are the same as those in (4.73), obtained on the basis
of the sign criterion in continuum mechanics. Therefore, the construction of the
Mohr’s circle and the determination of its properties is the same in both cases.

4.8 Mohr’s Circle for Particular Cases
4.8.1 Hydrostatic Stress State
In an hydrostatic stress state, characterized by σ1 = σ2 = σ3 = σ , the Mohr’s
circles in three dimensions collapses into a point (see Figure 4.42).

Figure 4.42: Mohr’s circle for a hydrostatic stress state.
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4.8.2 Mohr’s Circles for a Tensor and its Deviator
The Mohr’s circles in three dimensions associated with a stress state and its
deviator differ in a translation equal to the mean stress (see Figure 4.43).

σσσ = σσσ sph︸︷︷︸
spherical

part

+ σσσ ′︸︷︷︸
deviator

part

; σσσ sph
not≡

⎡
⎢⎣σm 0 0

0 σm 0

0 0 σm

⎤
⎥⎦ =⇒

⎧⎪⎨
⎪⎩

σ1 = σm +σ1
′

σ2 = σm +σ2
′

σ3 = σm +σ3
′

Figure 4.43: Mohr’s circle for a stress state and its deviator.

4.8.3 Mohr’s Circles for a Plane Pure Shear Stress State

Definition 4.9. A plane pure shear stress state occurs at a point
when there are two orthogonal planes on which there is only tan-
gent (shear) stress (see Figure 4.44).

The Mohr’s circle corresponding to a pure shear stress state characterized by
a tangent stress τ∗ has as center the origin of axes and as radius R = |τ∗|.
The proof is immediate from the construction criteria of the Mohr’s circle (see
Figure 4.44, left).
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Figure 4.44: Mohr’s circle for a plane pure shear stress state.
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PROBLEMS

Problem 4.1 – The solid below is subjected to the following stress state in
equilibrium.

σσσ not≡
[

xy 5y

5y 4x

]
(in MPa)

Determine:

1) The expression of the forces per unit of mass acting on the solid.
2) The expression of the normal and tangent components of the forces act-

ing on the boundary, indicating their sign according to the Mohr’s cir-
cle criterion.

Solution

1) The expression of the body forces is obtained directly from the internal equi-
librium equation (4.26),

b =− 1

ρ
∇ ·σσσ =⇒ b not≡− 1

ρ

[
∂
∂x

,
∂
∂y

] [
xy 5y

5y 4x

]
=− 1

ρ

[
y+5

0

]
.

2) The normal (σ ) and tangent (τ) components of the body forces acting on the
boundary are given by

σ = t ·n and τ = t ·m with t = n ·σσσ ,

where n and m are the unit normal vector and the unit tangent vector of the
boundary, respectively. The boundary of the solid can be divided into three parts,
according to their n and m vectors:
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Boundary 1
The traction vector for this surface is

t1 = n1 ·σσσ not≡ 1√
2
[1, 1]

[
xy 5y

5y 4x

]
=

1√
2

[
xy+5y

5y+4x

]
.

Then, the corresponding normal and tangent components of the body forces are

σ1 = t1 ·n1
not≡ 1√

2
[xy+5y, 5y+4x]

1√
2

[
1

1

]
=

1

2
(4x+10y+ xy) ,

τ1 = t1 ·m1
not≡ 1√

2
[xy+5y, 5y+4x]

1√
2

[
1

−1

]
=

1

2
(−4x+ xy) .

This is now particularized for the x and y values corresponding to the boundary,
that is, for y = 1− x and x ∈ [0,1],⎧⎪⎪⎨

⎪⎪⎩
σ1 =

1

2

(
10−5x− x2

)
with x ∈ [0,1] ,

τ1 =
1

2

(−3x− x2
)

with x ∈ [0,1] .

Boundary 2
The traction vector for this surface is

t2 = n2 ·σσσ not≡ [0, −1]

[
xy 5y

5y 4x

]
=

[
−5y

−4x

]
.

Then, the corresponding normal and tangent components of the body forces are
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σ2 = t2 ·n2
not≡ [−5y, −4x]

[
0

−1

]
= 4x ,

τ2 = t2 ·m2
not≡ [−5y, −4x]

[
−1

0

]
= 5y .

This is now particularized for the x and y values corresponding to the boundary,
that is, for y = 0 and x ∈ [0,1],⎧⎨

⎩σ2 = 4x with x ∈ [0,1] ,

τ2 = 0 .

Boundary 3
The traction vector for this surface is

t3 = n3 ·σσσ not≡ [−1, 0]

[
xy 5y

5y 4x

]
=

[
−xy

−5y

]
.

Then, the corresponding normal and tangent components of the body forces are

σ3 = t3 ·n3
not≡ [−xy, −5y]

[
−1

0

]
= xy ,

τ3 = t3 ·m3
not≡ [−xy, −5y]

[
0

1

]
=−5y .

This is now particularized for the x and y values corresponding to the boundary,
that is, for x = 0 and y ∈ [0,1],⎧⎨

⎩σ3 = 0 ,

τ3 =−5y with y ∈ [0,1] .

Note that the results for boundaries 2 and 3 could have been obtained by direct
comparison since they are a horizontal and a vertical surface, respectively:

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems

doi:10.13140/RG.2.2.25821.20961



Con
tin

uum
M

ech
an

ics
for

Engin
eer

s

Theo
ry

an
d Pro

blem
s

©
X. O

liv
er

an
d C. A

ge
let

de Sar
ac

ibar

178 CHAPTER 4. STRESS

⎧⎨
⎩σ2 = σy with x ∈ [0,1]

τ2 = τxy with y = 0

⎧⎨
⎩σ3 = σx with x = 0

τ3 =−τxy =−5y with y ∈ [0,1]

Finally, the expression of the normal and tangent components of the forces act-
ing on the boundary of the solid are drawn, indicating the most significant val-
ues.
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Problem 4.2 – The following is known of a stress state.

1) The z-direction is a principal stress direction and σzz = a.
2) The mean stress is σm = a > 0.
3) The maximum shear stress in the planes that are parallel to the z-axis

is τmax = b > 0.

Draw, indicating the most significant values, the Mohr’s circle in three dimen-
sions of the stress tensor and its deviatoric tensor.

Solution

Note that the only difference there will be between the two circles is that one
will be translated a distance σm with respect to the other.
By means of the definition of the deviatoric stress tensor,

σσσ ′ = σσσ −σm1 =⇒ σ ′zz = σzz−σm = a−a = 0 =⇒ σ ′zz = 0

is deduced. The fact that the trace is an invariant and that the trace of the devia-
toric stress tensor is zero, Tr(σσσ ′) = 0, results in

σ ′xx +σ ′yy = 0 =⇒
{

σ ′zz = σ ′2 = 0 ,

σ ′1 +σ ′3 = 0 .

Finally, the radius of the major circumference (between σ ′1 and σ ′3) is determined
through the application of condition 3). The two Mohr’s circles are shown below.
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Problem 4.3 – Given the following information of a stress state in a certain
point,

1) σx = 1 (where the x-axis is a principal stress direction).
2) The maximum shear stress in the planes that are parallel to the x-axis

is 3.
3) The maximum shear stress in the planes that are parallel to the minor

principal stress direction is 2.

obtain all the possible Mohr’s circles corresponding to this state, indicating the
values of the principal stresses.

Solution

The following property of the Mohr’s circle in 3D must be taken into account to
solve this problem.

Circle number:

1 − corresponds to planes parallel to the principal stress direction of σ3.

2 − corresponds to planes parallel to the principal stress direction of σ1.

3 − corresponds to planes parallel to the principal stress direction of σ2.
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Then, the following possibilities are considered.

1. σx is the major principal stress, which results in the following Mohr’s
circle.

2. σx is the intermediate principal stress, which results in the following
Mohr’s circle.

3. σx is the minor principal stress, which is an impossible situation because
conditions 2) and 3) cannot be satisfied at the same time since they refer
to the maximum shear stress on the same plane.
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Problem 4.4 – Determine the values of α and β for which the following stress
states are possible, considering that σ > 0 and τ = 0.5σ .

Solution

The problem is solved following the same steps in all three cases, which are:

Step 1: Draw the Mohr’s circle corresponding to the stress state. Even for the
stress states in which only two different pairs of points (σ ,τ) belonging to the
Mohr’s circle are given, the circle can be drawn taking into account that it must
be symmetric with respect to the longitudinal axis.

Step 2: Identify the pole. In all cases, a straight horizontal line is drawn, which
must contain the point of the Mohr’s circle corresponding to the horizontal plane.
Then, the pole is identified as the point where the line crosses the circle again.
The horizontal plane is used to identify the pole because, of the three planes
shown for each stress state, it is the only one with a known orientation.

Step 3: Draw a straight line joining the pole and the two (σ ,τ) points corre-
sponding to the planes whose inclination must be obtained. The inclination of
these planes and, thus, the angles α and β are given directly by the orientation
of the lines drawn.

Step 4: The schematic description of the stress states on the three planes can be
redrawn with the appropriate inclination.
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( a )

( b )
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( c )

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems

doi:10.13140/RG.2.2.25821.20961



Con
tin

uum
M

ech
an

ics
for

Engin
eer

s

Theo
ry

an
d Pro

blem
s

©
X. O

liv
er

an
d C. A

ge
let

de Sar
ac

ibar

Problems and Exercises 185

Problem 4.5 – Calculate the possible values of σ , σ ′, σ ′′, τ , τ ′ and α for which
state III is the sum of states I and II, considering that τ ≥ 0.

Solution

Stress state II on the vertical plane must be found to be able to add states I and
II together.

The Mohr’s circle of state II will allow determining the normal and shear stress
on the vertical plane. The known stress state on the horizontal plane (4,−3)
belongs to the Mohr’s circle. Since it is known to be symmetric with respect
to the longitudinal axis, the stress state (4,3) must also belong to the Mohr’s
circle. Observing the figure representing state II, and considering that τ ≥ 0, it
is concluded that this point, (4,3), corresponds to the stress state on the plane
inclined at 45◦ in the counterclockwise direction. Thus,

τ = 3 .

Now, a third point belonging to the Mohr’s circle must be obtained in order to be
able to draw the complete circle. Because there exists only one pole and it must
belong to the Mohr’s circle, finding this point will allow completing the circle. A
straight horizontal line (parallel to the horizontal plane) is draw at point (4,−3),
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which corresponds to the stress state on a horizontal plane. Another straight line,
parallel to the other plane with a known stress state, the plane inclined at 45◦
in the counterclockwise direction, is drawn passing through the corresponding
stress state, (4,3). The point where these to lines meet provide the pole of the
Mohr’s circle, which is found to be at (−2,−3):

Once these three points are known, the Mohr’s circle can be drawn. Before cal-
culating the stress state on the vertical plane, the value of σ is sought. To obtain
the stress state on the plane inclined at 45◦ in the clockwise direction, a straight
line must be drawn, parallel to this plane, that crosses the pole.

This results in a line tangent to the pole, therefore, the stress state corresponding
to the pole is also the stress state on this plane and
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σ =−2 .

Finally, a vertical line is drawn from the pole and the intersection of this line with
the Mohr’s circle provides the stress state on the vertical plane, which results
in (−2,3).

Then, stress state II is defined on a vertical and horizontal plane as follows.

This allows adding stress states I and II to obtain state III,
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revealing the values of σ ′ and σ ′′.

σ ′ = 3

σ ′′ = 7

The values of τ ′ and α remain to be found. To this aim, the Mohr’s circle of
stress state III must be drawn. The points corresponding to the known stress
states on the vertical and horizontal planes are marked on the σ − τ space and,
in a procedure analogous to the one used for the Mohr’s circle of state II, the
pole is obtained. The circle can now be drawn and simple trigonometry allows
calculating its center at (2,0), which will be useful in the calculation of τ ′ and
α .

Drawing a vertical line at σ = 6 provides the values of τ ′ at the intersection of
this line with the circle. Two options are possible, one corresponding to a posi-
tive value of τ ′ and another corresponding to the same value but with a negative
sign. Following the sign criterion for the Mohr’s circle, and to be consistent with
the directions drawn in the figure representing state III, the value of τ ′ must be

τ ′ =−3
√

2 .

Since there are two possible values of τ ′, two values of α will exist, each cor-
responding to one of the τ ′ values. To obtain the values of α , a straight line is
drawn from the pole to each of the points representing the possible stress states
of the plane inclined at α in a clockwise direction.
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Determining the inclination of these two lines will result directly in the possible
values of α .

τ ′ =−3
√

2 ⇒ α+ = 180◦ − arctan
(

1+
√

2
3

)
� 141◦

−τ ′ = 3
√

2 ⇒ α− = arctan
(√

2−1
3

)
� 8◦

The two possible configurations of stress state III are pictured below.
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EXERCISES

4.1 – Determine all the possible values of
σ (σ > 0) and τ (τ > 0) in the figure knowing
that the maximum shear stress on any plane at
the point is τmax = 1.

4.2 – The following is known of the stress state in a point of a continuous
medium. The maximum shear stress in planes parallel to the principal stress
direction of σ1 is τmax = 2. Obtain all the values of σ1, σ2 and σ3 that make
possible the stress state σ = 2 and τ = 2 on a certain plane for the following
cases (separately).

a) The maximum shear stress in planes parallel to the principal stress di-
rection of σ2 is τmax

2 = 2.
b) The maximum shear stress in planes parallel to the principal stress di-

rection of σ3 is τmax
3 = 0.

c) The maximum shear stress in planes parallel to the principal stress di-
rection of σ2 is τmax

2 = 4.

4.3 – Determine for which values of σ∗ the fol-
lowing stress states are possible in the planes
belonging to P.

a) σ = 4 and τ = 2.
b) σ = 4 and τ = 1.
c) σ = 7 and τ = 0.
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4.4 – Obtain, in terms of τ , the principal stresses and the value of the maximum
shear stress of the state that results from the sum of states I and II.

4.5 – Given states I and II, determine the possible values of σ and τ for which
state III = I + II verifies that the principal stress σ2 is positive and its direction
forms a 30◦ angle with the y-axis.
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4.6 – Determine all the possible values of τ∗ for which the stress state that is the
sum of states I and II verifies the following conditions (separately).

a) There do not exist tensile stresses on any plane.
b) There do not exist compressive stresses on any plane.
c) The maximum shear stress (τmax) is less than 2.
d) It is a pure shear stress state.
e) It is a hydrostatic stress state.
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Ch.5. Balance Principles 
 

5.1. Balance Principles 



The following principles govern the way stress and deformation vary in 
the neighborhood of a point with time.  

 The conservation/balance principles: 
 Conservation of mass
 Linear momentum balance principle
 Angular momentum balance principle
 Energy balance principle or first thermodynamic balance principle

 The restriction principle: 
 Second thermodynamic law

 The mathematical expressions of these principles will be given in, 
 Global (or integral) form
 Local (or strong) form

Balance Principles 

REMARK 
These principles are always 
valid, regardless of the type of 
material and the range of 
displacements or deformations. 
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Ch.5. Balance Principles 

5.2. Convective Flux 



 The term convection is associated to mass transport, i.e., particle 
movement. 
 Properties associated to mass will be transported with the mass when

there is mass transport (particles motion) 

 Convective flux of an arbitrary property      through a control 
surface     : 

Convection 

S
S

Φ =
Aamountof crossing

unitof time

convective transport

A
S

8 

https://youtu.be/YZJF7pNlig8?t=00m00s


 Consider: 
 An arbitrary property      of a continuum medium (of any tensor order) 

 The description of the amount of the property per unit of mass,           
(specific content of the property     ) .

 The volume of particles        crossing a 
 differential surface       during the 
 interval                is 

 Then, 
 The amount of the property crossing the differential surface per unit of

time is:

Convective Flux or  
Flux by Mass Transport 

( ), tΨ x

A

  
 

dV dS dh dt dS
dm dV dSdtρ ρ

= ⋅ = ⋅
= = ⋅

v n
v n

  S
dmd dS

dt
ρΨ

Φ = = Ψ ⋅v n

dV
dS

[ ],t t dt+

A
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inflow 
outflow 0⋅ ≤v n

0⋅ ≥v n

 Consider: 
 An arbitrary property      of a
 continuum medium (of any tensor order) 
 The specific content of     (the amount

 of    per unit of mass)           . 

 Then, 
 The convective flux of      through a spatial surface,   , with unit

normal    is:

 If the surface is a closed surface,            , the net convective flux is: 

Convective Flux or  
Flux by Mass Transport 

A

( ), tΨ x

A

S
n

( )S s
t dSρΦ = Ψ ⋅∫ v n

( )V V
t dSρ∂ ∂

Φ = Ψ ⋅∫ v n
S V= ∂

=  outflow - inflow 

Where: 
is velocity 
is density ρ

v

A

10 

A

https://youtu.be/YZJF7pNlig8?t=10m58s


Convective Flux 

11 

REMARK 1 
The convective flux through a material surface is always null. 

REMARK 2 
Non-convective flux (conduction, radiation). Some properties can be 
transported without being associated to a certain mass of particles. Examples of 
non-convective transport are: heat transfer by conduction, electric current flow, 
etc. 
Non-convective transport of a certain property is characterized by the non-
convective flux vector (or tensor)            :( ), tq x

;
s s

dS dSρψ= ⋅ = ⋅∫ ∫q n v nconvectiveflnon - convectiveflu ux x
convective 
flux vector non-convective flux 

vector  

https://youtu.be/YZJF7pNlig8?t=15m05s


Example 

Compute the magnitude    and the convective flux      which correspond to the 
following properties: 

a) volume
b) mass
c) linear momentum
d) kinetic energy

SΦ

12 

https://youtu.be/nLtOm7DXt00?t=00m00s


Example - Solution 

a) If the arbitrary property is the volume of the particles:

The magnitude “property content per unit of mass” is volume per unit of 
mass, i.e., the inverse of density: 

 The convective flux of the volume of the particles    through the surface     is: 

V≡A

1V
M ρ

Ψ = =

1
S s s

dS dSρ
ρ

Φ = ⋅ = ⋅∫ ∫v n v n

SV

VOLUME FLUX 

( )S s
t dSρΦ = Ψ ⋅∫ v n

13 

https://youtu.be/nLtOm7DXt00?t=00m39s


Example - Solution 

b) If the arbitrary property is the mass of the particles:

The magnitude “property per unit of mass” is mass per unit of mass, i.e., the 
unit value: 

 The convective flux of the mass of the particles     through the surface     is: 

M≡A

1M
M

Ψ = =

1S s s
dS dSρ ρΦ = ⋅ = ⋅∫ ∫v n v n

SM

MASS FLUX 

( )S s
t dSρΦ = Ψ ⋅∫ v n

14 



Example - Solution 

c) If the arbitrary property is the linear momentum of the particles:

The magnitude “property per unit of mass” is mass times velocity per unit of 
mass, i.e., velocity: 

    The convective flux of the linear momentum of the particles         through the 
surface     is: 

M≡ vA

M
M

= =
v vΨ

( )S s
dSρ= ⋅∫ v v nΦ

S
M v

MOMENTUM FLUX

( )S s
t dSρΦ = Ψ ⋅∫ v n

15 



Example - Solution 

d) If the arbitrary property is the kinetic energy of the particles:

The magnitude “property per unit of mass” is kinetic energy per unit of 
mass, i.e.: 

    The convective flux of the kinetic energy of the particles         through the 
surface     is: 

21
2

M≡ vA

2

2

1
12
2

M

M
Ψ = =

v
v

( )21
2S s

dSρΦ = ⋅∫ v v n

S
21

2
M v

KINETIC ENERGY FLUX 

( )S s
t dSρΦ = Ψ ⋅∫ v n

16 
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Ch.5. Balance Principles 

5.3. Local and  Material Derivative 
of a Volume Integral 



 Consider: 
 An arbitrary property      of a continuum medium (of any tensor order) 

 The description of the amount of the property per unit of volume

  (density of the property     ),           

 The total amount of the property 
    in an arbitrary volume,   ,  is: 

 The time derivative of this volume integral is: 

Derivative of a Volume Integral 

A

( ), tµ x
REMARK 

   and      are related 
through   . 

Ψ

V

( ) ( ),  
V

Q t t dVµ= ∫ x

( ) ( ) ( )
0

lim
t

Q t t Q t
Q t

t∆ →

+ ∆ −
′ =

∆

A

18 

( )Q t

( )Q t t+ ∆

https://youtu.be/UcjnvugavWA?t=00m00s


( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0 0

0 0

,

,  ,  
,  lim lim

[ , , ]
, , ,

lim lim  

V V

t t
V

V

t t
V V

t
t

t t dV t dV
Q t t Q t

t dV
t t t

t t t dV
t t t t

dV dV
t t t

µ

µ µ
µ

µ µ
µ µ µ

∆ → ∆ →

∆ → ∆ →

 
 
 

∂
∂

+ ∆ −
+ ∆ −∂

= = =
∂ ∆ ∆

+ ∆ −
+ ∆ − ∂

= = =
∆ ∆ ∂

∫ ∫
∫

∫
∫ ∫

x

x x
x

x x
x x x



( )Q t

( )Q t t+ ∆ Control 
Volume, V 

 Consider: 
 The volume integral

 The local derivative of        is: 

 It can be computed as: 

Local Derivative of a Volume Integral 

REMARK 
The volume is fixed in 
space (control volume). 

( ) ( ),  
V

Q t t dVµ= ∫ x

( )
( ) ( )

0

, ,
, lim

t

not
V V

t
V

t t dV t dV
t dV

t

µ µ
µ

∆ →

+ ∆ −
∂

= =
∂ ∆

∫ ∫
∫

x x
x

local

derivative

( )Q t

19 

https://youtu.be/UcjnvugavWA?t=02m39s


( )Q t ( )Q t t+ ∆

 Consider: 
 The volume integral

 The material derivative of        is: 
 
 
 

 It can be proven that: 

Material Derivative of a Volume 
Integral 

REMARK 
The volume is mobile in space 
and can move, rotate and 
deform (material volume). 

( ) ( ),
V

Q t t dVµ= ∫ x

( )

( ) ( )
( ) ( )

0

,  

, ,
lim

x

x x
t

not

V V

V t t V t

t

d t dV
dt

t t dV t dV

t

µ

µ µ
≡

+∆

∆ →

= =

+ ∆ −
=

∆

∫

∫ ∫

material
derivative

( )Q t

( ) ( ) ( ),      
V V V V V Vt

d dt dV dV dV dVdV
dt t t dt

µ µµ µ µ µµ
≡

∂ ∂   = + ∇ ⋅ = + ∇ ⋅ = + ∇ ⋅   ∂ ∂   ∫ ∫ ∫ ∫ ∫x v v v
 



convectivelocal material  
derivative ofderivative of
the integralthe integral

 
derivative of
the integral

20 

https://youtu.be/UcjnvugavWA?t=06m39s
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Ch.5. Balance Principles 

5.4. Conservation of Mass 



 It is postulated that during a motion there are neither mass 
sources nor mass sinks, so the mass of a continuum body is a 
conserved quantity (for any part of the body). 

 The total mass           of 
    the system satisfies: 

 
 

 Where:

Principle of Mass Conservation 

( ) ( ) 0t t t= + ∆ >M M

( )tM

( ) ( ),
t

t tV
t t dV V Vρ

∆
= ∀∆ ⊂∫ xM

( ) ( ),
t t

t t t tV
t t t t dV V Vρ

+∆
+∆ +∆∆

+ ∆ = + ∆ ∀∆ ⊂∫ xM

22 

https://youtu.be/Pg3SB76lRC8?t=00m00s


 Conservation of mass requires that the material time derivative of 
the mass           be zero for any region of a material volume, 

 
 The global or integral spatial form of mass conservation principle: 

 By a localization process we obtain the local or differential 

spatial form of mass conservation principle: 

Conservation of Mass in Spatial Form 

( )tM

( ) ( ) ( )
0

lim 0 ,
t tV V Vt

t t t dt dV V V t
t dt

ρ
∆ ⊂ ≡∆ →

+ ∆ −
′ = = = ∀∆ ⊂ ∀

∆ ∫
M MM

( , ) 0 ,
t tV V V V V

d dt dV dV V V t
dt dt

ρρ ρ
∆ ⊂ ≡ ∆ ⊂

 = + ∇ ⋅ = ∀∆ ⊂ ∀ 
 ∫ ∫x v

( , )
( , ) ( , )( )( , ) ( )( , ) 0 ,

x
x xv x v x x

for V dV t
d t tt t V t

dt t
ρ ρρ ρ

∆ →
∂

+ ⋅ = + ⋅ = ∀ ∈ ∀
∂

∇ ∇

(localization process) CONTINUITY 
EQUATION 

( ),  ( ) 
V V Vt

d dt dV dV
dt dt

µµ µ
≡

= + ∇ ⋅∫ ∫x v

23 

https://youtu.be/Pg3SB76lRC8?t=01m58s


 Consider the relations: 

 The global or integral material form of mass conservation 
principle can be rewritten as: 
 

 
 

 The local material form of mass conservation principle reads :
  

Conservation of Mass in Material Form 

1( )
F

v
F

d
dt

⋅ =∇

( )
0 0

0

0

0 0 0

( , )1 ( , )( ) ( ) ( ( , ) )  

 ,  0 ,

[ | |]( , )

V
V V

V V

t

d td d tdV dV t dV
dt dt dt t t

t dV V V t
t

t

ρ ρ ρρ ρ ρ

ρ

ρ 

∆

∆

  

⊂

∂
∂

∂∂
+ ∇ ⋅ = + = +

∂ ∂

∂
→ = ∀∆ ⊂ ∀  ∂

∫ ∫ ∫

∫

F F XXv F X
F

F X

F X


0
0 ,t

t

V tρρ = ∀ ∈ ∀X
F

( ) ( )


( ) ( )0 0

1

 , 0 t tt t
t

t
ρ ρ ρ= =

=

∂
= =  ∂

F X X F X F X

24 

( , )t
t

ρ∂
∂
X 0dVF

0

F
F v

F

d
dt

dV dV


= ⋅


 =

∇

https://youtu.be/Pg3SB76lRC8?t=11m53s
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Ch.5. Balance Principles 

5.5. Reynolds Transport Theorem 



 Consider: 
 An arbitrary property       of a continuum medium (of any tensor order) 

 The spatial description of the amount of the property per unit of
mass,              (specific contents of    ) 

 The amount of the property       in the continuum body at time   
for an arbitrary material volume is: 

 Using the material time derivative leads to, 
 
 

 Thus, 

Reynolds Lemma 

A

( ), tψ x
A

( )
tV V

Q t dVρψ
=

= ∫
t

 
V V Vt

d ddV dV
dt dt

ψρψ ρ
≡

=∫ ∫ REYNOLDS 
LEMMA 

0d
dt
ρ ρ+ ⋅ =v∇

( ) ( ) ( ) ( )  
V V V Vt

d d d dQ t dV dV dV
dt dt dt dt

ψ ρρψ ρψ ρψ ρ ψ ρ
≡

   ′ = = + ⋅ = + + ⋅      ∫ ∫ ∫v v∇ ∇

=0 
(continuity equation) 

d d
dt dt
ψ ρρ ψ= +

26 

A

https://youtu.be/1Ev1HoFoIQs?t=00m00s


 
V

dVρψ∫

V∂
dV

d
dt
ψρ

1ê
2ê3ê

 The amount of the property     in the continuum body at time   for
an arbitrary fixed control volume is: 

 Using the material time derivative leads to, 

 And, introducing the Reynolds Lemma 
    and Divergence Theorem: 

Reynolds Transport Theorem 

A
( )

V

Q t dVρψ= ∫
t

( ) ( ) 
     

tV V V V

d dV dV dV
dt t

ρ ψ
ρψ ρ ψ

≡

∂
= + ⋅

∂∫ ∫ ∫ v∇

( )     v n
V V V

d dV dV dS
dt t

ρψψρ ρ ψ
∂

∂
= + ⋅

∂∫ ∫ ∫
REMARK 
The Divergence Theorem: 
 
 

v n v v n
V V V

dV dS dS
∂ ∂

∇ ⋅ = ⋅ = ⋅∫ ∫ ∫

( ) ( ),    x v
V V V Vt

d t dV dV dV
dt t

µ µ µ
≡

∂
= + ∇ ⋅
∂∫ ∫ ∫

; 

( )   
V

dVρ ψ=
∂

⋅∫ n v 
V

d dVdt
ψρ= ∫

27 

https://youtu.be/1Ev1HoFoIQs?t=03m28s


 
V

dVρψ∫

V∂
dV

d
dt
ψρ

1ê
2ê3ê

 The eq. can be rewritten as: 
 

Reynolds Transport Theorem 

      
V V V

ddV dV dS
t dt

ψρ ψ ρ ρ ψ
∂

∂
= − ⋅

∂ ∫ ∫ ∫ v n REYNOLDS TRANSPORT 
THEOREM 

Change (per unit of time) of 
the  total amount of     . within 
the control volume V at time t. 

A

Rate of change of the amount of property 
integrated over all particles that are filling 
the control volume V at time t. 

A

Change due to the net outward 
convective flux of      through the 
boundary      . 

A

( )     v n
V V V

d dV dV dS
dt t

ρψψρ ρ ψ
∂

∂
= + ⋅

∂∫ ∫ ∫

V∂

28 

https://youtu.be/1Ev1HoFoIQs?t=07m42s


 
V

dVρψ∫

V∂

dV

d
dt
ψρ

1ê
2ê3ê

Reynolds Transport Theorem 

      
V V V

ddV dV dS
t dt

ψρ ψ ρ ρ ψ
∂

∂
= − ⋅

∂ ∫ ∫ ∫ v n REYNOLDS TRANSPORT 
THEOREM (integral form) 

      
V V V

ddV dV dS
t dt

ψρ ψ ρ ρ ψ
∂

∂
= − ⋅

∂ ∫ ∫ ∫ v n

(  ) (   )d V t
t dt

ψρ ψ ρ ρ ψ∂
= − ⋅ ∀ ∈ ∀

∂
v x∇

REYNOLDS TRANSPORT 
THEOREM (local form) 

(  ) [ (   )] 
V V V V

ddV dV V V t
t dt

ψρ ψ ρ ρ ψ
∆ ⊂ ∆ ⊂

∂
= − ⋅ ∀∆ ⊂ ∀

∂∫ ∫ v∇

(   ) 
V

dVρ ψ= ⋅∫ v∇(  ) 
V

dV
t
ρ ψ∂

=
∂∫

29 
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Ch.5. Balance Principles 
 

5.6. General Balance Equation 



 Consider: 
 An arbitrary property       of a 

continuum medium (of any tensor order)
 The amount of the property per

unit of mass,      

 The rate of change per unit of time 
    of the amount  of       in the control volume V is due to: 

a) Generation of the property per unit mas and time time due to a source:     
b) The convective (net incoming) flux across the surface of the volume.
c) The non-convective (net incoming) flux across the surface of the volume:  

 So, the global form of the general balance equation is: 

General Balance Equation 

A

( ), tψ x

        
V V V V

dV k dV dS dS
t

ρ ψ ρ ρ ψ
∂ ∂

∂
= − ⋅ − ⋅

∂ ∫ ∫ ∫ ∫v n j n


A A

a cb

A
( , )k tx



A

source term

( , )tj x


A

non-convective
flux vector

31 

https://youtu.be/AQDodDd17OM?t=00m00s


 The global form is rewritten using the Divergence Theorem and 
the definition of local derivative: 

 

 

 The local spatial form of the general balance equation is: 
 
 

General Balance Equation 

d
dt kψρ ρ= − ⋅ jA A∇

( ) ( ) ( )

( )

     

    

  

V V

V V

V V V V

dV dS
t

dV k dV
t

d dV k dV V V t
dt

ρ ψ ρ ψ

ρ ψ ρ ψ ρ

ψρ ρ

∂

∆ ⊂ ∆ ⊂

∂
+ ⋅ =

∂

∂ = + ⋅ = − ⋅ ∂ 

= − ⋅ ∀∆ ⊂ ∀

∫ ∫

∫ ∫

∫ ∫

v n

v j

j

A A

A A

∇ ∇

∇

        
V V V V

dV k dV dS dS
t

ρ ψ ρ ρ ψ
∂ ∂

∂
= − ⋅ − ⋅

∂ ∫ ∫ ∫ ∫v n j nA A

REMARK 
For only convective transport              then                   
and the variation of the contents of     in a given particle 
is only due to the internal generation        . 

d
dt kψρ ρ= A( )=j 0A

kρ A

d
dt
ψρ= (Reynolds Theorem)

32 



Example 

If the property       is associated to mass                , then: 
 The amount of the property per unit of mass is         . 
 The mass generation source term is           . 

 The mass conservation principle states that mass cannot be generated.

 The non-convective flux vector is           . 
 Mass cannot be transported in a non-convective form.

Then, the local spatial form of the general balance equation is: 

 

A ≡A M
1ψ =

 

1 1
(  ) (   ) 0d

dt t
ψρ ρ ψ ρ ψ

= =

∂
= + ⋅ =
∂

v∇

0k =M

0=jM

( ) 0
t
ρ ρ∂
+ ⋅ =

∂
v∇

 

00
0d

dt kψρ ρ
==

= − ⋅ =jA A∇

33 

( ) 0d V t
t dt
ρ ρρ ρ∂
+ ⋅ = + ⋅ = ∀ ∈ ∀

∂
v v x∇ ∇

Two equivalent forms of 
the continuity equation. 

d
dt kψρ ρ= − ⋅ jA A∇

( ) (   )d V
t dt

ψρψ ρ ρ ψ∂
= − ⋅ ∀ ∈

∂
v x∇

https://youtu.be/AQDodDd17OM?t=10m31s


34 

Ch.5. Balance Principles 

5.7. Linear Momentum Balance 



 Applying Newton’s 2nd Law to the discrete system formed by n 
particles, the resulting force acting on the system is: 

 

 

 For a system in equilibrium,                 : 

Linear Momentum  
in Classical Mechanics 

( )


( )

1 1 1

1 1

n n n
i

i i i i
i i i

n n
i

i i i
i i

dt m m
dt

d tdmd m
dt dt dt

= = =

= =

= = = =

= − =

∑ ∑ ∑

∑ ∑

vR f a

v v

Resulting force
on the system

P

mass conservation 
principle: 0idm

dt
=

0, t= ∀R

( ) 0
d t

dt
=

P
( )t cnt=P CONSERVATION OF THE

LINEAR MOMENTUM 

35 

( )t=P linear momentum

https://youtu.be/jW-1p3RLHIc?t=00m00s


 The linear momentum of a material volume     of a continuum 
medium with mass       is: 

Linear Momentum 
in Continuum Mechanics 

M
tV

( ) ( ) ( ) ( ), , ,
V

t t d t t dVρ= =∫ ∫v x x v x
M

MP

d dVρ=M

( )
1

n

i i
i

t m
=

=∑ vP

36 

https://youtu.be/jW-1p3RLHIc?t=09m15s


 The time-variation of the linear momentum of a material volume is 
equal to the resultant force acting on the material volume. 

 Where:

 If the body is in equilibrium, the linear momentum is conserved: 

Linear Momentum Balance Principle 

( ) ( )  
tV

d t d dV t
dt dt

ρ= =∫ v R
P

( )    
V V

t dV dSρ
∂

= +∫ ∫R b t
body forces 

surface forces 

( ) 0t =R
( ) ( )d t

t cnt
dt

= =0
P P

37 

https://youtu.be/jW-1p3RLHIc?t=10m09s


 The global form of the linear momentum balance principle: 

 

 Introducing               and using the Divergence Theorem, 

 So, the global form is rewritten: 

Global Form of the  
Linear Momentum Balance Principle 

( )

( )

( )     ,
t tV V V V V V V

t

d tdt dV dS dV V V t
dt dt

ρ ρ
∆ ⊂ ∂∆ ⊂ ∆ ⊂ ≡

= + = = ∀∆ ⊂ ∀∫ ∫ ∫R b t v


P

P

= ⋅t n σ

   
V V V

dS dS dV
∂ ∂

= ⋅ = ⋅∫ ∫ ∫t n σ ∇ σ

( )

   

  +   ,
t t

V V V V

V V V V V

dV dS

ddV dV V V t
dt

ρ

ρ ρ

∆ ⊂ ∂∆ ⊂

∆ ⊂ ∆ ⊂ ≡

+ =

= ⋅ = ∀∆ ⊂ ∀

∫ ∫

∫ ∫

b t

b v∇ σ
38 

https://youtu.be/jW-1p3RLHIc?t=12m48s


 Applying Reynolds Lemma to the global form of the principle: 
 

 

 Localizing, the linear momentum balance principle reads: 

 
 

Local Form of the  
Linear Momentum Balance Principle 

( )      ,
t tV V V V V V V

d ddV dV dV V V t
dt dt

ρ ρ ρ
∆ ⊂ ∆ ⊂ ≡ ∆ ⊂

⋅ = = ∀∆ ⊂ ∀∫ ∫ ∫
vb v∇ σ +

( , )
( , )( , )  ( , )  ( , ) ,

x
v xx b x a x x

V dV t
d tt t t V t

dt
ρ ρ ρ

∆ →

⋅ = = ∀ ∈ ∀∇ σ +

LOCAL FORM OF THE LINEAR 
MOMENTUM BALANCE 

  (CAUCHY’S EQUATION OF MOTION) 

39 
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Ch.5. Balance Principles 

5.8. Angular Momentum Balance 



 Applying Newton’s 2nd Law to the discrete system formed by n 
particles, the resulting torque acting on the system is: 
 

 

 
 For a system in equilibrium,                     : 

Angular Momentum  
in Classical Mechanics 

( )
1 1

1 1 1

n n
i

O i i i i
i i

n n n
i

i i i i i i i i
i i i

dt m
dt

dd d dm m m
dt dt dt dt

= =

= = =

= × = × =

= × − × = × =

∑ ∑

∑ ∑ ∑

vM r f r

rr v v r v L

0,O t= ∀M
( ) 0

d t
t

dt
= ∀

L
( )t cnt=L CONSERVATION OF THE

ANGULAR MOMENTUM

i= v

=0 

( ) ( )
O

d t
t

dt
=M

L

41 

( )t= L
angular momentum 

https://youtu.be/tQklDrhQb8M?t=00m26s


 The angular momentum of a material volume     of a continuum 
medium with mass       is: 

Angular Momentum 
in Continuum Mechanics 

M
tV

( )


( ) ( ) ( ), , ,
V

t t d t t dVρ
≡

= × = ×∫ ∫x
r v x x x v x

M

ML

d dVρ=M

42 

https://youtu.be/tQklDrhQb8M?t=06m52s


 The time-variation of the angular momentum of a material volume 
with respect to a fixed point is equal to the resultant moment with 
respect to this fixed point. 

 
 
 

 Where:

Angular Momentum Balance Principle 

( )


( )  
t

O
V V

d t d dV t
dt dt

ρ
≡ ≡

= × =∫ x
r v M

L

( )    O
V V

t dV dSρ
∂

= × + ×∫ ∫M r b r t

torque due to 
body forces 

torque due to 
surface forces 
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https://youtu.be/tQklDrhQb8M?t=07m43s


 The global form of the angular momentum balance principle: 
 

 

 Introducing               and using the Divergence Theorem, 
 
 

 It can be proven that, 

Global Form of the  
Angular Momentum Balance Principle 

(  ) ( ) (  ) 
tV V V V

ddV dS dV
dt

ρ ρ
∂ ≡

× + × = ×∫ ∫ ∫r b r t r v

= ⋅t n σ

( )

( )

    

 

T T

V V V V

T

V

dS dS dS dS

dV
∂ ∂ ∂ ∂

× = × ⋅ = × ⋅ = × ⋅ =

= × ⋅

∫ ∫ ∫ ∫

∫

r t r n r n r n

r

σ σ σ

σ ∇

( )
ˆ ;

r r m

m e

T

i i i ijk jkm m σ

 × ⋅ = ×∇ ⋅ +


= = 

σ ∇ σ
REMARK 
      is the Levi-Civita 
permutation symbol. 

ijk
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https://youtu.be/tQklDrhQb8M?t=09m40s


 Applying Reynolds Lemma to the right-hand term of the global 
form equation: 

 

 Then, the global form of the balance principle is rewritten: 

Global Form of the  
Angular Momentum Balance Principle 

( ) ˆ   vr b e rijk jk i
V V

ddV dV
dt

ρ σ ρ × +∇ ⋅ + = × ∫ ∫σ

( ) ( )  

 

r v r v r v

r v vv r r

t tV V V V V

V V

d d ddV dV dV
dt dt dt

d d ddV dV
dt dt dt

ρ ρ ρ

ρ ρ

≡

↓

≡

× = × = × =

 = × + × = × 
 

∫ ∫ ∫

∫ ∫

Reynold's
Lemma

= v

=0  
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 Rearranging the equation: 

 

 Localizing 

Local Form of the  
Angular Momentum Balance Principle 

  0 ( , ) ,
V V

V V

d dV t dV V V t
dt

ρ ρ
∆ ⊂

∆ ⊂

  × ∇ ⋅ + + = = ∀∆ ⊂ ∀    ∫ ∫
vr b m m x 0σ −

=0  (Cauchy’s Eq.) 

{ }( , ) 0 ; , , 1, 2,3 ; ,m x 0 xi ijk jk tt m i j k V tσ= = = ∈ ∀ ∈ ∀

 

 

 

123 23 132 32 23 32

231 31 213 13 31 13

312 12 321 21 12 21

1 1

1 1

1 1

1 0

2 0

3 0

i

i

i

σ σ σ σ

σ σ σ σ

σ σ σ σ

= =−

= =−

= =−

⇒ ⇒

⇒ ⇒

⇒ ⇒

= + = =

 = + = =


= + = =



 

 

 

( , ) ( , ) ,T
tt t V t= ∀ ∈ ∀x x xσ σ

SYMMETRY OF THE CAUCHY’S STRESS TENSOR 

11 12 13

12 22 23

13 23 33

σ σ σ
σ σ σ
σ σ σ

 
 ≡  
  

σ
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https://youtu.be/tQklDrhQb8M?t=15m21s
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Ch.5. Balance Principles 

5.9. Mechanical Energy Balance 



 Power,           , is the work performed in the system per unit of 
time. 

 In some cases, the power is an exact time-differential of a 
function (then termed) energy    :

 It will be assumed that the continuous medium absorbs power 
from the exterior through: 
 Mechanical Power: the work performed by the mechanical actions

(body and surface forces) acting on the medium.
 Thermal Power: the heat entering the medium.

Power 

( )W t

( )( ) d tW t
dt

=
E

E
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https://youtu.be/FyKnJ1gA5Lw?t=00m00s


 The external mechanical power is the work done by the body 
forces and surface forces per unit of time. 
 In spatial form it is defined as:

External Mechanical Power 

( )e V V
P t dV dSρ

∂
= ⋅ + ⋅∫ ∫b v t v



  d dV dV
dt

ρ ρ

=

⋅ = ⋅

v

rb b v



d dS dS
dt
=

⋅ = ⋅

v

rt t v

https://youtu.be/FyKnJ1gA5Lw?t=05m22s


 Using              and the Divergence Theorem, the traction 
contribution reads, 

 
 

 Taking into account the identity:                 

 So,

Mechanical Energy Balance 

= ⋅t n σ



( ) ( ) ( ) :
V V V V

dS dS dV dV
∂ ∂

⋅
⋅ = ⋅ ∇ ⋅ ⋅ =⋅ = ∇ ⋅ ⋅ + ∇  ∫ ∫ ∫ ∫

n
v n vt v v v

σ
σσ σ σ

= l
spatial velocity 
gradient tensor 

skew
symmetric

= +l d w
= +: l : d : wσ σ σ

=0  

( ) :
V V V

dS dV dV
∂

⋅ = ⋅ ⋅ +∫ ∫ ∫t v v d∇ σ σ
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↓

Divergence
Theorem

https://youtu.be/FyKnJ1gA5Lw?t=11m44s


 Substituting and collecting terms, the external mechanical power 
in spatial form is, 

Mechanical Energy Balance 

( ) ( )

( )

:

: :

V Ve V

V V V V

V

dV dV

dt

d

d

S

P t dV

ddV dV dV dV
dt

ρ

ρ

ρ ρ

∂

∇ ⋅ ⋅

⋅

=

= ⋅ + + =

= ∇ ⋅ + ⋅ + = ⋅ +

∫
∫ ∫∫

∫ ∫ ∫ ∫

v d

v

t v

b v

vb v d v d







σ σ

σ σ σ



2

v

1 1( ) ( v )
2 2

d d
dt dt

ρρ
=

= ⋅ =
v

v v

( ) 2 21 1( v )  ( v )  
2 2e

V V V V

d dP t dV dV dV dV
dt dt

ρ ρ
↓

= + = +∫ ∫ ∫ ∫: d : d

Reynold's
Lemma

σ σ

  d
dt

ρ ρ⋅ =
vb∇ σ +
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Mechanical Energy Balance. Theorem of 
the expended power. Stress power 

( ) 21 v  
2

t

e V V
V V V

dP t dV dS dV dV
dt

ρ ρ
∂

≡

= ⋅ + ⋅ = +∫ ∫ ∫ ∫b v t v : dσ

external mechanical power 
entering the medium stress power kinetic energy 

( ) ( )e
dP t t P
dt σ= +K

REMARK 
The stress power is the mechanical power entering the system which is not spent 
in changing the kinetic energy. It can be interpreted as the work by unit of time 
done by the stress in the deformation process of the medium. 
A rigid solid will produce zero stress power (        ) . 

K

=d 0

Pσ
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Theorem of the expended 
mechanical power 



 The external thermal power is incoming heat in the continuum 
medium per unit of time. 

 The incoming heat can be due to: 
 Non-convective heat transfer across the

volume’s surface.
 

 Internal heat sources

External Thermal Power 

( , )  
V

t dS
∂

− ⋅ =∫ q x n


heat conduction
 flux vector

incoming heat
unit of time

 

( , )
V

r t dVρ =∫ x


specific  
internal  heat 
production

heat generated by internal sources
unit of time
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https://youtu.be/FyKnJ1gA5Lw?t=28m15s


 The external thermal power is incoming heat in the continuum medium 
per unit of time. 
 In spatial form it is defined as:

 where: 
            is the non-convective  heat flux vector per unit of spatial surface 
           is the internal heat source rate per unit of mass. 

External Thermal Power 

( )

 

) 

   (  ) 

n q

q

q n qe
V V V

V

V

dS

dV

Q t r dV dS r dVρ ρ
∂

∂
= ⋅

= ⋅

= − ⋅ = − ⋅

∫
∫

∫ ∫ ∫


(∇

∇

( ),r tx
( ), tq x
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 The total power entering the continuous medium is: 

Total Power 

21 v     
2e e

V V V V Vt

dP Q dV dV r dV dS
dt

ρ ρ
≡ ∂

+ = + + − ⋅∫ ∫ ∫ ∫: d q nσ

55 



56 

Ch.5. Balance Principles 

5.10. Energy Balance 



 A thermodynamic system is a macroscopic region of the continuous 
medium, always formed by the same collection of continuous matter 
(material volume). It can be: 

 A thermodynamic system is characterized and defined by a set of 
thermodynamic variables                which define the thermodynamic 
space. 

 The set of thermodynamic variables necessary to uniquely define a 
system is called the thermodynamic state of a system. 

Thermodynamic Concepts 

HEAT 

MATTER 

ISOLATED SYSTEM OPEN SYSTEM 

1, 2, .... nµ µ µ
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Thermodynamic space 

https://youtu.be/eL2U3P7-CoI?t=00m00s


 A thermodynamic process is the energetic development of a 
thermodynamic system which undergoes successive thermodynamic states, 
changing from an initial state to a final state  

 → Trajectory in the thermodynamic space. 
 If the final state coincides with the initial state, it is a closed cycle process.

 A state function is a scalar, vector or tensor entity defined univocally as a 
function of the thermodynamic variables for a given system. 
 It is a property whose value does not depend on the path taken to reach that

specific value.

Thermodynamic Concepts 

58 

https://youtu.be/eL2U3P7-CoI?t=04m36s


Is a function                     uniquely valued in terms of the “thermodynamic state” 
or,  equivalently,  in terms of the thermodynamic variables                     

  Consider a function                , that is not a state function,  implicitly defined in 
the thermodynamic space by the differential form: 

 The thermodynamic processes      and      yield: 

 

 For    to be a state function, the differential form must be 
an exact differential:             , i.e.,      must be integrable: 

 The necessary and sufficient condition for this is the equality of cross-derivatives:

State Function 

( )1 2,φ µ µ
{ }1 2, , , nµ µ µ

( ) ( )1 1 2 1 2 1 2 2, ,  f d f dδφ µ µ µ µ µ µ= +

1 1
'

1 2

2 2

2 1 2 2

' 2 1 2 2

( , )

( , )

B A

BB

B A

f

f

φ φ δφ µ µ δµ
δφ δφ φ φ

φ φ δφ µ µ δµ

Γ Γ

Γ Γ

Γ Γ

 = + = ≠ ≠
 = + =


∫ ∫
∫ ∫

∫ ∫

( ) ( ) { }11 ,...,,...,
, 1,...j ni n

j i

ff
i j n

µ µµ µ
µ µ

∂∂
= ∀ ∈

∂ ∂
dδφ φ=
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( )1,..., nφ µ µ

1Γ 2Γ

https://youtu.be/eL2U3P7-CoI?t=06m44s


POSTULATES: 
1. There exists a state function         named total energy of the system, such that its 

material time derivative is equal to the total power entering the system:
 
 

2. There exists a function          named the internal energy of the system, such that: 
 It is an extensive property, so it can be defined in terms of a specific internal energy (or

internal energy per unit of mass)           : 

 The variation of the total energy of the system is:

First Law of Thermodynamics 

( )tE

( ) ( ) ( ) 2

( )( )

1: v     
2e e

V V V V Vt

eQ teP t

d dt P t Q t dV dV r dV dS
dt dt

ρ ρ
≡ ∂

= + = + + − ⋅∫ ∫ ∫ ∫: d q n




E σ

( )tU

( ),u tx
( ) :

V

t u dVρ= ∫U

( ) ( ) ( )d d dt t t
dt dt dt

= +E K U

REMARK 
     and       are exact differentials, 
therefore, so is                            .  
Then, the internal energy is a 
state function.  

dKdE
d d d= −U E K
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https://youtu.be/eL2U3P7-CoI?t=13m45s


 Introducing the expression for the total power into the first 
postulate: 

 Comparing this to the expression in the second postulate: 

 The internal energy of the system must be: 

Global Form of the  
Internal Energy Balance 

( ) 21 v     
2V V V V Vt

d dt dV dV r dV dS
dt dt

ρ ρ
≡ ∂

= + + − ⋅∫ ∫ ∫ ∫: d q nE σ

=K

( )     
tV V V V V

d dt u dV dV r dV dS
dt dt

ρ ρ
≡ ∂

= = + − ⋅∫ ∫ ∫ ∫: d q nU σ GLOBAL FORM 
 OF THE INTERNAL 
ENERGY BALANCE 

  ,   
external thermal power 

( )eQ t  
stress power 

( )P tσ
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( ) ( ) ( )d d dt t t
dt dt dt

= +E K U

https://youtu.be/ou1xIx1qvCg?t=00m48s


 Applying Reynolds Lemma to the global form of the balance 
equation, and using the Divergence Theorem: 
 
 

 
 

 Then, the local spatial form of the energy balance principle is 
obtained through localization                      as: 

Local Spatial Form of the 
Internal Energy Balance 

( )  ,du r V t
dt

ρ ρ= + −∇⋅ ∀ ∈ ∀: d q xσ
LOCAL FORM OF THE 

ENERGY BALANCE 
(Energy equation) 

( )

 

    

    

( )
t t t tV V V V V V V V V V V V

V V V V V V V V

V V
dV

d d dut u dV dV dV r dV dS
dt dt dt

du dV dV r dV dV V V t
dt

t

ρ ρ ρ

ρ ρ

∆ ⊂ ≡ ∆ ⊂ ≡ ∆ ⊂ ∆ ⊂ ∂∆ ⊂

∆ ⊂ ∆ ⊂ ∆ ⊂ ∆ ⊂

∂∆ ⊂

∇⋅

= = = + − ⋅

⇒ = + − ∇⋅ ∀∆ ⊂ ∀

∫

∫ ∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

q

: d q n

: d q





U

U

σ

σ
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( , )V dV t∆ → x

https://youtu.be/ou1xIx1qvCg?t=03m52s


 The total energy is balanced in all thermodynamics processes 
following: 

 In an isolated system (no work can enter or exit the system)
 

 However, it is not established if the energy exchange can happen 
in both senses or not:  

 There is no restriction indicating if an imagined arbitrary process  is
physically possible or not.

Second Law of Thermodynamics 

( ) ( )e e
d d dP t Q t
dt dt dt

+ = = +
E K U

( ) ( ) 0e e
dP t Q t
dt

+ = =
E 0d d

dt dt
+ =

U K

0 0d d
dt dt

< >
U K0 0d d

dt dt
> <

U K
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https://youtu.be/jsMGP-M9Bbc?t=00m00s


 If a brake is applied on a spinning wheel, the
speed is reduced due to the conversion of kinetic
energy into heat (internal energy). This process
never occurs the other way round.

 Spontaneously, heat always flows to regions of
lower temperature, never to regions of higher
temperature.

Second Law of Thermodynamics 

 The concept of energy in the first law does not account for 
the observation that natural processes have a preferred 
direction of progress. For example: 

0 0d d
dt dt

> <
U K

64 24/04/2017 MMC - ETSECCPB - UPC 

https://youtu.be/jsMGP-M9Bbc?t=06m22s


 A reversible process can be “reversed” by means of infinitesimal 
changes in some property of the system. 
 It is possible to return from the final state to the initial state along the same path.

 A process that is not reversible is termed irreversible. 

 The second law of thermodynamics allows discriminating: 

Reversible and Irreversible Processes 

REVERSIBLE PROCESS IRREVERSIBLE PROCESS 

65 

REVERSIBLE 

IRREVERSIBLE 

IMPOSSIBLE 

POSSIBLE 
thermodynamic processes 

https://youtu.be/jsMGP-M9Bbc?t=13m04s


POSTULATES: 
1. There exists a state function           denoted absolute temperature, 

which is always positive.

2. There exists a state function    named entropy, such that:
 It is an extensive property, so it can be defined in terms of a specific entropy

or entropy per unit of mass   :

 The following inequality holds true:

Second Law of Thermodynamics 

( ), tθ x

S

s
( ) s ( , )

V

S t t dVρ= ∫ x

( ) s
V V V

d d rS t dV dV dS
dt dt

ρ ρ
θ θ∂

= ≥ − ⋅∫ ∫ ∫
q n

Global form of the 2nd 
Law of 

Thermodynamics 

= reversible process 
> irreversible process 
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https://youtu.be/vadRZzxZypE?t=00m00s


 

 

Second Law of Thermodynamics 

( ) s
V V V

d d rS t dV dV dS
dt dt

ρ ρ
θ θ∂

= ≥ − ⋅∫ ∫ ∫
q n

Global form of the 2nd 
Law of 

Thermodynamics 

= reversible process 
> irreversible process 

( )    e
V V

Q t r dV dSρ
∂

= − ⋅∫ ∫ q n
rate of the total amount of the entity heat, per unit 
of time, (external thermal power) entering into the 
system   

( )    e
V V

rt dV dSρ
θ θ∂

Γ = − ⋅∫ ∫
q n

rate of the total amount of the entity heat per unit 
of absolute temperature, per unit of time (external 
heat/unit of temperature power) entering into the 
system  

( )e t= Γ

67 

SECOND LAW OF THERMODYNAMICS IN CONTINUUM MECHANICS 
The rate of the total entropy of the system is equal o greater than the rate of heat per 
unit of temperature 

https://youtu.be/vadRZzxZypE?t=08m15s


 Consider the decomposition of entropy into two (extensive) counterparts: 
 Entropy generated inside the continuous medium:

 Entropy generated by interaction with the outside medium:

Second Law of Thermodynamics 

( ) ( ) ( )s ,i i

V

S t dVρ= ∫ x

( ) ( ) ( )s ,e e

V

S t dVρ= ∫ x

( ) ( ) ( ) ( ) ( )
( ) ( )

i e

i e

S t S t S t

dS dS dS
dt dt dt

= +

= +
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https://youtu.be/vadRZzxZypE?t=13m48s


 If one establishes, 

 Then the following must hold true: 

 And thus, 

 

 

 

Second Law of Thermodynamics 

( ) ( )
 0

i e

V V V V

dS dS dS dS r dV dS V V t
dt dt dt dt

ρ
θ θ∆ ⊂ ∂∆ ⊂

 
= − = − − ⋅ ≥ ∀∆ ⊂ ∀ 

 
∫ ∫

q n

( )
 

e

e
V V

dS r dV dS
dt

ρ
θ θ∂

= Γ = − ⋅∫ ∫
q n

( ) ( )

( )

 
i e

V V

edS
dt

dS dS dS r dV dS
dt dt dt

ρ
θ θ∂

=

+ = ≥ − ⋅∫ ∫
q n
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REPHRASED SECOND LAW OF THERMODYNAMICS : 
The internally generated entropy of the system ,          ,  never decreases along time( ) ( )iS t



 The previous eq. can be rewritten as: 

 

 Applying the Reynolds Lemma and the Divergence Theorem: 

 

 

 Then, the local spatial form of the second law of thermodynamics is: 

Local Spatial Form of the  
Second Law of Thermodynamics 

( )    0
t t

i

V V V V V V V V V Vt t

d d rs dV s dV dV dS V V t
dt dt

ρ ρ ρ
θ θ∆ ⊂ ≡ ∆ ⊂ ≡ ∆ ⊂ ∂∆ ⊂

 
= − − ⋅ ≥ ∀∆ ⊂ ∀ 

 
∫ ∫ ∫ ∫

q n

( )
0

i

V V V V V V V V

ds ds rdV dV dV dV V V t
dt dt

ρ ρ ρ
θ θ∆ ⊂ ∆ ⊂ ∆ ⊂ ∆ ⊂

  = − − ⋅ ≥ ∀∆ ⊂ ∀  
  

∫ ∫ ∫ ∫
q

∇

( )
0 ,

ids ds r V t
dt dt

ρ ρ ρ
θ θ

  = − − ⋅ ≥ ∀ ∈ ∀    

q x∇

= reversible process 
> irreversible process 
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Local (spatial) form of the 2nd 
Law of Thermodynamics 
(Clausius-Duhem inequality) 

https://youtu.be/d-qohTFUFWg?t=00m00s


 Considering that, 

 The Clausius-Duhem inequality can be written as 

 

Local Spatial Form of the  
Second Law of Thermodynamics 

2

1 1( ) θ
θ θ θ

⋅ = ⋅ − ⋅
q q q∇ ∇ ∇

( )

2

1 1 0
ids ds r

dt dt
θ

θ ρθ ρθ
 

= − + ⋅ − ⋅ ≥ 
 

q q∇ ∇

( )is=  s= 

( )i
locals=  ( )i

conds= 

REMARK  
(Stronger postulate) 
Internally generated entropy can 
be generated locally,        , or by 
thermal conduction,         , and 
both must be non-negative. 

( )i
conds

( )i
locals

Because density and absolute temperature are 
always positive, it is deduced that                  , 
which is the mathematical expression for the fact 
that heat flows by conduction from the hot parts of 
the medium to the cold ones.  

0θ⋅ ≤q ∇

1 0rs
θ ρθ

 
− + ⋅ ≥ 

 
q ∇

CLAUSIUS-PLANCK 
INEQUALITY  2

1 0θ
ρθ

− ⋅ ≥q ∇

HEAT FLOW 
INEQUALITY  
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https://youtu.be/d-qohTFUFWg?t=04m19s


 Substituting the internal energy balance equation given by 

into the Clausius-Planck inequality, 

yields, 

Alternative Forms of the  
Clausius-Planck Inequality 

:
notdu u r

dt
ρ ρ ρ= = + −∇⋅d q σ

: 0i
locals s rρθ ρθ ρ= − +∇⋅ ≥q 

( ) : 0u sρ θ− − + ≥d  σ

:r uρ ρ∇⋅ − = −q d σ

( ): 0s uρθ ρ+ − ≥d σ

Clausius-Planck Inequality 
in terms of the 

specific internal energy 

72 

https://youtu.be/d-qohTFUFWg?t=16m03s
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Ch.5. Balance Principles 

5.11. Governing Equations 



Conservation of Mass. 
Continuity Equation. 

1 eqn. 

Governing Equations in Spatial Form 

0ρ ρ+ ∇⋅ =v

Linear Momentum Balance.  
First Cauchy’s Motion Equation. 

3 eqns. ρ ρ∇⋅ + =b vσ

Angular Momentum Balance. 
Symmetry of Cauchy Stress Tensor. 

3 eqns. 
T=σ σ

Energy Balance.  
First Law of Thermodynamics. 

1 eqn. :u rρ ρ= + −∇⋅d q σ

Second Law of Thermodynamics. 
Clausius-Planck Inequality. 

Heat flow inequality 
2 restrictions 

( ) 0u sρ θ− − + ≥: d  σ

2

1 0θ
ρθ

− ⋅ ≥q ∇
8 PDE +  
2 restrictions 
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https://youtu.be/8JgReg_zQME?t=00m53s


 The fundamental governing equations involve the following variables: 
 
 
 
 
 
 
 
 
 

 

 At least 11 equations more (assuming they do not involve new unknowns), 
are needed to solve the problem, plus a suitable set of boundary and 
initial conditions.  

 

 

 

 

 

 

 

Cauchy’s stress tensor field 

Governing Equations in Spatial Form 

v

σ

u

θ

s

q

density 1 variable ρ

velocity vector field 3 variables 

9 variables 

specific internal energy 1 variable 

absolute temperature 

heat flux per unit of surface vector field 3 variables 

1 variable 

specific entropy 1 variable 
19 scalar 
unknowns 

76 



Thermo-Mechanical 
Constitutive Equations. 6 eqns. 

Constitutive Equations in Spatial Form 

Thermal Constitutive Equation. 
Fourier’s Law of Conduction. 3 eqns. 

State Equations. (1+p) eqns. 

(19+p) PDE + 
(19+p) unknowns 

( ), ,θ= vσ σ ζ

( ), ,s s θ= v ζ 1 eqn. 

( ), Kθ θ= = −q q v ∇

( ) { }, , 0 1,2,...,iF i pρ θ = ∈ζ
( ), , ,u f ρ θ= v ζ

Kinetic 
Heat 

Entropy  
Constitutive Equation. 

set of new thermodynamic 
variables:                          .{ }1 2, ,..., p=ζ ζ ζ ζ

REMARK 1 
The strain tensor      is not considered an unknown as they 
can be obtained through the motion equations, i.e.,            .( )= vε ε

REMARK 2 
These equations are 
specific to each material. 
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https://youtu.be/8JgReg_zQME?t=06m26s


Conservation of Mass. 
Continuity Mass Equation. 

1 eqn. 

The Coupled  
Thermo-Mechanical Problem 

0ρ ρ+ ∇⋅ =v

Linear Momentum Balance.  
First Cauchy’s Motion Equation. 

3 eqns. 

Energy Balance.  
First Law of Thermodynamics. 

1 eqn. 

Second Law of Thermodynamics. 
Clausius-Planck Inequality. 

2 restrictions. 

 Mechanical constitutive equations. 6 eqns. ( ( ), )θvσ = σ ε

16 scalar 
unknowns 

10  
equations 

MMC - ETSECCPB - UPC 78 

https://youtu.be/8JgReg_zQME?t=11m03s


 The mechanical and thermal problem can be uncoupled if 

 The temperature distribution           is known a priori or does not intervene in 
the mechanical constitutive equations. 

 Then, the mechanical problem can be solved independently. 

The Uncoupled  
Thermo-Mechanical Problem 

( ), tθ x
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Conservation of Mass. 
Continuity Mass Equation. 

1 eqn. 

The Uncoupled  
Thermo-Mechanical Problem 

0ρ ρ+ ∇⋅ =v

Linear Momentum Balance.  
First Cauchy’s Motion Equation. 

3 eqns. 

Energy Balance.  
First Law of Thermodynamics. 

1 eqn. 

Second Law of Thermodynamics. 
Clausius-Planck Inequality. 

2 restrictions. 

Mechanical 
problem 

Thermal 
problem 

 
 

Mechanical constitutive equations. 6 eqns. 

10 scalar 
unknowns 

( ( ), θvσ = σ ε )
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 Then, the variables involved in the mechanical problem are: 

 

 

 

 
 
 
 
 
 
 

 

 

 

 

The Uncoupled  
Thermo-Mechanical Problem 

Cauchy’s stress tensor field 

v

σ

density 1 variable ρ

velocity vector field 3 variables 

6 variables 

u

θ

s

q

specific internal energy 1 variable 

absolute temperature 

heat flux per unit of surface vector field 3 variables 

1 variable 

specific entropy 1 variable 

Mechanical 
variables 

Thermal 
variables 
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Chapter 5
Balance Principles

5.1 Introduction
Continuum Mechanics is based on a series of general postulates or principles
that are assumed to always be valid, regardless of the type of material and the
range of displacements or deformations. Among these are the so-called balance
principles:

• Conservation of mass
• Balance of linear momentum
• Balance of angular momentum
• Balance of energy (or first law of thermodynamics)

A restriction that cannot be rigorously understood as a balance principle must
be added to these laws, which is introduced by the

• Second law of thermodynamics

5.2 Mass Transport or Convective Flux
In continuum mechanics, the term convection is associated with mass transport
in the medium, which derives from the motion of its particles. The continuous
medium is composed of particles, some of whose properties are associated with
the amount of mass: specific weight, angular momentum, kinetic energy, etc.
Then, when particles move and transport their mass, a transport of the these
properties occurs, named convective transport (see Figure 5.1).

Consider A, an arbitrary (scalar, vector or tensor) property of the continuous
medium, and Ψ (x, t), the description of the amount of said property per unit of
mass of the continuous medium. Consider also S, a control surface, i.e., a surface
fixed in space (see Figure 5.2). Due to the motion of the particles in the medium,
these cross the surface along time and, in consequence, there exists a certain
amount of the property A that, associated with the mass transport, crosses the
control surface S per unit of time.
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194 CHAPTER 5. BALANCE PRINCIPLES

Figure 5.1: Convective transport in the continuous medium.

Definition 5.1. The convective flux (or mass transport flux) of a
generic property A through a control surface S is the amount of A
that, due to mass transport, crosses the surface S per unit of time.

convective flux
of A through S

not
= ΦS =

amount of A crossing S
unit of time

Figure 5.2: Convective flux through a control surface.
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Mass Transport or Convective Flux 195

Figure 5.3: Cylinder occupied by the particles that have crossed dS in the time inter-

val [t, t +dt].

To obtain the mathematical expression of the convective flux ofA through the
surface S, consider a differential surface element dS and the velocity vector v of
the particles that at time t are on dS (see Figure 5.3). In a time differential dt,
these particles will have followed a pathline dx = vdt, such that at the instant of
time t+dt they will occupy a new position in space. Taking now into account all
the particles that have crossed dS in the time interval [t, t +dt], these will occupy
a cylinder generated by translating the base dS along the directrix dx = vdt, and
whose volume is given by

dV = dS dh = v ·n dt dS . (5.1)

Since the volume (dV ) of the particles crossing dS in the time interval
[t, t +dt] is known, the mass crossing dS in this same time interval can be ob-
tained by multiplying (5.1) by the density,

dm = ρ dV = ρv ·n dt dS . (5.2)

Finally, the amount of A crossing dS in the time interval [t, t +dt] is calculated
by multiplying (5.2) by the function Ψ (amount of A per unit of mass),

Ψ dm = ρΨ v ·n dt dS . (5.3)

Dividing (5.3) by dt yields the amount of the property that crosses the differ-
ential control surface dS per unit of time,

d ΦS =
Ψ dm

dt
= ρΨ v ·n dS . (5.4)

Integrating (5.4) over the control surface S results in the amount of the property
A crossing the whole surface S per unit of time, that is, the convective flux of the
property A through S.

convective flux
of A through S

}
ΦS =

∫
S

ρΨv ·n dS (5.5)

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems
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196 CHAPTER 5. BALANCE PRINCIPLES

Example 5.1 – Compute the magnitude Ψ and the convective flux ΦS corre-
sponding to the following properties: a) volume, b) mass, c) linear momen-
tum, d) kinetic energy.

Solution

a) If the property A is the volume occupied by the particles, then Ψ is the
volume per unit of mass, that is, the inverse of the density. Therefore,

A≡V and Ψ =
1

ρ
lead to ΦS =

∫
S

v ·ndS = volume flow rate .

b) If the property A is the mass, then Ψ is the mass per unit of mass, that
is, the unit. Therefore,

A≡M and Ψ = 1 lead to ΦS =
∫
S

ρ v ·ndS .

c) If the property A is the linear momentum (= mass × velocity), then Ψ
is the linear momentum per unit of mass, that is, the velocity. Therefore,

A≡ mv and Ψ = v lead to ΦS =
∫
S

ρ v(v ·n) dS .

(Note that in this case Ψ and the convective flux ΦS are vectors).

d) If the property A is the kinetic energy then Ψ is the kinetic energy per
unit of mass. Therefore,

A≡ 1

2
m |v|2 and Ψ =

1

2
|v|2 lead to ΦS =

∫
S

1

2
ρ |v|2 (v ·n) dS .

Remark 5.1. In a closed control surface1, S = ∂V , the expression of
the convective flux corresponds to the net outflow, defined as the
outflow minus the inflow (see Figure 5.4), that is,

net convective flux of A not
= Φ∂V =

∫
∂V

ρΨ v ·n dS .
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Mass Transport or Convective Flux 197

Figure 5.4: Net outflow through a closed control surface.

Remark 5.2. The convective flux of any property through a material
surface is always null. Indeed, the convective flux of any property is
associated, by definition, with the mass transport (of particles) and,
on the other hand, a material surface is always formed by the same
particles and cannot be crossed by them. Consequently, there is no
mass transport through a material surface and, therefore, there is no
convective flux through it.

Remark 5.3. Some properties can be transported within a continuous
medium in a manner not necessarily associated with mass transport.
This form of non-convective transport receives several names (con-
duction, diffusion, etc.) depending on the physical problem being
studied. A typical example is heat flux by conduction.
The non-convective transport of a property is characterized by the
non-convective flux vector (or tensor) q(x, t), which allows defining
the (non-convective) flux through a surface S with unit normal vector
n as

non-convective flux =
∫
S

q ·n dS .

1 Unless stated otherwise, when dealing with closed surfaces, the positive direction of the
unit normal vector n is taken in the outward direction of the surface.
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198 CHAPTER 5. BALANCE PRINCIPLES

5.3 Local and Material Derivatives of a Volume Integral
Consider A, an arbitrary (scalar, vector or tensor) property of the continuous
medium, and μ , the description of the amount of said property per unit of vol-
ume2,

μ (x, t) =
amount of A

unit of volume
. (5.6)

Consider an arbitrary volume V in space. At time t, the total amount Q(t) of the
property contained in this volume is

Q(t) =
∫
V

μ (x, t) dV . (5.7)

To compute the content of property A at a different time t +Δ t, the following
two situations arise:

1) A control volume V is considered and, therefore, it is fixed in space and
crossed by the particles along time.

2) A material volume that at time t occupies the spatial volume Vt ≡ V is
considered and, thus, the volume occupies different positions in space
along time.

Different values of the amount Q(t +Δ t) are obtained for each case, and com-
puting the difference between the amounts Q(t +Δ t) and Q(t) when Δ t → 0
yields

Q′ (t) = lim
Δ t→0

Q(t +Δ t)−Q(t)
Δ t

, (5.8)

resulting in two different definitions of the time derivative, which lead to the
concepts of local derivative and material derivative of a volume integral.

5.3.1 Local Derivative

Definition 5.2. The local derivative of the volume integral,

Q(t) =
∫
V

μ (x, t) dV ,

is the time derivative of Q(t) when the volume V is a volume fixed
in space (control volume), see Figure 5.5. The notation

local derivative
not
=

∂
∂ t

∫
V

μ (x, t) dV

will be used.

2 μ is related to Ψ = (amount of A)/(unit of mass) through μ = ρΨ and has the same tensor
order as the property A .
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Local and Material Derivatives of a Volume Integral 199

Figure 5.5: Local derivative of a volume integral.

The amount Q of the generic property A in the control volume V at times t
and t +Δ t is, respectively,

Q(t) =
∫
V

μ (x, t) dV and Q(t +Δ t) =
∫
V

μ (x, t +Δ t) dV . (5.9)

Using (5.9) in addition to the concept of time derivative of Q(t) results in3

Q′ (t) =
∂
∂ t

∫
V

μ (x, t) dV = lim
Δ t→0

1

Δ t

(
Q(t +Δ t)−Q(t)

)
=

= lim
Δ t→0

1

Δ t

⎛
⎝∫

V

μ (x, t +Δ t) dV −
∫
V

μ (x, t) dV

⎞
⎠=

=
∫
V

lim
Δ t→0

μ (x, t +Δ t)−μ (x, t)
Δ t︸ ︷︷ ︸

∂ μ (x, t)
∂ t

dV =
∫
V

∂ μ (x, t)
∂ t︸ ︷︷ ︸

local
derivative

of μ

dV ,

(5.10)
which yields the mathematical expression of the local derivative of a volume
integral.

Local derivative of a volume integral
∂
∂ t

∫
V

μ (x, t) dV =
∫
V

∂ μ (x, t)
∂ t

dV
(5.11)

3 Note that the integration domain does not vary when the volume V is considered as a control
volume and, therefore, is fixed in space.
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200 CHAPTER 5. BALANCE PRINCIPLES

5.3.2 Material Derivative

Definition 5.3. The material derivative of the volume integral,

Q(t) =
∫
V

μ (x, t) dV ,

is the time derivative of Q(t) when the volume Vt is a material vol-
ume (mobile in space), see Figure 5.6. The notation

material derivative
not
=

d
dt

∫
Vt

μ (x, t) dV

will be used.

The content Q of the generic propertyA in the material volume Vt at times t and
t+Δ t is, respectively,

Q(t) =
∫
Vt

μ (x, t) dV and Q(t +Δ t) =
∫

Vt+Δ t

μ (x, t +Δ t) dV . (5.12)

Then, the material derivative is mathematically expressed as4

Q′ (t) =
d
dt

∫
Vt

μ (x, t) dV

∣∣∣∣∣
Vt≡V

= lim
Δ t→0

Q(t +Δ t)−Q(t)
Δ t

=

= lim
Δ t→0

1

Δ t

⎛
⎝ ∫

Vt+Δ t

μ (x, t +Δ t) dV −
∫
Vt

μ (x, t) dV

⎞
⎠ .

(5.13)

The following step consists in introducing two variable substitutions, each
suitable for one of the two integrals in (5.13), which lead to the same integra-
tion domain in both expressions. These variable substitutions are given by the
equation of motion x = ϕ (X, t), particularized for times t and t +Δ t,⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xt = ϕ (X, t) → (dx1 dx2 dx3)t︸ ︷︷ ︸
dVt

= |F(X, t)| (dX1 dX2 dX3)︸ ︷︷ ︸
dV0

,

xt+Δ t = ϕ (X, t +Δ t) → (dx1 dx2 dx3)t+Δ t︸ ︷︷ ︸
dVt+Δ t

= |F(X, t +Δ t)| (dX1 dX2 dX3)︸ ︷︷ ︸
dV0

,

(5.14)

4 Note that the integration domains are now different at times t and t +Δ t.
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Local and Material Derivatives of a Volume Integral 201

Figure 5.6: Material derivative of a volume integral.

where the identity dVt = |F(X, t)| dV0 has been taken into account. The variable
substitutions in (5.14) are introduced in (5.13), resulting in

d
dt

∫
Vt

μ (x, t) dV = lim
Δ t→0

1

Δ t

( ∫
V0

μ̄ (X, t +Δ t)︷ ︸︸ ︷
μ (x(X, t +Δ t) , t +Δ t) |F(X, t +Δ t)| dV0

−
∫
V0

μ (x(X, t) , t)︸ ︷︷ ︸
μ̄ (X, t)

|F(X, t)| dV0

)
=

=
∫
V0

lim
Δ t→0

μ̄ (X, t +Δ t) |F(X, t +Δ t)|− μ̄ (X, t) |F(X, t)|
Δ t︸ ︷︷ ︸

∂
∂ t

(
μ̄ (X, t) |F(X, t)|

)
=

d
dt

(
μ (x, t) |F(x, t)|

)
dV0 =

=
∫
V0

d
dt

(
μ |F|

)
dV0 .

(5.15)
Finally, expanding the last integral in (5.15) 5 and considering the equality
d |F|/dt = |F| ∇ ·v yields

d
dt

∫
Vt

μ (x, t) dV =
∫
V0

d
dt

(
μ |F|

)
dV0 =

∫
V0

(
dμ
dt
|F|+ d |F|

dt︸︷︷︸
|F| ∇ ·v

μ

)
dV0 =

=
∫
V0

(
dμ
dt

+μ∇ ·v
)
|F| dV0︸ ︷︷ ︸

dVt

=
∫
Vt

(
dμ
dt

+μ∇ ·v
)

dV ,

(5.16)

5 The change of variable xt = ϕ (X, t) is undone here.
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202 CHAPTER 5. BALANCE PRINCIPLES

that is6,

d
dt

∫
Vt

μ (x, t) dV

∣∣∣∣∣∣
Vt≡V

not
=

d
dt

∫
Vt≡V

μ (x, t) dV =
∫
V

(
dμ
dt

+μ∇ ·v
)

dV . (5.17)

Recalling the expression of the material derivative of a property (1.15) results in

d
dt

∫
Vt≡V

μ (x, t) dV =
∫
V

(
∂ μ
∂ t

+v ·∇μ +μ∇ ·v︸ ︷︷ ︸
∇ · (μv)

)
dV =

=
∫
V

∂ μ
∂ t

dV +
∫
V

∇ · (μv) dV =
∂
∂ t

∫
V

μ dV +
∫
V

∇ · (μv) dV ,

(5.18)

where the expression of the local derivative (5.11) has been taken into account.
Then, (5.18) produces the expression of the material derivative of a volume in-
tegral.

Material derivative of a volume integral
d
dt

∫
Vt≡V

μ (x, t) dV

︸ ︷︷ ︸
material

derivative

=
∂
∂ t

∫
V

μ dV

︸ ︷︷ ︸
local

derivative

+
∫
V

∇ · (μv) dV

︸ ︷︷ ︸
convective
derivative

(5.19)

Remark 5.4. The form of the material derivative, given as a sum of a
local derivative and a convective derivative, that appears when differ-
entiating properties of the continuous medium (see Chapter 1, Sec-
tion 1.4) also appears here when differentiating integrals in the con-
tinuous medium. Again, the convective derivative is associated with
the existence of a velocity (or motion) in the medium and, thus, with
the possibility of mass transport.

6 The expression
d
dt

∫
Vt≡V

μ (x, t) dV

denotes the time derivative of the integral over the material volume Vt (material derivative of
the volume integral) particularized at time t, when the material volume occupies the spatial
volume V .

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems

doi:10.13140/RG.2.2.25821.20961



Con
tin

uum
M

ech
an

ics
for

Engin
eer

s

Theo
ry

an
d Pro

blem
s

©
X. O

liv
er

an
d C. A

ge
let

de Sar
ac

ibar

Conservation of Mass. Mass continuity Equation 203

Figure 5.7: Principle of conservation of mass in a continuous medium.

5.4 Conservation of Mass. Mass continuity Equation

Definition 5.4. Principle of conservation of mass. The mass of a
continuous medium (and, therefore, the mass of any material vol-
ume belonging to this medium) is always the same.

Consider a material volume Vt that at times t and t +Δ t occupies the volumes
in space Vt and Vt+Δ t , respectively (see Figure 5.7). Consider also the spatial
description of the density, ρ (x, t). The mass enclosed by the material volume V
at times t and t +Δ t is, respectively,

M (t) =
∫
Vt

ρ (x, t) dV and M (t +Δ t) =
∫

Vt+Δ t

ρ (x, t +Δ t) dV . (5.20)

By virtue of the principle of conservation of mass,M (t) =M (t +Δ t) must be
satisfied.

5.4.1 Spatial Form of the Principle of Conservation of Mass. Mass
Continuity Equation

The mathematical expression of the principle of conservation of mass of the
material volume M (t) is that the material derivative of the integral (5.20) is
null,

M′ (t) =
d
dt

∫
Vt

ρ dV = 0 ∀t . (5.21)
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204 CHAPTER 5. BALANCE PRINCIPLES

By means of the expression of the material derivative of a volume integral (5.17),
the integral (or global) spatial form of the principle of conservation of mass
results in

Global spatial form of the principle of conservation of mass

d
dt

∫
Vt

(ΔVt )

ρ dV =
∫
Vt

(ΔVt )

(
dρ
dt

+ρ ∇ ·v
)

dV = 0 ∀ΔVt ⊂Vt , ∀t
, (5.22)

which must be satisfied for Vt and, also, for any partial material volume ΔVt ⊂Vt
that could be considered. In particular, it must be satisfied for each of the ele-
mental material volumes associated with the different particles in the continuous
medium that occupy the differential volumes dVt . Applying (5.22) on each dif-
ferential volume dVt ≡ dV (x, t) yields7

∫
dV (x,t)

(
dρ
dt

+ρ∇ ·v
)

dV =

(
dρ (x, t)

dt
+ρ (x, t)∇ ·v(x, t)

)
dV (x, t) = 0

∀x ∈Vt , ∀t

=⇒ dρ
dt

+ρ∇ ·v = 0 dV ∀x ∈Vt , ∀t
(5.23)

Local spatial form of the principle of conservation of mass
(mass continuity equation)

dρ
dt

+ρ∇ ·v = 0 dV ∀x ∈Vt , ∀t

(5.24)

which constitutes the so-called mass continuity equation. Replacing the expres-
sion of the material derivative of the spatial description of a property (1.15) in
(5.24) results in

∂ρ
∂ t

+v ·∇ρ +ρ∇ ·v︸ ︷︷ ︸
∇ · (ρv)

= 0 =⇒ ∂ρ
∂ t

+∇ · (ρv) = 0 , (5.25)

which yields an alternative expression of the mass continuity equation.

7 This procedure, which allows reducing a global (or integral) expression such as (5.22) to
a local (or differential) one such as (5.24), is named in continuum mechanics localization
process.
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Conservation of Mass. Mass continuity Equation 205

∂ρ
∂ t

+∇ · (ρv) = 0

∂ρ
∂ t

+
∂ (ρvi)

∂xi
= 0 i ∈ {1,2,3}

∂ρ
∂ t

+
∂ (ρvx)

∂x
+

∂ (ρvy)

∂y
+

∂ (ρvz)

∂ z
= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∀x ∈Vt , ∀t (5.26)

5.4.2 Material Form of the Principle of Conservation of Mass
From (5.22)8,∫

Vt

(
dρ
dt

+ρ∇ ·v
)

dV =
∫
Vt

(
dρ
dt

+ρ
1

|F|
d |F|
dt

)
dV =

=

∫
Vt

1

|F|
(
|F| dρ

dt
+ρ

d |F|
dt

)
︸ ︷︷ ︸

d
dt

(
ρ |F|

)
dV =

∫
Vt

1

|F|
d
dt

(
ρ |F|

)
dV︸︷︷︸
|F|dV0

=

=
∫
V0

∂
∂ t

(
ρ (X, t) |F(X, t)|

)
dV0 ∀ΔV0 ⊂V0, ∀t ,

(5.27)
where the integration domain is now the volume in the reference configura-
tion, V0. Given that (5.27) must be satisfied for each and every part ΔV0 of V0, a
localization process can be applied, which results in9

∂
∂ t

(
ρ (X, t) |F(X, t)|

)
= 0 ∀X ∈V0, ∀t

=⇒ ρ (X, t) |F(X, t)|= ρ (X) |F(X)| ∀t

=⇒ ρ (X,0) |F|(X,0)︸ ︷︷ ︸
not
= ρ0 |F|0

= ρ (X, t) |F|(X, t)︸ ︷︷ ︸
not
= ρt |F|t

=⇒ ρ0 |F|0︸︷︷︸
= 1

= ρt |F|t .

(5.28)

Local material form of the mass conservation principle

ρ0 (X) = ρt (X) |F|t (X) ∀X ∈V0, ∀t (5.29)

8 Here, the expression deduced in Chapter 2, d |F|/dt = |F| ·∇ ·v , is considered.
9 The equality F(X,0) = 1 =⇒ |F|0 = 1 is used here.
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206 CHAPTER 5. BALANCE PRINCIPLES

5.5 Balance Equation. Reynolds Transport Theorem
Consider A, an arbitrary (scalar, vector or tensor) property of the continuous
medium, and Ψ (x, t), the description of the amount of said property per unit of
mass. Then, ρΨ (x, t) is the amount of this property per unit of volume.

5.5.1 Reynolds’ Lemma
Consider an arbitrary material volume of the continuous medium that at time t
occupies the volume in space Vt ≡ V . The amount of the generic property A in
the material volume Vt at time t is

Q(t) =
∫

Vt≡V

ρΨ dV . (5.30)

The variation along time of the content of property A in the material volume
Vt is given by the time derivative of Q(t), which using expression (5.17) of the
material derivative of a volume integral (with μ = ρΨ ) results in

Q′ (t) =
d
dt

∫
Vt≡V

ρΨ︸︷︷︸
μ

dV =
∫
V

(
d (ρΨ)

dt
+ρΨ ∇ ·v

)
dV . (5.31)

Considering the expression of the material derivative of a product of functions,
grouping terms and introducing the mass continuity equation (5.24) yields

d
dt

∫
Vt≡V

ρΨdV =
∫
V

(
ρ

dΨ
dt

+Ψ
dρ
dt

+ρΨ ∇ ·v
)

dV =

=
∫
V

(
ρ

dΨ
dt

+Ψ
(

dρ
dt

+ρ∇ ·v
)

︸ ︷︷ ︸
=0 (mass continuity eqn.)

)
dV =⇒ (5.32)

Reynolds’ Lemma
d
dt

∫
Vt≡V

ρΨ dV =
∫
V

ρ
dΨ
dt

dV . (5.33)

5.5.2 Reynolds’ Theorem
Consider the arbitrary volume V , fixed in space, shown in Figure 5.8. The
amount of property A in this control volume is

Q(t) =
∫
V

ρΨ dV . (5.34)
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Balance Equation. Reynolds Transport Theorem 207

Figure 5.8: Reynolds Transport Theorem.

The variation of the amount of property A in the material volume Vt , which in-
stantaneously coincides at time t with the control volume V (Vt ≡V ), is given by
expression (5.19) of the material derivative of a volume integral (with μ = ρΨ )
and by (5.11),

d
dt

∫
Vt≡V

ρΨ dV =
∫
V

∂ (ρΨ)

∂ t
dV +

∫
V

∇ · (ρΨ v) dV . (5.35)

Introducing the Reynolds’ Lemma (5.33) and the Divergence Theorem10 in
(5.35) results in

d
dt

∫
Vt≡V

ρΨ dV

Reynolds’
Lemma
=

∫
V

ρ
dΨ
dt

dV =
∫
V

∂ (ρΨ)

∂ t
dV +

∫
V

∇ · (ρΨ v)dV =

Divergence
Theorem

=
∫
V

∂ (ρΨ)

∂ t
dV +

∫
∂V

ρΨ v ·n dS ,

(5.36)
which can be rewritten as follows.

10 The Divergence Theorem provides the following relation between a volume integral and a
surface integral of a tensor A. ∫

V

∇ ·A dV =
∫

∂V

n ·A dS ∀V ,

where n is the outward unit normal vector in the boundary of the volume V .
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208 CHAPTER 5. BALANCE PRINCIPLES

Reynolds Transport Theorem

∂
∂ t

∫
V

ρΨ dV

︸ ︷︷ ︸
variation per unit of

time of the content of
property A in the
control volume V

=
∫
V

ρ
∂Ψ
∂ t

dV

︸ ︷︷ ︸
variation due to the

change in the content of
property A of the parti-
cles in the interior of V

−
∫

∂V

ρΨ v ·n dS

︸ ︷︷ ︸
variation due to the net
convective flux of A
exiting through the

boundary ∂V

(5.37)

The local form of the Reynolds Transport Theorem can be obtained by local-
izing in (5.36),

∫
V

ρ
dΨ
dt

dV =
∫
V

∂ (ρΨ)

∂ t
dV +

∫
V

∇ · (ρΨ v)dV ∀ΔV ⊂V =⇒

ρ
dΨ
dt

=
∂ (ρΨ)

∂ t
+∇ · (ρΨ v) ∀x ∈V =⇒

(5.38)

Local form of the Reynolds Transport Theorem

∂ (ρΨ)

∂ t
= ρ

dΨ
dt
−∇ · (ρΨ v) ∀x ∈V

(5.39)

5.6 General Expression of the Balance Equations
Consider a certain property A of a continuous medium and the amount of this
property per unit of mass, Ψ (x, t). In the most general case, it can be assumed
that there exists an internal source that generates property A and that this prop-
erty can be transported both by motion of mass (convective transport) and by
non-convective transport. To this aim, the following terms are defined:

• A source term kA (x, t) (of the same tensor order than property A) that
characterizes the internal generation of the property,

kA (x, t) =
internally generated amount of A

unit of mass / unit of time
. (5.40)

• A vector jA (x, t) of non-convective flux per unit of surface (a tensor
order higher than that of property A) that characterizes the flux of the
property due to non-convective mechanisms (see Remark 5.3).
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General Expression of the Balance Equations 209

Figure 5.9: An arbitrary control volume used in the definition of the global form of the

general balance equation.

Consider an arbitrary control volume V (see Figure 5.9). Then, the variation
per unit of time of property A in volume V will be due to

1) the generation of property A per unit of time due to the source term,

2) the (net incoming) convective flux of A through ∂V , and

3) the (net incoming) non-convective flux of A through ∂V .

That is,

∫
V

ρkA (x, t)dV =
amount of A generated in V due to the internal sources

unit of time
,

∫
∂V

ρΨ v ·n dS =
amount of A exiting through ∂V per convective flux

unit of time
,

∫
∂V

jA ·n dS =
amount of A exiting through ∂V per non-convective flux

unit of time
,

(5.41)
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210 CHAPTER 5. BALANCE PRINCIPLES

and the expression of the balance of the amount of property A in the control
volume V results in

Global form of the general balance equation
∂
∂ t

∫
V

ρΨ dV

︸ ︷︷ ︸
variation of the

amount of A in V
per unit of time

=
∫
V

ρkA dV

︸ ︷︷ ︸
variation due

to internal
generation

−
∫

∂V

ρΨ v ·n dS

︸ ︷︷ ︸
variation due to

the incoming
convective flux

−
∫

∂V

jA ·n dS

︸ ︷︷ ︸
variation due to

the incoming
non-

convective flux

(5.42)

Using the Divergence Theorem and (5.11), the global form of the general
balance equation (5.42) can be written as

∂
∂ t

∫
V

ρΨ dV =
∫
V

ρkA dV −
∫
V

∇ · (ρΨ v)dV −
∫
V

∇ · jA dV =⇒
∫
V

(
∂
∂ t

(ρΨ)+∇ · (ρΨ v)
)

dV =
∫
V

(ρkA−∇ · jA)dV ∀ΔV ⊂V

(5.43)

and localizing in (5.43), the local spatial form of the general balance equation

Local spatial form of the general balance equation
∂
∂ t

(ρΨ)+∇ · (ρΨ v)︸ ︷︷ ︸
ρ

dΨ
dt

= ρ
dΨ
dt︸ ︷︷ ︸

variation of the
amount of

property (per
unit of volume
and of time)

= ρkA︸︷︷︸
variation

due to
internal

generation
by a source

− ∇ · jA︸ ︷︷ ︸
variation

due to non-
convective
transport

(5.44)

is obtained, where the local form of the Reynolds Transport Theorem (5.39) has
been taken into account.
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General Expression of the Balance Equations 211

Remark 5.5. Expression (5.42) and, especially, expression (5.44),

ρ
dΨ
dt

= ρkA−∇ · jA ,

exhibit the negative contribution (−∇ · jA) of the non-convective
flux to the variation in content of the property per unit of volume
and of time, ρ dΨ/dt. Only when all the flux is convective (by mass
transport) can this variation originate solely from the internal gener-
ation of this property,

ρ
dΨ
dt

= ρkA .

Example 5.2 – Particularize the local spatial form of the general balance
equation for the case in which property A is associated with the mass.

Solution

If property A is associated with the mass, A≡M, then:

• The content of A per unit of mass (mass / unit of mass) is Ψ = 1.

• The source term that characterizes the internal generation of mass is
kM = 0 since, following the principle of conservation of mass, it is not
possible to generate mass.

• The non-convective mass flux vector is jM = 0 because mass cannot be
transported in a non-convective manner.

Therefore, (5.44) results in the balance of mass generation,

ρ
dΨ
dt

=
∂ρ
∂ t

+∇ · (ρv) = 0 ,

which is one of the forms of the mass continuity equation (5.26).
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212 CHAPTER 5. BALANCE PRINCIPLES

5.7 Balance of Linear Momentum
Consider a discrete system composed of n particles
such that the particle i has a mass mi, an acceleration
ai and is subjected to a force fi (see Figure 5.10).

Newton’s second law states that the force acting
on a particle is equal to the mass of this particle
times its acceleration. Using the definition of accel-
eration as the material derivative of the velocity and
considering the principle of conservation of mass
(the variation of mass of a particle is null) yields11, Figure 5.10

fi = miai = mi
dvi

dt
=

d
dt

(mivi) (5.45)

The linear momentum of the particle12 is defined as the product of its mass
by its velocity (mivi). Then, (5.45) expresses that the force acting on the particle
is equal to the variation of the linear momentum of the particle.

Applying now Newton’s second law to the discrete system formed by n par-
ticles results in

R(t) =
n

∑
i=1

fi =
n

∑
i=1

mi ai =
n

∑
i=1

mi
dvi

dt
=

d
dt

n

∑
i=1

mivi︸ ︷︷ ︸
P = linear
momentum

=
dP (t)

dt
. (5.46)

Note that, again, to obtain the last expression in (5.46), the principle of conser-
vation of mass (dmi/dt = 0) has been used. Equation (5.46) expresses that the
resultant R of all the forces acting on the discrete system of particles is equal
to the variation per unit of time of the linear momentum P of the system. This
postulate is denominated the principle of balance of linear momentum.

Remark 5.6. If the system is in equilibrium, R = 0. Then,

R(t) = 0 ∀t =⇒ dP (t)
dt

= 0 =⇒
n

∑
i=1

mi vi =P = const. ,

which is known as the conservation of linear momentum.

11 The Einstein notation introduced in (1.1) is not used here.
12 In mechanics, the names translational momentum, kinetic momentum or simply momentum
are also used to refer to the linear momentum.
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Balance of Linear Momentum 213

5.7.1 Global Form of the Balance of Linear Momentum
These concepts, corresponding to classical mechanics, can now be extended to
continuum mechanics by defining the linear momentum in a material volume Vt
of the continuous medium with massM as

P (t) =
∫
M

v dM︸︷︷︸
ρ dV

=
∫
Vt

ρ v dV . (5.47)

Definition 5.5. Principle of balance of linear momentum. The resul-
tant R(t) of all the forces acting on a material volume of the contin-
uous medium is equal to the variation per unit of time of its linear
momentum,

R(t) =
dP (t)

dt
=

d
dt

∫
Vt

ρ v dV .

The resultant of all the forces acting on the continuous medium defined above
is also known to be (see Figure 5.11)

R(t) =
∫
V

ρb dV

︸ ︷︷ ︸
body
forces

+
∫

∂V

t dS

︸ ︷︷ ︸
surface
forces

. (5.48)

Applying the principle of balance of linear momentum on the resultant in (5.48)
yields the integral form of the balance of linear momentum.

Global form of the principle of balance of linear momentum∫
V

ρb dV +
∫

∂V

t dS =
d
dt

∫
Vt≡V

ρv dV (5.49)
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214 CHAPTER 5. BALANCE PRINCIPLES

Figure 5.11: Forces acting on a material volume of the continuous medium.

5.7.2 Local Form of the Balance of Linear Momentum
Using Reynolds’ Lemma (5.33) on (5.49) and introducing the Divergence The-
orem, results in

d
dt

∫
Vt≡V

ρv dV =
∫
V

ρb dV +
∫

∂V

n ·σσσ︸︷︷︸
t

dS =

∫
Vt≡V

ρ
dv
dt

dV

∫
∂V

n ·σσσ dS
Divergence
Theorem

=
∫
V

∇ ·σσσ dV

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=⇒ (5.50)

=⇒
∫
V

(∇ ·σσσ +ρb)dV +
∫
V

ρ
dv
dt

dV ∀ΔV ⊂V (5.51)

and, localizing in (5.51), yields the local spatial form of the balance of linear
momentum, also known as Cauchy’s equation13.

Local spatial form of the principle of balance of linear momentum
(Cauchy’s equation)

∇ ·σσσ +ρb = ρ
dv
dt

= ρa ∀x ∈V, ∀t
(5.52)

13 The Cauchy equation (already stated, but not deduced, in Chapter 4 ) is, thus, identified as
the local spatial form of the balance of linear momentum.
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5.8 Balance of Angular Momentum
Consider a discrete system composed of n parti-
cles such that for an arbitrary particle i, its posi-
tion vector is ri, its mass is mi, a force fi acts on
it, and it has a velocity vi and an acceleration ai
(see Figure 5.12). The moment about the origin
of the force acting on this particle is Mi = ri× fi
and the moment about the origin of the linear
momentum14 of the particle is Li = ri ×mivi.
Considering Newton’s second law, the moment
Mi is15 Figure 5.12

Mi = ri× fi = ri×mi ai = ri×mi
dvi

dt
(5.53)

Extending the previous result to the discrete system formed by n particles, the
resultant moment about the origin MO of the forces acting on the system of
particles is obtained as16

MO (t) =
n

∑
i=1

ri× fi =
n

∑
i=1

ri×mi ai =
n

∑
i=1

ri×mi
dvi

dt

d
dt

n

∑
i=1

ri×mi vi =
n

∑
i=1

dri

dt︸︷︷︸
vi

×mi vi

︸ ︷︷ ︸
= 0

+
n

∑
i=1

ri×mi
dvi

dt

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

=⇒

=⇒ MO (t) =
d
dt

n

∑
i=1

ri×mi vi︸ ︷︷ ︸
Angular

momentum L

=
dL(t)

dt

(5.54)

Equation (5.54) expresses that the resultant moment MO of all the forces act-
ing on the discrete system of particles is equal to the variation per unit of time
of the moment of linear momentum (or angular momentum), L , of the system.
This postulate is named principle of balance of angular momentum.

15 In mechanics, the moment of (linear) momentum is also named angular momentum or
rotational momentum.
15 The Einstein notation introduced in (1.1) is not used here.
16 The vector or cross product of a vector times itself is null (vi×vi = 0).
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216 CHAPTER 5. BALANCE PRINCIPLES

Remark 5.7. If the system is in equilibrium, MO = 0. Then,

MO (t) = 0 ∀t =⇒ dL(t)
dt

= 0 =⇒
n
∑

i=1
ri×mi vi =L= const.,

which is known as the conservation of angular momentum.

5.8.1 Global Form of the Balance of Angular Momentum
Result (5.54) can be extended to a continuous and infinite system of particles
(the continuous medium, see Figure 5.13). In such case, the angular momentum
is defined as

L=
∫
M

r×v dM︸︷︷︸
ρ dV

=
∫
V

r×ρ v dV (5.55)

and the continuous version of the postulate of balance of angular momentum is
obtained as follows.

Definition 5.6. Principle of balance of moment of (linear) momen-
tum or angular momentum. The resultant moment, about a certain
point O in space, of all the actions on a continuous medium is equal
to the variation per unit of time of the moment of linear momentum
about said point.

MO (t) =
dL(t)

dt
=

d
dt

∫
Vt≡V

r×ρ v dV

Figure 5.13: Moments acting on a material volume of the continuous medium.
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Balance of Angular Momentum 217

The resultant moment of the forces acting on the continuous medium (mo-
ment of the body forces and moment of the surface forces) is (see Figure 5.13)

MO (t) =
∫
V

r×ρ b dV +
∫

∂V

r× t dS , (5.56)

then, the global form of the principle of balance of the angular momentum re-
sults in:

Global form of the principle of balance of angular momentum

d
dt

∫
Vt≡V

r×ρ v dV =
∫
V

r×ρ b dV +
∫

∂V

r× t dS
(5.57)

5.8.2 Local Spatial Form of the Balance of Angular Momentum
The procedure followed to obtain the local spatial form of the balance equation
is detailed below.

Introducing Reynolds’ Lemma in (5.57),

d
dt

∫
Vt≡V

r×ρv dV =
d
dt

∫
Vt≡V

ρ (r×v)dV =
∫
V

ρ
d
dt

(r×v)dV =

=
∫
V

ρ
( dr

dt︸︷︷︸
v

×v
)

︸ ︷︷ ︸
= 0

dV +
∫
V

ρ
(

r× dv
dt

)
dV =

∫
V

r×ρ
dv
dt

dV , (5.58)

and expanding the last term in (5.57),

∫
∂V

r × t︸︷︷︸
n ·σσσ

dS =

∫
∂V

r×n ·σσσ dS =
∫

∂V

[r]× [n ·σσσ ]T dS =

=
∫

∂V

(r×σσσT ) ·n dS
Divergence
Theorem

=
∫
V

(
r×σσσT ) ·∇ dV ,

(5.59)
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218 CHAPTER 5. BALANCE PRINCIPLES

where the component
[(

r×σσσT
) ·∇]

i is computed as

[(
r×σσσT

)
·∇

]
i

symb
=

(
ei jk x j σrk︸︷︷︸

σT
kr

) ∂
∂xr

=
∂

∂xr

(
ei jk x j σrk

)
=

= ei jk
∂x j

∂xr︸︷︷︸
δ jr

σrk + ei jk x j
∂σrk

∂xr︸ ︷︷ ︸
[r×∇ ·σσσ ]i

= ei jk σ jk︸ ︷︷ ︸
mi

+[r×∇ ·σσσ ]i i ∈ {1,2,3} .
(5.60)

Introducing now (5.60) in (5.59) produces

∫
∂V

r× t dS =
∫
V

m dV +
∫
V

(r×∇ ·σσσ) dV

mi = ei jk σ jk i, j,k ∈ {1,2,3}
(5.61)

and, finally, replacing (5.58) and (5.61) in (5.57) yields∫
V

r×ρ
dv
dt

dV =
∫
V

r×ρb dV +
∫
V

m dV +
∫
V

(r×∇ ·σσσ)dV . (5.62)

Reorganizing the terms in (5.62) and taking into account Cauchy’s equation (5.52)
(local spatial form of the balance of linear momentum) results in∫

V

r×
(

∇ ·σσσ +ρb−ρ
dv
dt

)
︸ ︷︷ ︸

= 0

dV +
∫
V

m dV = 0

=⇒
∫
V

m dV = 0 ∀ΔV ⊂V .

(5.63)

Then, localizing in (5.63) and considering the value of m in (5.61), yields

m = 0 ∀x ∈V

mi = ei jk σ jk = 0 i ∈ {1,2,3}

}
=⇒ ei jk σ jk = 0 i, j,k ∈ {1,2,3} (5.64)
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and particularizing (5.64) for the three possible values of index i:

i = 1 : e1 jk σ jk = e123︸︷︷︸
=1

σ23 + e132︸︷︷︸
=−1

σ32 = σ23−σ32 = 0 ⇒ σ23 = σ32

i = 2 : e2 jk σ jk = e231︸︷︷︸
=1

σ31 + e213︸︷︷︸
=−1

σ13 = σ31−σ13 = 0 ⇒ σ31 = σ13

i = 3 : e3 jk σ jk = e312︸︷︷︸
=1

σ12 + e321︸︷︷︸
=−1

σ21 = σ12−σ21 = 0 ⇒ σ12 = σ21

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

=⇒

=⇒ σσσ = σσσT ,
(5.65)

which results in the local spatial form of the balance of angular momentum
translating into the symmetry of the Cauchy stress tensor17.

Local spatial form of the
principle of balance of angular momentum

σσσ = σσσT
(5.66)

5.9 Power

Definition 5.7. In classical mechanics as well as in continuum me-
chanics, power is defined as a concept, previous to that of energy,
that can be quantified as the ability to perform work per unit of time.
Then, for a system (or continuous medium) the power W (t) entering
the system is defined as

W (t) =
work performed by the system

unit of time
.

In some cases, but not in all, the power W (t) is an exact differential of a function
E (t) that, in said cases, receives the name of energy,

W (t) =
dE (t)

dt
. (5.67)

17 The symmetry of the Cauchy stress tensor (already stated, but not deduced, in Chapter 4 )
is, thus, identified as the local spatial form of the balance of angular momentum.
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220 CHAPTER 5. BALANCE PRINCIPLES

Here, it is assumed that there exist two procedures by which the continuous
medium absorbs power from the exterior and performs work per unit of time
with this power

− Mechanical power, by means of the work performed by the mechanical
actions (body and surface forces) acting on the medium.

− Thermal power, by means of the heat entering the medium.

5.9.1 Mechanical Power. Balance of Mechanical Energy

Definition 5.8. The mechanical power entering the continuous
medium, Pe, is the work per unit of time performed by all the (body
and surface) forces acting on the medium.

Consider the continuous medium shown in Figure 5.14 is subjected to the ac-
tion of body forces, characterized by the vector of body forces b(x, t), and of
surface forces, characterized by the traction vector t(x, t). The expression of the
mechanical power entering the system Pe is

Pe =
∫
V

ρ b ·v dV +
∫

∂V

t︸︷︷︸
n ·σσσ

· v dS =

∫
V

ρ b ·v dV +
∫

∂V

n · (σσσ ·v) dS . (5.68)

ρb · dr
dt

dV = ρb ·vdV

t · dr
dt

dS = t ·vdS

Figure 5.14: Continuous medium subjected to body and surface forces.
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Applying the Divergence Theorem in the last term of (5.68) yields⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫
∂V

n · (σσσ ·v)dS =
∫
V

∇ · (σσσ ·v)dV

∇ · (σσσ ·v) = ∂
∂xi

(σi j v j) =
∂σi j

∂xi︸︷︷︸
[∇ ·σσσ ] j

v j + σi j︸︷︷︸
σ ji

∂v j

∂xi︸︷︷︸
[lll] ji

= (∇ ·σσσ) ·v+σσσ : lll

(5.69)
and, taking into account the identity lll = v⊗∇ = d+w (see Chapter 2)18,

σσσ : lll︸︷︷︸
d+w

= σσσ : d+σσσ : w︸ ︷︷ ︸
= 0

= σσσ : d . (5.70)

Replacing (5.70) in (5.69) yields∫
∂V

n · (σσσ ·v) dS =
∫
V

(∇ ·σσσ) ·v dV +
∫
V

σσσ : d dV . (5.71)

Introducing (5.71) in (5.68), the mechanical power entering the continuous
medium results in19

Pe =
∫
V

ρ b ·vdV +
∫

∂V

t ·vdS =
∫
V

ρ b ·vdV +
∫
V

(∇ ·σσσ) ·vdV +
∫
V

σσσ : ddV =

=
∫
V

(∇ ·σσσ +ρ b) · vdV +
∫
V

σσσ : ddV =
∫
V

ρ
dv
dt
·vdV +

∫
V

σσσ : ddV =

∫
V

ρ
d
dt

(
1

2
v ·v

)
dV +

∫
V

σσσ : ddV =
∫
V

ρ
d
dt

(
1

2
v2

)
dV +

∫
V

σσσ : ddV .

(5.72)
And applying Reynolds’ Lemma (5.33) in (5.72), the mechanical power entering
the system results in

Balance of mechanical energy

Pe︸︷︷︸
mechanical

power entering
the medium

=
∫
V

ρ b ·vdV +
∫

∂V

t ·vdS =
d
dt

∫
Vt≡V

1

2
ρv2 dV

︸ ︷︷ ︸
K = kinetic

energy

+
∫
V

σσσ : d dV

︸ ︷︷ ︸
stress
power

(5.73)

18 The tensor σσσ is symmetric and the tensor w is antisymmetric. Consequently, their product
is null,σσσ : w = 0.

19 The expression
d
dt

(
1

2
v ·v

)
=

1

2

dv
dt
·v+ 1

2
v · dv

dt
=

dv
dt
·v is used here, in addition to the

notation v ·v = |v|2 = v2.
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222 CHAPTER 5. BALANCE PRINCIPLES

Equation (5.73) constitutes the continuum mechanics generalization of the
balance of mechanical energy in classical mechanics.

Definition 5.9. The balance of mechanical energy states that the me-
chanical energy entering the continuous medium,

Pe =
∫
V

ρ b ·v dV +
∫

∂V

t ·v dS

is invested in:
a) modifying the kinetic energy of the particles in the continuous

medium,

kinetic energy
not
= K=

∫
V

1

2
ρ v2dV =⇒ dK

dt
=

d
dt

∫
V

1

2
ρ v2dV .

b) creating stress power,

stress power
de f
=

∫
V

σσσ : d dV .

Remark 5.8. Considering (5.73), the stress power can be defined as
the part of the mechanical power entering the system that is not used
in modifying the kinetic energy. It can be interpreted as the work per
unit of time (power) performed by the stresses during the deforma-
tion process of the medium.
In a rigid body there is no deformation nor strain rate (d = 0). There-
fore, the stresses do not perform mechanical work and the stress
power is null. In this case, all the mechanical power entering the
system is invested in modifying the kinetic energy of the system and
the balance of mechanical energy of a rigid body is recovered.

5.9.2 Thermal Power

Definition 5.10. The thermal power entering the continuous
medium, Qe, is the amount of heat per unit of time entering the
medium.

The heat entering the medium can be produced by two main causes:

a) Heat entering the medium due to the (non-convective) heat flux across the
boundary corresponding to the material volume. Note that, since the vol-
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Power 223

ume is a material volume, the heat flux due to mass transport (convective) is
null and, thus, all the heat flux entering the medium will be non-convective.

b) The existence of heat sources inside the continuous medium.

• Non-convective heat flux

Consider the spatial description of the vector of non-convective heat flux
per unit of surface, q(x, t). Then, the net non-convective heat flux across
the boundary of the material volume is (see Figure 5.15)∫

∂V

q ·n dS =
amount of heat exiting the medium

unit of time

−
∫

∂V

q ·n dS =
amount of heat entering the medium

unit of time

(5.74)

Remark 5.9. A typical example of non-convective flux is heat trans-
fer by conduction phenomena. Heat conduction is governed by
Fourier’s Law, which provides the vector of heat flux by (non-
convective) conduction q(x, t) in terms of the temperature θ (x, t),

Fourier’s Law of
heat conduction

}
q(x, t) =−K∇θ (x, t) ,

where K is the thermal conductivity, a material property.

Figure 5.15: Non-convective heat flux.
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224 CHAPTER 5. BALANCE PRINCIPLES

Figure 5.16: Internal heat sources.

• Internal heat sources

Heat can be generated (or absorbed) in the interior of the continuous
medium due to certain phenomena (chemical reactions, etc.). Consider a
scalar function r (x, t) that describes in spatial form the heat generated by
the internal sources per unit of mass and unit of time (see Figure 5.16).
Then, the heat entering the system, per unit of time, due to the existence of
internal heat sources is∫

V

ρr dV =
heat generated by the internal sources

unit of time
. (5.75)

Consequently, the total heat entering the continuous medium per unit of
time (or thermal power Qe) can be expressed as the sum of the contributions
of the conduction flux (5.74) and the internal sources (5.75),

Heat power entering
the medium

Qe =
∫
V

ρr dV − ∫
∂V

q ·n dS . (5.76)

Then, considering (5.73) and (5.76), the total power entering the continu-
ous medium can be written as follows.

Total power entering the system

Pe +Qe =
d
dt

∫
Vt≡V

1

2
ρv2 dV +

∫
V

σσσ : ddV +
∫
V

ρr dV −
∫

∂V

q ·ndS (5.77)
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5.10 Energy Balance
5.10.1 Thermodynamic Concepts
• Thermodynamic system: a certain amount of continuous matter always

formed by the same particles (in the case studied here, a material volume).

• Thermodynamic variables: a set of macroscopic variables that characterize
the system and intervene in all the physical processes to be studied. They
are designated by μi (x, t) i ∈ {1,2, ... ,n}.

• State, independent or free variables: a subset of the group of thermody-
namic variables in terms of which all the other variables can be expressed.

• Thermodynamic state: a thermodynamic state is defined when a certain
value is assigned to the state variables and, therefore, to all the thermo-
dynamic variables. In a hyperspace (thermodynamic space) defined by the
thermodynamic variables μi i ∈ {1,2, ... ,n} (see Figure 5.17), a thermo-
dynamic state is represented by a point.

• Thermodynamic process: the energetic development of a thermodynamic
system that undergoes successive thermodynamic states, changing from an
initial state at time tA to a final state at time tB (it is a path or continuous
segment in the thermodynamic space), see Figure 5.18.

• Closed cycle: A thermodynamic process in which the final thermodynamic
state coincides with the initial thermodynamic state (all the thermodynamic
variables recover their initial value), see Figure 5.19.

• State function: any scalar, vector or tensor function φ (μ1, ... ,μn) of the
thermodynamic variables that can be written univocally in terms of these
variables.

Consider a thermodynamic space with thermodynamic variables μi (x, t)
i ∈ {1,2, ... ,n} and a function φ (μ1, ... ,μn) of said variables implicitly defined

in terms of a differential form20

δφ = f1 (μ1, ... ,μn)dμ1 + . . . + fn (μ1, ... ,μn)dμn . (5.78)

Figure 5.17: Thermodynamic process.

20 In continuum mechanics thermodynamics it is common to mathematically describe a func-
tion φ (μ1, ... ,μn) of the thermodynamic variables in terms of a differential form δφ .
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226 CHAPTER 5. BALANCE PRINCIPLES

Figure 5.18: Thermodynamic space. Figure 5.19: Closed cycle.

Consider also a given thermodynamic process A → B in the space of the
thermodynamic variables. Equation (5.78) provides the value of the function

φ(μB
1 , ... ,μ

B
n )

not
= φB when its value φ(μA

1 , ... ,μ
A
n )

not
= φA and the corresponding

path (thermodynamic process) A→ B are known by means of

φB = φA +

B∫
A

δφ . (5.79)

However, (5.79) does not guarantee that the result φB is independent of the path
(thermodynamic process) followed. In mathematical terms, it does not guarantee
that the function φ : Rn →R defined by (5.79) is univocal (see Figure 5.20) and,
thus, that there exists a single image φ (μ1, ... ,μn) corresponding to each point
in the thermodynamic space.

Figure 5.20: Non-univocal function of the thermodynamic variables μ1 and μ2.
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Energy Balance 227

Remark 5.10. For a function φ (μ1, ... ,μn), implicitly described in
terms of a differential form δφ , to be a state function (that is, for it
to be univocal), said differential form must be an exact differential
δφ = dφ . In other words, the differential form δφ must be inte-
grable.
The necessary and sufficient condition for a differential form such
as (5.78) to be an exact differential is the equality of mixed partial
derivatives,

δφ = f1 (μ1, ... ,μn)dμ1 + . . . + fn (μ1, ... ,μn)dμn

∂ fi (μ1, ... ,μn)

∂ μ j
=

∂ f j (μ1, ... ,μn)

∂ μi
∀i, j ∈ {1, ... ,n}

⎫⎪⎪⎬
⎪⎪⎭ ⇔ δφ = dφ .

If the differential form (5.78) is an exact differential, (5.79) results in

φB = φA +

B∫
A

dφ = φA +
[
Δφ

]B

A
(5.80)

and the value φB is independent of the integration path. Then, function φ is said
to be a state function that depends only on the values of the state variables and
not on the thermodynamic process.

Remark 5.11. If φ is a state function, then δφ is an exact differential
and the integral along the complete closed cycle of the differential
δφ is null,

A∫
A

δφ =
∮

dφ =
[
Δφ

]A

A︸ ︷︷ ︸
= 0

= 0 .
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228 CHAPTER 5. BALANCE PRINCIPLES

Example 5.3 – Determine whether the function φ (μ1,μ2) defined in terms of
an exact differential δφ = 4μ2 dμ1 +μ1 dμ2 can be a state function or not.

Solution

Following (5.78),

f1 ≡ 4μ2

f2 ≡ μ1

=⇒
∂ f1

∂ μ2
= 4

∂ f2

∂ μ1
= 1

=⇒ ∂ f1

∂ μ2
�= ∂ f2

∂ μ1

Then, δφ is not an exact differential (see Remark 5.10) and φ is not a state
function.

5.10.2 First Law of Thermodynamics
Experience shows that the mechanical power (5.73) is not an exact differential
and, therefore, the mechanical work performed by the system in a closed cycle
is not null. The same happens with the thermal power (5.76).

δφ1 = Pe dt =⇒
∮

Pe dt �= 0

δφ2 = Qe dt =⇒
∮

Qe dt �= 0
(5.81)

However, there exists experimental evidence that proves that the sum of the me-
chanical and thermal powers, that is, the total power entering the system (5.77)
(see Figure 5.21), is, in effect, an exact differential and, thus, a state function E
that corresponds to the concept of energy can be defined in terms of it,

Pe dt +Qe dt = dE ⇒ E (t) =
t∫

t0

(Pe +Qe) dt + const. (5.82)

Figure 5.21: Total power entering the system.
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The first law of thermodynamics postulates the following:

1) There exists a state function E , named total energy of the system, such that
its variation per unit of time is equal to the sum of the mechanical and
thermal powers entering the system.

dE
dt

= Pe +Qe

dE︸︷︷︸
Variation of
total energy

= Pe dt︸︷︷︸
Mechanical

work

+ Qe dt︸ ︷︷ ︸
Thermal

work

(5.83)

2) There exists another state function U , named internal energy of the system,
such that

a) It is an extensive property21. Then, a specific internal energy u(x, t)
(or internal energy per unit of mass) can be defined as

U =
∫
V

ρu dV . (5.84)

b) The variation of the total energy of the system E is equal to the sum of
the variation of the internal energy U and the variation of the kinetic
energy K.

dE︸︷︷︸
Exact

differential

= dK + dU︸︷︷︸
Exact

differential

(5.85)

Remark 5.12. Note that, since the total energy E and the internal en-
ergy U of the system have been postulated to be state functions,
dE and dU in (5.85) are exact differentials. Consequently, the term
dK = dE −dU in said equation is also an exact differential (because
the difference between exact differentials is also an exact differen-
tial) and, thus, is a state function. Then, it is confirmed that (5.85)
indirectly postulates the character of state function and, therefore,
the energetic character of K.

21 A certain property is extensive when the complete content of the property is the sum of the
content of the property in each of its parts. An extensive property allows defining the content
of this property per unit of mass (specific value of the property) or per unit of volume (density
of the property).
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From (5.83) and considering (5.77),

dE
dt

= Pe +Qe =
d
dt

∫
Vt≡V

1

2
ρv2dV +

∫
V

σσσ : d dV +
∫
V

ρr dV −
∫

∂V

q ·n dS

K =
∫
V

1

2
ρv2dV

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
⇒

dE
dt

=
dK
dt

+
dU
dt

=
d
dt

∫
V

1

2
ρv2dV

︸ ︷︷ ︸
dK
dt

+
∫
V

σσσ : d dV +
∫
V

ρr dV −
∫

∂V

q ·n dS

︸ ︷︷ ︸
dU
dt

(5.86)

Global form of the internal energy balance

dU
dt

=
d
dt

∫
Vt≡V

ρu dV =
∫
V

σσσ : d dV +
∫
V

ρr dV −
∫

∂V

q ·n dS
(5.87)

Remark 5.13. From (5.87) it follows that any variation per unit of
time of the internal energy dU/dt is produced by

− a generation of stress power,

∫
V

σσσ : d dV , and

− a variation per unit of time of the content of heat in the medium,∫
V

ρr dV −
∫

∂V

q ·n dS.

Applying Reynolds’ Lemma (5.33) and the Divergence Theorem on (5.87)
yields

d
dt

∫
Vt≡V

ρu dV =
∫
V

ρ
du
dt

dV =
∫
V

σσσ : d dV +
∫
V

ρr dV −
∫
V

∇ ·q dV ∀ΔV ⊂V .

(5.88)
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Finally, localizing in (5.88) results in the local spatial form of the internal energy
balance.

Local spatial form of the internal energy balance
(energy equation)

ρ
du
dt

= σσσ : d+(ρr−∇ ·q) ∀x ∈V, ∀t
(5.89)

5.11 Reversible and Irreversible Processes
The first law of thermodynamics leads to a balance equation that must be ful-
filled for all the physical processes that take place in reality,

Pe +Qe =
dE
dt

=
dU
dt

+
dK
dt

. (5.90)

In particular, if an isolated system22 is considered, the time variation of the total
energy of the system will be null (dE/dt = 0⇒ the total energy is conserved).
Therefore, the energy balance equation (5.90), established by the first law of
thermodynamics, imposes that any variation of internal energy dU/dt must be
compensated with a variation of kinetic energy dK/dt of equal value but of
opposite sign, and vice-versa (see Figure 5.22).

What the first law of thermodynamics does not establish is whether this (ki-
netic and internal) energy exchange in an isolated system can take place equally
in both directions or not (dU/dt =−dK/dt > 0 or dU/dt =−dK/dt < 0). That
is, it does not establish any restriction that indicates if an imaginary and arbitrary

Figure 5.22: Isolated thermodynamic system.

22 An isolated thermodynamic system is a system that cannot exchange energy with its
exterior. In a strict sense, the only perfectly isolated system is the universe, although one can
think of quasi-isolated or imperfectly isolated smaller systems.
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232 CHAPTER 5. BALANCE PRINCIPLES

process that implies an energy exchange in a certain direction is physically pos-
sible or not. It only establishes the fulfillment of the energy balance (5.90) in the
event that the process takes place.

However, experience shows that certain pro-
cesses that could be imagined theoretically
never take place in reality. Suppose, for exam-
ple, the isolated system in Figure 5.23 consist-
ing of

− a rigid (non-deformable) wheel that spins
with angular velocity ω , and

− a brake that can be applied on the wheel at
a certain instant of time.

Figure 5.23

Consider now the following two processes:

1) At a certain instant of time the brake acts, the rotation speed of the wheel ω
decreases and, thus, so does its kinetic energy (dK < 0). On the other hand,
due to the friction between the brake and the wheel, heat is generated and
there is an increase of the internal energy (dU > 0). Experience shows
that this process, in which the internal energy increases at the expense of
decreasing the kinetic energy23, can take place in reality and, therefore, is
a physically feasible process.

2) Maintaining the brake disabled, at a certain instant of time the wheel spon-
taneously increases its rotation speed ω and, thus, its kinetic energy in-
creases (dK > 0). According to the first law of thermodynamics, the in-
ternal energy of the system will decrease (dU < 0). However, experience
shows that this (spontaneous) increase of speed never takes place, and nei-
ther does the decrease in the amount of heat of the system (which would be
reflected in a decrease in temperature).

The conclusion to this observation is that the second process considered in
the example is not a feasible physical process. More generally, only thermo-
dynamic processes that tend to increase the internal energy and decrease the
kinetic energy, and not the other way round, are feasible for the system under
consideration.

It is concluded, then, that the first law of thermodynamics is only applicable
when a particular physical process is feasible, and the need to determine when a
particular physical process is feasible, or if a physical process is feasible in one
direction, in both or in none, is noted. The answer to this problem is provided
by the second law of thermodynamics.

23 The wheel, being a non-deformable medium, has null stress power (see Remark 5.8) and
all the variation of internal energy of the system derives from a variation of its heat content
(see Remark 5.13).
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Figure 5.24: Reversible (left) and irreversible (right) processes.

The previous considerations lead to the classification, from a thermodynamic
point of view, of the possible physical processes in feasible and non-feasible pro-
cesses and, in addition, suggest classifying the feasible processes into reversible
and irreversible processes.

Definition 5.11. A thermodynamic process A→ B is a reversible
process when it is possible to return from the final thermodynamic
state B to the initial thermodynamic state A along the same path (see
Figure 5.24).
A thermodynamic process A→ B is an irreversible process when
it is not possible to return from the final thermodynamic state B to
the initial thermodynamic state A, along the same path (even if a
different path can be followed, see Figure 5.24).

In general, within a same thermodynamic process there will exist reversible
and irreversible sections.

5.12 Second Law of Thermodynamics. Entropy
5.12.1 Second Law of Thermodynamics. Global form
The second law of thermodynamic postulates the following:

1) There exists a state function named absolute temperature θ (x, t) that is

intensive24 and strictly positive (θ > 0).

24 A certain property is intensive when the complete content of the property is not the sum
of the content of the property in each of its parts. Contrary to what happens with extensive
properties, in this case the content of the property cannot be defined per unit of mass (spe-
cific value of the property) or per unit of volume (density of the property). Temperature is a
paradigmatic example of intensive property.
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234 CHAPTER 5. BALANCE PRINCIPLES

2) There exists a state function named entropy S with the following character-
istics:

a) It is an extensive variable. This implies that there exists a specific
entropy (entropy per unit of mass) s such that

s =
entropy

unit of mass
=⇒ S =

∫
V

ρs dV . (5.91)

b) The inequality

Integral form of the second law of thermodynamics
dS
dt

=
d
dt

∫
Vt≡V

ρs dV ≥
∫
V

ρ
r
θ

dV −
∫

∂V

q
θ
·n dS (5.92)

is satisfied, where:

− The sign = corresponds to reversible processes.

− The sign > corresponds to irreversible processes.

− The sign < cannot occur and indicates that the corresponding pro-
cess is not feasible.

5.12.2 Physical Interpretation of the Second Law of Thermodynamics
As discussed Section 5.9.2, the magnitude heat in the system is characterized by

a) A source term (or generation of heat per unit of mass and unit of time)
r (x, t), defined in the interior of the material volume.

b) The non-convective flux (heat flux by conduction) across the boundary of
the material surface, defined in terms of a non-convective flux vector per
unit of surface q(x, t).

These terms allow computing the amount of heat per unit of time entering a
material volume Vt , which at a certain instant of time occupies the spatial volume
Vt ≡V with outward unit normal vector n, as

Qe =
∫
V

ρr dV −
∫

∂V

q ·n dS . (5.93)

Consider now a new magnitude defined as heat per unit of absolute temper-
ature in the system. If θ (x, t) is the absolute temperature, the amount of said
magnitude will be characterized by

a) A source term r/θ corresponding to the generation of heat per unit of ab-
solute temperature, per unit of mass and unit of time.
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b) A non-convective flux vector q/θ of the heat per unit of absolute temper-
ature.

Magnitude Source term Non-convective
flux vector

heat

unit of time
r q

heat/unit of absolute temperature

unit of time

r
θ

q
θ

Similarly to (5.93), the new source term r/θ and non-convective flux vec-
tor q/θ allow computing the amount of heat per unit of absolute temperature
entering the material volume per unit of time as

(heat/unit of temperature) entering V
unit of time

=
∫
V

ρ
r
θ

dV −
∫

∂V

q
θ
·n dS . (5.94)

Observing now (5.94), the second term in this expression is identified as the
magnitude defined in (5.92). This circumstance allows interpreting the second
law of thermodynamics establishing that the generation of entropy per unit of
time in a continuous medium is always larger than or equal to the amount of
heat per unit of temperature entering the system per unit of time.

Global form of the second law of thermodynamics

dS
dt

≥
∫
V

ρ
r
θ

dV −
∫

∂V

q
θ
·n dS

︸ ︷︷ ︸
amount of the property

“heat / unit of absolute temperature”
entering the domain V per unit of time

(5.95)

Consider now the decomposition of the total entropy of the system S into two
distinct components:

• S(i): entropy generated (produced) internally by the continuous medium. Its

generation rate is dS(i)/dt.

• S(e): entropy generated by the interaction of the continuous medium with
its exterior. Its variation rate is dS(e)/dt.
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236 CHAPTER 5. BALANCE PRINCIPLES

Then, the following is naturally satisfied.

dS
dt

=
dS(e)

dt
+

dS(i)

dt
(5.96)

Now, if one establishes that the variation rate of the entropy generated by
the interaction with the exterior coincides with the magnitude heat per unit of
absolute temperature in (5.93),

dS(e)

dt
=

∫
V

ρ
r
θ

dV −
∫

∂V

q
θ
·n dS (5.97)

and, taking into account (5.95) to (5.97), the variation per unit of time of the
internally generated entropy results in

dS(i)

dt
=

dS
dt
− dS(e)

dt
=

dS
dt
−
⎛
⎝∫

V

ρ
r
θ

dV −
∫

∂V

q
θ
·n dS

⎞
⎠≥ 0 . (5.98)

Remark 5.14. According to (5.98), the internally generated en-

tropy S(i) of the system (continuous medium) never decreases

(dS(i)/dt ≥ 0). In a perfectly isolated system (strictly speaking, only
the universe is a perfectly isolated system) there is no interaction
with the exterior and the variation of entropy due to interaction with

the exterior is null, (dS(e)/dt = 0). In this case, the second law of
thermodynamics establishes that

dS(i)

dt
=

dS
dt
≥ 0

or, in other words, the total entropy of a perfectly isolated system
never decreases. This is the starting point of some alternative for-
mulations of the second law of thermodynamics.

5.12.3 Reformulation of the Second Law of Thermodynamics
In view of the considerations in Section 5.12.2, the second law of thermodynam-
ics can be reformulated as follows:

1) There exists a state function named absolute temperature such that it is
always strictly positive,

θ (x, t)> 0 . (5.99)
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Second Law of Thermodynamics. Entropy 237

2) There exists a state function named entropy that is an extensive variable
and, thus, can be defined in terms of a specific entropy (or entropy per unit
of mass) s(x, t) as

S (t) =
∫
V

ρs dV . (5.100)

3) Entropy can be generated internally, S(i), or produced by interaction with

the exterior, S(e). Both components of the entropy are extensive variables
and their content in a material volume V can be defined in terms of their
respective specific values s(i) and s(e),

S(i) =
∫
V

ρs(i) dV and S(e) =
∫
V

ρs(e) dV (5.101)

S = S(i) +S(e) =⇒ dS
dt

=
dS(i)

dt
+

dS(e)

dt
(5.102)

and introducing Reynolds’ Lemma (5.33) in (5.102) yields

dS(i)

dt
=

d
dt

∫
Vt≡V

ρs(i) dV =
∫
V

ρ
ds(i)

dt
dV ,

dS(e)

dt
=

d
dt

∫
Vt≡V

ρs(e) dV =
∫
V

ρ
ds(e)

dt
dV .

(5.103)

4) The variation of external entropy (generated by the interaction with the
exterior) is associated with the variation of the magnitude heat per unit of
absolute temperature, and is defined as

dS(e)

dt
=

∫
V

ρ
r
θ

dV −
∫

∂V

q
θ
·n dS . (5.104)

5) The internally generated entropy never diminishes. Based on the variation
of its content during the thermodynamic process, the following situations
are defined:

dS(i)

dt
≥ 0 →

⎧⎨
⎩

= 0 reversible process

> 0 irreversible process

< 0 non-feasible process

(5.105)
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238 CHAPTER 5. BALANCE PRINCIPLES

5.12.4 Local Form of the Second Law of Thermodynamics.
Clausius-Planck Equation

Using (5.101) to (5.104), expression (5.105) is rewritten as

dS(i)

dt
=

dS
dt
− dS(e)

dt
≥ 0

d
dt

∫
Vt≡V

ρs(i) dV =
d
dt

∫
Vt≡V

ρs dV −
(∫

V

ρ
r
θ

dV −
∫

∂V

q
θ
·n dS

)
≥ 0

(5.106)

Applying Reynolds’ Lemma (5.33) (on the first and second integral of the left-
hand term in (5.106)) and the Divergence Theorem (on the last term) yields

∫
V

ρ
ds(i)

dt
dV =

∫
V

ρ
ds
dt

dV −
(∫

V

ρ
r
θ

dV −
∫
V

∇ ·
(q

θ

)
dV

)
≥ 0 ∀ΔV ⊂V

(5.107)
and localizing in (5.107), the local form of the second law of thermodynamics
or Clausius-Duhem equation is obtained.

Local form of the second law of thermodynamics
(Clausius-Duhem inequality)

ρ
ds(i)

dt
= ρ

ds
dt
−
(

ρ
r
θ
−∇ ·

(q
θ

))
≥ 0 ∀x ∈V, ∀t

(5.108)

Where, again, in (5.108) the sign

= corresponds to reversible processes,

> corresponds to irreversible processes, and

< indicates that the corresponding process is not feasible.

Equation (5.108) can be rewritten as follows.

∇ ·
(q

θ

)
=

1

θ
∇ ·q− 1

θ 2
q ·∇θ

ρ
ds(i)

dt︸︷︷︸
not
=

.s(i)

= ρ
ds
dt︸︷︷︸

not
=

.s

−ρ
r
θ
+

1

θ
∇ ·q− 1

θ 2
q ·∇θ ≥ 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
⇒ (5.109)
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.s(i) = .s− r
θ
+

1

ρθ
∇ ·q︸ ︷︷ ︸

.s(i)local

− 1

ρθ 2
q ·∇θ︸ ︷︷ ︸

.s(i)cond

≥ 0 (5.110)

Then, a much stronger (more restrictive) formulation of the second law of
thermodynamics can be posed. This formulation postulates that the internally

generated entropy,
.s(i), can be generated locally,

.s(i)local , or by heat conduction,
.s(i)cond , and that both contributions to the generation of entropy must be non-
negative.

Local internal generation of entropy
(Clausius-Planck inequality)

.s(i)local =
.s− r

θ
+

1

ρθ
∇ ·q≥ 0

(5.111)

Internal generation of entropy by heat conduction

.s(i)cond =− 1

ρθ 2
q ·∇θ ≥ 0

(5.112)

Remark 5.15. Equation (5.112) can be interpreted in the following
manner: since the density, ρ , and the absolute temperature, θ , are
positive magnitudes, said equation can be written as

q ·∇θ ≤ 0 ,

which establishes that the non-convective heat flux, q, and the tem-
perature gradient, ∇θ , are vectors that have opposite directions (their
dot product is negative). In other words, (5.112) is the mathemati-
cal expression of the experimentally verified fact that heat flows by
conduction from the hottest to the coldest parts in the medium (see
Figure 5.24), characterizing as non-feasible those processes in which
the contrary occurs.
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Figure 5.25: Heat flux is opposed to the thermal gradient.

Remark 5.16. In the context of Fourier’s Law of heat conduction,
q =−K ∇θ (see Remark 5.9), expression (5.112) can be written as

q ·∇θ ≤ 0

q =−K∇θ

}
=⇒ −K |∇θ |2 ≤ 0 =⇒ K ≥ 0

which reveals that negative values of the thermal conductivity K lack
physical meaning.

5.12.5 Alternative Forms of the Second Law of Thermodynamics
Alternative expressions of the Clausius-Planck equation (5.111) in combination
with the local form of the energy balance equation (5.89) are often used in con-
tinuum mechanics.

• Clausius-Planck equation in terms of the specific internal energy

A common form of expressing the Clausius-Planck equation is doing so in terms
of the specific internal energy u(x, t) in (5.84). This expression is obtained using
the local spatial form of the energy balance equation (5.89),

ρ
du
dt

not
= ρ .u = σσσ : d+ρr−∇ ·q =⇒ ρr−∇ ·q = ρ .u−σσσ : d , (5.113)

and, replacing it in the Clausius-Planck equation (5.111),

ρθ .s(i)local = ρθ .s− (ρr−∇ ·q) = ρθ .s−ρ .u+σσσ : d≥ 0 . (5.114)
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Second Law of Thermodynamics. Entropy 241

Clausius-Planck equation in terms of the internal energy

−ρ (
.u−θ .s)+σσσ : d≥ 0

(5.115)

• Clausius-Planck equation in terms of the Helmholtz free energy

Another possibility is to express the Clausius-Planck equation in terms of the
(specific) Helmholtz free energy ψ (x, t), which is defined in terms of the internal
energy, the entropy and the temperature as

ψ de f
= u− sθ . (5.116)

Differentiating (5.116) with respect to time results in

.ψ =
.u− s

.
θ − .sθ =⇒ .u−θ .s = .ψ + s

.
θ (5.117)

and, replacing (5.117) in (5.115), yields the Clausius-Planck equation in terms
of the Helmholtz free energy,

ρθ .s(i)local =−ρ (
.u−θ .s)+σσσ : d =−ρ

( .ψ + s
.
θ
)
+σσσ : d≥ 0 . (5.118)

Clausius-Planck equation in terms of the free energy

−ρ
( .ψ + s

.
θ
)
+σσσ : d≥ 0

(5.119)

For the infinitesimal strain case, d =
.
εεε (see Chapter 2, Remark 2.22), and re-

placing in (5.119) results in

Clausius-Planck equation (infinitesimal strain)

−ρ
( .ψ + s

.
θ
)
+σσσ :

.
εεε ≥ 0

. (5.120)
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242 CHAPTER 5. BALANCE PRINCIPLES

5.13 Continuum Mechanics Equations. Constitutive
Equations

At this point it is convenient to summarize the set of (local) differential equations
provided by the balance principles.

1) Conservation of mass. Mass continuity equation.

dρ
dt

+ρ∇ ·v = 0

dρ
dt

+ρ
∂vi

∂xi
= 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭→ 1 equation (5.121)

2) Balance of linear momentum. Cauchy’s equation.

∇ ·σσσ +ρb = ρ
dv
dt

∂σ ji

∂x j
+ρbi = ρ

dvi

dt
i ∈ {1,2,3}

⎫⎪⎪⎪⎬
⎪⎪⎪⎭→ 3 equations (5.122)

3) Balance of angular momentum. Symmetry of the stress tensor.

σσσ = σσσ T

σ12 = σ21 ; σ13 = σ31 ; σ23 = σ32

}
→ 3 equations (5.123)

4) Energy balance. First law of thermodynamics.

ρ
du
dt

= σσσ : d+(ρr−∇ ·q)

ρ
du
dt

= σi j di j +

(
ρr− ∂qi

∂xi

)
⎫⎪⎪⎪⎬
⎪⎪⎪⎭→ 1 equation (5.124)
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5) Second law of thermodynamics. Clausius-Planck and heat flux inequalities.

−ρ (
.u−θ .s)+σσσ : d≥ 0

−ρ (
.u−θ .s)+σi jdi j ≥ 0

⎫⎬
⎭→ 1 restriction

− 1

ρθ 2
q ·∇θ ≥ 0

− 1

ρθ 2
qi

∂θ
∂xi

≥ 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭→ 1 restriction

(5.125)

These add up to a total of 8 partial differential equations (PDEs) and two re-
strictions. Counting the number of unknowns that intervene in these equations
results in25

ρ → 1 unknown

v → 3 unknowns

σσσ → 9 unknowns

u → 1 unknown

q → 3 unknowns

θ → 1 unknown

s → 1 unknown

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

19 unknowns

Therefore, it is obvious that additional equations are needed to solve the prob-
lem. These equations, which receive the generic name of constitutive equations
and are specific to the material that constitutes the continuous medium, are

6) Fourier’s law of heat conduction.

q =−K ∇θ

qi =−K
∂θ
∂xi

i ∈ {1,2,3}

⎫⎪⎬
⎪⎭→ 3 equations (5.126)

25 The six components of the strain rate tensor d in (5.124) and (5.125) are not considered
unknowns because they are assumed to be implicitly calculable in terms of the velocity v by
means of the relation d(v) = ∇sv (see Chapter 2, Section 2.13.2).
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244 CHAPTER 5. BALANCE PRINCIPLES

7) Constitutive equations (per se)26.

Thermo-
mechanical
constitutive
equations

⎫⎪⎬
⎪⎭ fi (σσσ ,εεε (v) ,θ ,μμμ) = 0 i ∈ {1, ... ,6} → 6 equations

Entropy
constitutive

equation

}
s = s(εεε (v) ,θ ,μμμ) = 0 → 1 equation

(5.127)

where μμμ =
{

μ1, ... ,μp
}

are a set of new thermodynamic variables (p new
unknowns) introduced by the thermo-mechanical constitutive equations.

8) Thermodynamic equations of state.

Caloric
eqn. of state

}
u = g(ρ,εεε (v) ,θ ,μμμ)

Kinetic
eqns. of state

}
Fi (ρ,θ ,μμμ) = 0 i ∈ {1,2, ... , p}

⎫⎪⎪⎬
⎪⎪⎭→ (1+ p) eqns.

(5.128)
There is now a set of (1+ p) equations and (1+ p) unknowns that, with the

adequate boundary conditions, constitute a mathematically well-defined prob-
lem.

Remark 5.17. The mass continuity equation, Cauchy’s equation, the
symmetry of the stress tensor, the energy balance and the inequalities
of the second law of thermodynamics (equations (5.121) to (5.125))
are valid and general for all the continuous medium, regardless of the
material that constitutes the medium, and for any range of displace-
ments and strains. Conversely, the constitutive equations (5.126) to
(5.128) are specific to the material or the type of continuous medium
being studied (solid, fluid, gas) and differentiate them from one an-
other.

26 The strains εεε often intervene in the thermo-mechanical constitutive equations. However,
these are not considered as additional unknowns because they are assumed to be implicitly
calculable in terms of the equation of motion which, in turn, can be calculated by integration
of the velocity field, εεε = εεε (v) (see Chapters 1 and 2).
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5.13.1 Uncoupled Thermo-Mechanical Problem
To solve the general problem in continuum mechanics, a system of partial dif-
ferential equations must be solved, which involve the (1+ p) equations and the
(1+ p) unknowns discussed in the previous section. However, under certain cir-
cumstances or hypotheses, the general problem can be decomposed into two
smaller problems (each of them involving a smaller number of equations and
unknowns), named mechanical problem and thermal problem, and that can be
solved independently (uncoupled) from one another.

For example, consider the temperature distribution θ (x, t) is known a priori,
or that it does not intervene in a relevant manner in the thermo-mechanical con-
stitutive equations (5.127), and that, in addition, said constitutive equations do
not involve new thermodynamic variables (μμμ = { /0}). In this case, the following

set of equations are considered27

Mass continuity
equation:

dρ
dt

+ρ∇ ·v = 0 (1 eqn)

Cauchy’s equation: ∇ ·σσσ +ρb = ρ
dv
dt

(3 eqn)

Mechanical
constitutive equations:

fi (σσσ ,εεε (v)) = 0

i ∈ {1, ... ,6} (6 eqn)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
→ 10 equations ,

(5.129)
which involve the following unknowns.

ρ (x, t) → 1 unknown

v(x, t) → 3 unknowns

σσσ (x, t)→ 6 unknowns

⎫⎪⎬
⎪⎭ 19 unknowns (5.130)

The problem defined by equations (5.129) and (5.130) constitutes the so-
called mechanical problem, which involves the variables (5.130) (named me-
chanical variables) that, moreover, are the real interest in many engineering
problems.

The mechanical problem constitutes, in this case, a system of reduced differ-
ential equations, with respect to the general problem, and can be solved inde-
pendently of the rest of equations of said problem.

27 For simplicity, it is assumed that the symmetry of the stress tensor (5.123) is already
imposed. Then this equation is eliminated from the set of equations and the number of un-
knowns of σσσ is reduced from 9 to 6 components.
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PROBLEMS

Problem 5.1 – Justify whether the following statements are true or false.

a) The mass flux across a closed material surface is null only when the
motion is stationary.

b) The mass flux across a closed control surface is null when this flux is
stationary.

Solution

a) The statement is false because a material surface is always constituted by
the same particles and, therefore, cannot be crossed by any particle throughout
its motion. For this reason, the mass flux across a material surface is always null,
independently of the motion being stationary or not.

b) The statement is true because the application of the mass continuity equation
on a stationary flux implies

Mass continuity equation =⇒ ∂ρ
∂ t

+∇ · (ρv) = 0

Stationary flux =⇒ ∂ρ
∂ t

= 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=⇒ ∇ · (ρv) = 0 .

Resulting, thus, what had to be proven,

∇ · (ρv) = 0 =⇒
∫
V

∇ · (ρv) dV =
∫

∂V

ρv ·n dS = 0 .
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248 CHAPTER 5. BALANCE PRINCIPLES

Problem 5.2 – A water jet with cross-section S, pressure p and velocity v,
impacts perpendicularly on a disc as indicated in the figure below. Determine
the force F in steady-state regime that must be exerted on the disc for it to
remain in a fixed position (consider the atmospheric pressure is negligible).

Solution

Taking into account the Reynolds Transport Theorem (5.39) and that the prob-
lem is in steady-state regime, the forces acting on the fluid are

∑Fext/ f =
d
dt

∫
V

ρv dV =
∫
V

∂
∂ t

(ρv) dV +
∫

∂V
ρv(n ·v) dS =

∫
S

ρv(n ·v) dS .

Note that the velocity vector of the fluid along the surfaces Slat−1 and Slat−3 is
perpendicular to the outward unit normal vector of the volume that encloses the
fluid, therefore, v ·n = 0. The same happens in the walls of the disc.
The vectors v and n in sections S2 and S4 are not perpendicular but, because
there exists symmetry and v is perpendicular to F, they do not contribute com-
ponents to the horizontal forces. Therefore, the only forces acting on the fluid
are

∑Fext/ f =
∫

∂V

ρv(n ·v) dS =
∫
S

ρve(−e ·ve) dS =−ρv2Se .
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Problems and Exercises 249

On the other hand, the external force, the pressure of the water jet and the atmo-
spheric pressure (which is negligible) also act on the fluid,

∑Fext/ f =−Fe+ atmospheric pressure forces +pSe =−Fe+pSe .

Equating both expressions and isolating the value of the module of the force F
finally results in

F = ρv2S+pS .

Problem 5.3 – A volume flow rate Q circulates, in steady-state regime, through
a pipe from end A (with cross-section SA) to end B (with cross-section SB < SA).
The pipe is secured at point O by a rigid element P−O.

Determine:

a) The entry and exit velocities vA and vB in terms of the flow rate.
b) The values of the angle θ that maximize and minimize the reaction force

F at O, and the corresponding values of said reaction force.
c) The values of the angle θ that maximize and minimize the reaction mo-

ment M about O, and the corresponding values of said reaction mo-
ment.

d) The power W of the pump needed to provide the flow rate Q.

Hypotheses:

1) The water is a perfect fluid (σi j =−pδi j) and incompressible.
2) The weight of the pipe and the water are negligible.
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Solution

a) The incompressible character of water implies that the density is constant
for a same particle and, therefore, dρ/dt = 0. Introducing this into the mass
continuity equation (5.24), results in

∇ ·v = 0 ⇐⇒
∫
V

∇ ·v dV = 0 ∀V . [1]

The adequate integration volume must now be defined. To this aim, a control
volume such that its boundary is a closed surface must be found (S = ∂V ) to be
able to apply the Divergence Theorem,∫

V

∇ ·v dV =
∫

∂V

n ·v dS ∀V [2]

where n is the outward unit normal vector in the boundary of the volume V .
Then, by means of [1] and [2], the conclusion is reached that the net outflow
across the contour of the control volume is null,∫

∂V

n ·v dS = 0 ∀V .

The volume the defined by the water contained inside the pipe between the cross-
sections SA and SB is taken as control volume. Consider, in addition, the unit
vectors eA and eB perpendicular to said cross-sections, respectively, and in the
direction of the flow of water. Then, the following expression is deduced. Note
that the extended integral on the boundary ∂V is applied only on cross-sections
SA and SB since n ·v = 0 on the walls of the pipe, that is, n and v are perpendic-
ular to one another.

∫
∂V

n ·v dS =
∫
SA

n ·v dS+
∫
SB

n ·v dS =
∫
SA

(−eA) ·vAeA dS+
∫
SB

eB ·vBeB dS = 0

=⇒ −vASA +vBSB = 0 =⇒ vASA = vBSB = Q

It is verified, thus, that the flow rate at the entrance and exit of the pipe are the
same,

vA =
Q
SA

; vB =
Q
SB

. [3]
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b) The balance of linear momentum equation (5.49) must be applied to find the
value of the force F,

R =
∫
V

ρb dV +
∫

∂V

t dS =
d
dt

∫
V

ρv dV , [4]

where R is the total resultant of the forces acting on the fluid. On the other
hand, expanding the right-hand term in [4] by means of the Reynolds Transport
Theorem (5.39), yields

d
dt

∫
V

ρv dV =
∂
∂ t

∫
V

ρv dV +
∫

∂V

ρv(n ·v) dS . [5]

The problem is being solved for a steady-state regime, i.e., the local derivative
of any property is null. In addition, the flow is known to exist solely through
sections SA and SB since n and v are perpendicular to one another on the walls
of the pipe. Therefore, according to [4] and [5],

R =
∫
SA

ρv(n ·v) dS+
∫
SB

ρv(n ·v) dS =

=
∫
SA

ρvAeA (−eA ·vAeA) dS+
∫
SB

ρvBeB (eB ·vBeB) dS

R =−ρv2
A SA eA +ρv2

B SB eB. [6]

Introducing [3] in [6] allows expressing the resultant force R in terms of Q,

R =−ρQ2

(
− 1

SA
eA +

1

SB
eB

)
.

Now the different forces that compose R must be analyzed. According to the
statement of the problem, body forces can be neglected (b = 0). Therefore, only
surface forces must be taken into account, that is, the forces applied on the
boundary of the control volume (SA, SB and Slat , where this last one corresponds
to the lateral surface of the walls),
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R =
∫
V

ρb dV +
∫

∂V

t dS =
∫

∂V

t dS =
∫
SA

t dS+
∫
SB

t dS+
∫

Slat

t dS =

=
∫
SA

pAeA dS+
∫
SB

pB (−eB) dS+Rp/ f .

Here, Rp/ f represents the forces exerted on the fluid by the walls of the pipe,
which initially are unknown but can be obtained using [6] as follows.

Rp/ f = R−
∫
SA

pAeA dS−
∫
SB

pB (−eB) dS

Rp/ f =−ρv2
A SA eA +ρv2

B SB eB−pA SA eA +pB SB eB

Rp/ f =−
(
ρv2

A +pA
)

SA eA−
(
ρv2

B +pB
)

SB eB [7]

Introducing [3], Rp/ f can be expressed in terms of Q,

Rp/ f =−
(

ρ
Q2

SA
+pA SA

)
eA−

(
ρ

Q2

SB
+pB SB

)
eB .

Now the relation between Rp/ f and the unknown being sought, F, must be
found. To this aim, the action and reaction law is considered, and the pipe and
the rigid element P−O are regarded as a single body. Under these conditions,
the force exerted by the fluid on the pipe is

R f/p =−Rp/ f .

Since it is the only action on the body, and taking into account that the weight
of the pipe is negligible, this force must be compensated by an exterior action F
for the body to be in equilibrium.

R f/p +F = 0 =⇒ F =−R f/p = Rp/ f

Introducing [7], the value of F is finally obtained as

F =−(
ρv2

A +pA
)

SA eA +
(
ρv2

B +pB
)

SB eB .
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Using [3], the force F is expressed in terms of Q,

F =−
(

ρ
Q2

SA
+pA SA

)
eA +

(
ρ

Q2

SB
+pB SB

)
eB . [8]

There are two possible ways of obtaining the maximum and minimum of |F| in
terms of θ :

1) Determine the expression of |F| and search for its extremes by imposing
that its derivative is zero (this option not recommended).

2) Direct method, in which the two vectors acting in the value of F are
analyzed (this option developed below).

According to [7], the value of F depends on the positive scalar values FA and FB,
which multiply the vectors (−eA) and eB, respectively.

The vector (−eA) is fixed and does not depend on θ but eB does vary with θ . The
scalars FA and FB are constant values. Therefore, the maximum and minimum
values of F will be obtained when FA and FB either completely add or subtract
one another, respectively. That is, when the vectors (−eA) and eB are parallel to
each other. Taking into account [3] and [8], the maximum and minimum values
are found to be:

−Minimum value of F

θ =
π
2

|F|min = ρQ2

(
1

SB
− 1

SA

)
+pB SB−pA SA
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−Maximum value of F

θ =
3π
2

|F|min = ρQ2

(
1

SB
+

1

SA

)
+pB SB +pA SA

c) The balance of angular momentum equation (5.57) must be applied to find
the moment M about point O,

Mliq =
∫
V

r×ρb dV +
∫

∂V

r× t dS =
d
dt

∫
V

r×ρv dV , [9]

where Mliq is the resultant moment of the moments acting on the fluid. On
the other hand, expanding the right-hand term in [9] by means of the Reynolds
Transport Theorem (5.39), yields

d
dt

∫
V

r×ρv dV =
∂
∂ t

∫
V

r×ρv dV +
∫

∂V

(r×ρv)(n ·v) dS . [10]

As in b), because the problem is in steady-state regime, the local derivative is
null. Again, n and v are perpendicular to one another on the walls of the pipe
and, thus, considering [9] and [10], results in the expression

Mliq =
∫
SA

(r×ρv)(n ·v) dS+
∫
SB

(r×ρv)(n ·v) dS , [11]

where the following must be taken into account:

1. The solution to each integral can be determined considering the resultant
of the velocities in the middle point of each cross-section since the velocity
distributions are uniform and parallel in both cases.

2. For cross-section SA, the resultant of the velocity vector applied on the
center of the cross-section acts on point O and, therefore, does not generate
any moment because the cross product of the position vector at the center
of SA and the velocity vector are null.

3. For cross-section SB, vectors r and v belong to the plane of the paper and,
thus, their cross product has the direction of the vector (−ez). In addition,
they are perpendicular to each other, so the module of their cross product
is the product of their modules.
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Applying these considerations to [11] yields

Mliq =
∫
SB

Rρ vB (−ez)(eB ·vB eB) dS

Mliq =−ρ v2
B RSB ez =−ρ

Q2

SB
Rez [12]

The following step consists in studying the contributions of the body forces,
which in this case are null (b = 0), and of the surface forces.

Mliq =
∫
V

r×ρb dV +
∫

∂V

r× t dS =
∫

∂V

r× t dS =

=
∫
SA

r× t dS+
∫
SB

r× t dS−
∫

Slat

r× t dS =

= 0+
∫
SB

RpB ez dS+Mp/ f = RpB SB ez +Mp/ f ,

where Mp/ f is the moment exerted by the pipe on the fluid. To determine its
expression, [12] is used,

Mp/ f = Mliq−RpB SB ez =−ρ v2
B RSB ez−RpB SB ez ,

Mp/ f =−RSB
(
ρ v2

B +pB
)

ez =−R
(

ρ
Q2

SB
+pB SB

)
ez. [13]

Introducing the action and reaction law will allow obtaining the moment exerted
by the fluid on the pipe,

Mp/ f =−M f/p .

Considering the pipe and the rigid element P−O as a single body in equilibrium
and neglecting the weight of the pipe,

M f/p +M = 0 =⇒ M =−M f/p = Mp/ f .

Finally, the value of the moment M is obtained, using [13].

M =−RSB
(
ρv2

B +pB
)

ez =−R
(

ρ
Q2

SB
+pBSB

)
ez

Note that this result does not depend on the angle θ and, therefore, its module
will have a constant value.
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d) To determine the value of the power W needed to provide a volume flow rate
Q the balance of mechanical energy equation (5.73) is used.

W =
d
dt

∫
V

1

2
ρv2 dV +

∫
V

σσσ : d dV [14]

The stress power in an incompressible perfect fluid is null,∫
V

σσσ : d dV = 0 .

This is proven as follows.

σσσ : d =−p 1 : d =−pTr(d) =−pTr

(
1

2

(
lll + lllT

))
=

=−pTr(lll) =−pTr

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂vx

∂x
∂vx

∂y
∂vx

∂ z
∂vy

∂x
∂vy

∂y
∂vy

∂ z
∂vz

∂x
∂vz

∂y
∂vz

∂ z

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

=−p

(
∂vx

∂x
+

∂vy

∂y
+

∂vz

∂ z

)
=−p ∇ ·v = 0 ,

where [1] has been applied in relation to the incompressibility condition, to con-
clude that the divergence of the velocity is null.
Applying the Reynolds Transport Theorem (5.39) on the term of the material
derivative of the kinetic energy in [14] results in

W =
d
dt

∫
V

1

2
ρv2 dV =

∂
∂ t

∫
V

1

2
ρv2 dV +

∫
∂V

1

2
ρv2 (n ·v) dS .

And, again, considering the problem is in steady-state regime and that n and v
are perpendicular to one another on the walls of the pipe, the expression of the
incoming power W is determined.
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W =
∫
SA

1

2
ρv2 (n ·v) dS+

∫
SB

1

2
ρv2 (n ·v) dS =

=
∫
SA

1

2
ρv2

A (−vA) dS+
∫
SB

1

2
ρv2

B (vB) dS =
1

2
ρv3

A SA +
1

2
ρv3

B SB

Then, by means of [3], the final result is obtained.

W =
1

2
ρQ3

(
1

S2
B
− 1

S2
A

)
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258 CHAPTER 5. BALANCE PRINCIPLES

EXERCISES

5.1 – Justify why the following statements are true.

a) In an incompressible flow, the volume flow rate across a control surface
is null.

b) In a steady-state flow, the mass flux across a closed control surface is
null.

c) In an incompressible fluid in steady-state regime, the density is uniform
only when the density at the initial time is uniform.

5.2 – The figure below shows the longitudinal cross-section of a square pipe.
Water flows through this pipe, entering through section AE and exiting through
section CD. The exit section includes a floodgate BC that can rotate around
hinge B and is maintained in vertical position by the action of force F.

Determine:

a) The exit velocity v2 in terms of the entrance velocity v1 (justify the ex-
pression used).

b) The resultant force and moment at point B of the actions exerted on the
fluid by the interior of the pipe.

c) The resultant force and moment at point B of the actions exerted by the
fluid on floodgate BC.

d) The value of the force F and the reactions the pipe exerts on flood-
gate BC.

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems
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e) The power of the pump needed to maintain the flow.

Additional hypotheses:

1) Steady-state regime
2) Incompressible fluid
3) The pressures acting on the lateral walls of the pipe are assumed con-

stant and equal to the entrance pressure p.
4) The exit pressure is equal to the atmospheric pressure, which is negligi-

ble.
5) Perfect fluid: σi j =−pδi j

6) The weights of the fluid and the floodgate are negligible.

5.3 – The figure below shows the longitudinal cross-section of a pump used to
inject an incompressible fluid, fitted with a retention valve OA whose weight,
per unit of width (normal to the plane of the figure), is W. Consider a steady-
state motion, driven by the velocity of the piston V and the internal uniform
pressure P1. The external uniform pressure is P2.

Determine:

a) The uniform velocities v1 and v2 in terms of V (justify the expression
used).
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b) The resultant force, per unit of width, exerted by the fluid on the valve OA.
c) The resultant moment about O, per unit of width, exerted by the fluid on

the valve OA.
d) The value of W needed for the valve OA to maintain its position (as

shown in the figure) during the injection process.

Additional hypotheses:

1) The body forces of the fluid are negligible.
2) Perfect fluid: σi j =−pδi j

Perform the analysis by linear meter.

5.4 – A perfect and incompressible fluid flows through the pipe junction shown
in the figure below. The junction is held in place by a rigid element O−D.

Determine:

a) The entrance velocities (vA and vB) and the exit velocity (vC) in terms
of the volume flow rate Q (justify the expression used).

b) The resultant force and moment at O of the actions exerted on the fluid
by the interior of the pipes in the junction.

c) The reaction force and moment at D of the rigid element.
d) The power W of the pump needed to provide the volume flow rates indi-

cated in the figure.
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Additional hypotheses:

1) The weights of the fluid and the pipes are negligible.

5.5 – The front and top cross-sections of an irrigation sprinkler are shown in
the figure below. A volume flow rate Q of water enters through section C at a
pressure P and exits through sections A and B at an atmospheric pressure Patm.
The flow is assumed to be in steady-state regime.

Determine:

a) The entrance and exit velocities (justify the expression used).
b) The resultant force and moment at point O of the actions exerted on the

fluid by the interior walls of the sprinkler.
c) The reaction that must be exerted on point O to avoid the sprinkler from

moving in the vertical direction.
d) The angular acceleration of the sprinkler’s rotation α . To this aim, as-

sume that I0 and I1 are, respectively, the central moments of inertia about
point O of the empty sprinkler and the sprinkler full of water.

e) The power needed to provide a volume flow rate 2Q, considering that
W ∗ is the power of the pump needed to provide a volume flow rate Q.

Additional hypotheses:

1) Incompressible fluid
2) Perfect fluid: σi j =−pδi j

3) The weights of the sprinkler and the water inside it are negligible.
4) SA = SB = S and SC = S∗
5) m = Iα

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems
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Ch.6. Linear Elasticity 

6.1 Hypothesis of the Linear 
Elasticity Theory 



Hypothesis of the Linear Elastic Model 

 The simplifying hypothesis of the Theory of Linear Elasticity are: 

1. ‘Infinitesimal strains and deformation’ framework

2. Existence of an unstrained and unstressed reference state

3. Isothermal, isentropic and adiabatic processes

8 

https://youtu.be/-QOSZPg5bm0?t=00m48s


Hypothesis of the Linear Elastic Model 

1. ‘Infinitesimal strains and deformation’ framework
the displacements are infinitesimal: 
 material and spatial configurations or coordinates are the same

 material and spatial descriptions of a property & material and spatial
differential operators are the same:
 

 the deformation gradient                        ,  so the current spatial 
density is approximated by the density at the reference configuration.

Thus, density is not an unknown variable in linear elastic problems.

≈x X

( ) ( ) ( ) ( ), , , ,t t t tγ γ= = Γ = Γx X X x
( ) ( )∂ • ∂ •

=
∂ ∂X x

∂
= ≈

∂
xF 1
X

0 t tρ ρ ρ= ≈F

=x X

( ) ( )• = •∇ ∇

≈F 1

= +x X u
≈ 0
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Hypothesis of the Linear Elastic Model 

1. ‘Infinitesimal strains and deformation’ framework
the displacement gradients are infinitesimal: 
 The strain tensors in material and spatial configurations collapse

into the infinitesimal strain tensor.

( ) ( ) ( ), , ,t t t≈ =E X e x xε

10 



Hypothesis of the Linear Elastic Model 

2. Existence of an unstrained and unstressed reference state
 It is assumed that there exists a reference unstrained and unstressed

neutral state, such that,

 The reference state is usually assumed to correspond to the reference
configuration.
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( ) ( )
( ) ( )

0 0

0 0

,

,

t

t

= =

= =

x x 0

x x 0

ε ε

σ σ



3. Isothermal and adiabatic (=isentropic) processes
 In an isothermal process the temperature remains constant.

 In an isentropic process the entropy of the system remains constant.

 In an adiabatic process the net heat transfer entering into the body is
zero.

Hypothesis of the Linear Elastic Model 

( ) ( ) ( )0 0, ,t tθ θ θ≡ ≡ ∀x x x x

( , ) ( ) 0dss t s
dt

= = =X X

e 0Q     0
V V

r dV dS V Vρ
∂

= − ⋅ = ∀∆ ⊂∫ ∫ q n

0  0r tρ − ⋅ = ∀ ∀q x∇  

0s =

heat conduction 
from the exterior 

internal 
sources 
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REMARK   
An isentropic process  is an 
idealized thermodynamic 
process that is adiabatic, 
isothermal and reversible. 
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Ch.6. Linear Elasticity 

6.2 Linear Elastic Constitutive 
Equation 



 R. Hooke observed in 1660 that, for relatively small deformations 
of an object, the displacement or size of the deformation is 
directly proportional to the deforming force or load.  

 Hooke’s Law (for 1D problems) states that in an elastic 
material strain is directly proportional to stress through the 
elasticity modulus. 

Hooke’s Law 

Eσ = ε

σ

ε

E

F

F k l= ∆
F lE
A l

∆
=
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 This proportionality is generalized for the multi-dimensional case 
in the Theory of Linear Elasticity. 

 
 
 

 It constitutes the constitutive equation of a linear elastic material. 
 The 4th order tensor     is the constitutive elastic constants tensor: 

 Has 34=81 components. 
 Has the following symmetries, reducing the tensor to 21 independent 

components:  

Generalized Hooke’s Law 

( ) ( )
{ }

, ( ) ,

, 1, 2,3ij ijkl kl

t t

i jσ ε

 =
 = ∈


x x : xσ εC

C
Generalized 
Hooke’s Law 



ijkl jikl

ijkl ijlk

=

=

C C
C C

minor 
symmetries 

ijkl klij=C Cmajor 
symmetries 

REMARK   
The current stress at a point 
depends only on the current strain 
at the point, and not on the past 
history of strain states at the point. 
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 The internal energy balance equation for the (adiabatic) linear 
elastic model is 
 

 

 

Where: 
   is the specific internal energy (energy per unit mass).
   is the specific heat generated by the internal sources.
     is the heat conduction flux vector per unit surface.

Elastic Potential 

( )0 :d u r
dt

ρ ρ= + − ∇ ⋅qεσ

global form 

local form 



( )0
0 0

    
V V V V

d d uu dV dV dV r dV
dt dt

ρρ ρ
=

= = + − ∇ ⋅∫ ∫ ∫ ∫: d q


σ
ε

q
r
u

REMARK   
The rate of  strain tensor is related to the 
material derivative of the material strain 
tensor through: 
 In this case,             and           . 

T= ⋅ ⋅E F d F

=E ε =F 1

stress power heat transfer rate 

infinitesimal 
strains 

( )V V tt ≡ ∀

internal energy 
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 The stress power per unit of volume is an exact differential of the 
internal energy density,    , or internal energy per unit of volume: 
 
 

 Operating in indicial notation: 
 
 
 
 

Elastic Potential 



0
ˆ( , ) ˆ( ) :

ˆ

d du tu u
dt dtu

ρ = = =
x



σ ε

û







( )
)

:

: :

ˆ 1 ( )
2

1 1( )
2 2

1
2

ij ij ij ijkl kl ij ijkl kl ij ijkl kl

ij ijkl kl kl klij ij ij ijkl kl ij ijkl kl

ij ijkl kl

ijkl kl

jkl
ij ijkl kl

i

i k
j l

d
dt

du
dt

d
dt

ε

ε

(

↔
↔

ε ε

= = ε σ = ε ε = ε ε + ε ε =

= ε ε + ε = ε ε + ε ε =

= ε ε

:




    

  









ε

ε ε

σ ε
C

C

C

CC

C C C

C C C C

C

REMARK   
The symmetries of the 
constitutive elastic 
constants tensor are used: 

 
 

 
 

ijkl jikl

ijkl ijlk

=

=

C C
C C

minor 
symmetries 

ijkl klij=C Cmajor 
symmetries 

( )ˆ 1
2

du d
dt dt

= : :Cε ε
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     Consequences: 
1. Consider the time derivative of the internal energy in the whole

volume:

 In elastic materials we talk about deformation energy because the stress
power is an exact differential.

Elastic Potential 

( )ˆ 1: : :
2

du d
dt dt

= = Cσ ε ε ε

( ) ( ) ( )ˆˆ ˆ, , :
V V V

d d du t dV u t dV t dV
dt dt dt

= = =∫ ∫ ∫x x σ εU stress 
power 

REMARK   
The stress power,  in elastic materials is an 
exact differential of the internal energy     .
Then, in elastic processes, we can talk of the 
elastic energy          .
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ˆU

ˆ( )tU



 Consequences: 
2. Integrating the time derivative of the internal energy density,

 and assuming that the density of the internal energy vanishes at the 
neutral reference state,                       : 

 
 Due to thermodynamic reasons the internal energy is assumed 

always positive 

Elastic Potential 

( ) ( ) ( )0 0
1 , , ( ) 0
2

t t a a+ = = ∀x : : x x x xCε ε

( ) ( ) ( ) ( )1ˆ , , ,
2

u t t t a= +x x : : x xCε ε

( )0ˆ , 0u t = ∀x x

= 0

( ) 1ˆ : : 0
2

u = ∀ ≠ 0Cε ε ε ε>

( )


1 1ˆ : : ( ) :
2 2

u = =Cε ε ε σ ε ε
σ
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( )ˆ 1: : :
2

du d
dt dt

= = Cσ ε ε ε



 The internal energy density defines a potential for the stress 
tensor, and is thus, named elastic potential. The stress tensor can 
be computed as 
 

 The constitutive elastic constants tensor can be obtained as the 
second derivative of the internal energy density with respect to 
the strain tensor field,  

Elastic Potential 

( )2 ˆ
ijkl

ij kl

u∂
=

∂ε ∂ε
ε

C

( )û∂
=

∂
ε

σ
ε

( ) ( )2 ˆ :( ) u∂ ∂∂
= = =

∂ ∂ ⊗ ∂ ∂
C

C
ε εσ ε

ε ε ε ε

ˆ( ( , )) 1 1 1 1( : : : : ( )
2 2 2 2

u t∂ ∂
= = + = + =

∂ ∂
xε

ε ε) ε ε σ σ σ
ε ε

C C C
= σ

T= =σ σ
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Ch.6. Linear Elasticity 

6.3 Isotropic Linear Elasticity 



 An isotropic elastic material must have the same elastic properties 
(contained in    ) in all directions. 
 All the components of     must be independent of the orientation of the

chosen (Cartesian) system     must be a (mathematically) isotropic 
tensor. 

Where: 
   is the 4th order unit tensor defined as
   and    are scalar constants known as Lamé‘s parameters or coefficients.

 

Isotropic Constitutive Elastic Constants 
Tensor 

( ) { }
2

, , , 1, 2,3ijkl ij kl ik jl il jk i j k l

λ µ

λδ δ µ δ δ δ δ

= ⊗ +
 = + + ∈

IC

C

1 1

C
C

C

REMARK   
The isotropy condition reduces the number of independent elastic constants from 21 to 2. 

[ ] 1
2 ik jl il jkijkl

δ δ δ δ = + II
λ µ
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 Introducing the isotropic constitutive elastic constants tensor 
                             into the generalized Hooke’s Law               , 
   in index notation: 

 And the resulting constitutive equation is, 

Isotropic Linear Elastic Constitutive 
Equation 

( )( )
1 12 ( ) 2
2 2

ij ijkl kl ij kl ik jl il jk kl

ij kl kl ik jl kl il jk kl ij ijTr

σ ε λδ δ µ δ δ δ δ

λδ δ µ δ δ δ δ λ δ µ

= = + + ε =

 = ε + ε + ε = + ε 
 

ε

C

2λ µ= ⊗ + IC 1 1 = :Cσ ε

( )
{ }

2

2 , 1,2,3ij ij ll ij

Tr

i j

λ µ

σ λδ ε µ ε

= +


= + ∈

σ ε ε1 Isotropic linear elastic 
constitutive equation. 

Hooke’s Law 

( )ll Tr= =ε ε ji ij= =ε ε

ij= ε

1
2

1
2 i jij j i+= =ε ε ε
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 If the constitutive equation is, 

   Then, the internal energy density can be reduced to: 

Elastic Potential 

( )
{ }

2

2 , 1, 2,3ij ij ll ij

Tr

i j

λ µ

σ λδ ε µ ε

= +

= + ∈

σ ε ε1 Isotropic linear elastic 
constitutive equation. 

Hooke’s Law 

( ) ( )

( )
( )


( )2

1 1ˆ : ( ) 2 :
2 2

1 1: 2
2 2

1
2

Tr

u Tr

Tr

Tr

λ µ

λ µ

λ µ

= +

+

= +

=σ


ε

ε ε = ε ε ε =

= ε ε ε : ε =

ε ε : ε

σ 1

1

REMARK 
The internal energy density is an 
elastic potential of the stress tensor 
as: 
 ( ) ( ) ( )

ˆ
2

u
Trλ µ

∂
= = +

∂
ε ε

ε
σ ε

ε
1
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1.    is isolated from the expression derived for Hooke’s Law

2. The trace of     is obtained:
 

3. The trace of     is easily isolated:

4. The expression in 3.  is introduced into the one obtained in 1.

Inversion of the Constitutive Equation 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )2   2  3 2Tr Tr Tr Tr Tr Tr Trλ µ λ µ λ µ= + + = +σ ε ε = ε ε ε1 1

σ

( ) ( )1
3 2

Tr Tr
λ µ

=
+

ε σ

ε

ε

( ) 2Trλ µ= +σ ε ε1 ( )( )1
2

Trλ
µ

ε = σ − ε 1

( )1 1
2 3 2

Trλ
µ λ µ

 
 + 

ε = σ − σ 1
( ) ( ) 1

2 3 2 2
Trλ

µ λ µ µ
+

+
ε = − σ σ1

=3
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 The Lamé parameters in terms of    and    : 

 So the inverse const. eq. is re-written: 

Inverse Isotropic Linear Elastic 
Constitutive Equation 

( )( )
( )( )

( )( )

1 1

1 1

1 1

x x y z xy xy

y y x z xz xz

z z x y yz yz

E G

E G

E G

ε σ ν σ σ γ τ

ε σ ν σ σ γ τ

ε σ ν σ σ γ τ

= − + =

= − + =

= − + =

( )

{ }

1

1 , 1,2,3ij ll ij ij

Tr
E E

i j
E E

ν ν

ν νε σ δ σ

+ = − +
 + = − + ∈


ε σ σ1

νE

Inverse isotropic linear 
elastic constitutive equation. 

Inverse Hooke’s Law. 

( )

( )

3 2

2

E
µ λ µ

λ µ
λν

λ µ

+
=

+

=
+

( )( )

( )

1 1 2

2 1

E

EG

νλ
ν ν

µ
ν

=
+ −

= =
+

In engineering notation: 
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( ) ( ) 1
2 3 2 2

Trλ
µ λ µ µ

+
+

ε = − σ σ1



 Young's modulus     is a measure of the stiffness of an elastic 
material. It is given by the ratio of the uniaxial stress over the 
uniaxial strain. 

 Poisson's ratio      is the ratio, when a solid is uniaxially stretched, 
of the transverse strain (perpendicular to the applied stress), to the 
axial strain (in the direction of the applied stress). 

Young’s Modulus and Poisson’s Ratio 

ν

E

( )3 2
E

µ λ µ
λ µ

+
=

+

( )2
λν

λ µ
=

+
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Example 

Consider an uniaxial traction test of an isotropic linear elastic material such 
that: 

Obtain the strains (in engineering notation) and comment on the results 
obtained for a Poisson’s ratio of         and           .  

xσ xσ
  

 x 

 y 

 z 

xσxσ

0
0

x

y z xy xz yz

σ
σ σ τ τ τ

>
= = = = =

E, ν

0ν = 0.5ν =
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Solution 

For         : 

For            : 

0ν =
1 0

0

0

x x xy

y x xz

z x yz

E

E

E

ε σ γ

νε σ γ

νε σ γ

= =

= − =

= − =

1 0

0 0
0 0

x x xy

y xz

z yz

E
ε σ γ

ε γ
ε γ

= =

= =
= =

0.5ν =

1 0

0.5 0

0.5 0

x x xy

y x xz

z x yz

E

E

E

ε σ γ

ε σ γ

ε σ γ

= =

= − =

= − =

1 0

1 0
2
1 0

2

x x xy

y x xz

z x yz

E

E

E

ε σ γ

ε σ γ

ε σ γ

= =

= − =

= − =

There is no Poisson’s effect 
and the transversal normal 
strains are zero. 

The volumetric deformation is 
zero,                             , the 
material is incompressible 
and the volume is preserved. 

tr 0x y zε ε ε= + + =ε
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( )( )

1 1

1 1

1 1

x x y z xy xy

y y x z xz xz

z z x y yz yz

E G

E G

E G

ε σ ν σ σ γ τ

ε σ ν σ σ γ τ

ε σ ν σ σ γ τ

= − + =

= − + =

= − + =

0
0

x

y z xy xz yz

σ
σ σ τ τ τ

>
= = = = =

https://youtu.be/jaE88wQWkz8?t=10m48s


 The stress tensor can be split into a spherical, or volumetric, part 
and a deviatoric part: 

 Similarly for the strain tensor: 

Spherical and deviatoric parts of 
Hooke’s Law 

( )1:
3sph m Trσ= =σ σ1 1

dev mσ′ = = 1σ σ σ −
mσ ′= +σ σ1

1 ´
3

e= +ε ε1

1 1 Tr (
3 3sph e= = )ε ε1 1

1dev
3

e′ = =ε ε ε− 1
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https://youtu.be/CMerUTNQR-I?t=00m00s


 Operating on the volumetric strain: 

 The spherical parts of the stress and strain tensor are directly 
related: 

Spherical and deviatoric parts of 
Hooke’s Law 

( )Tre = ε

( ) 1Tr
E E
ν ν+

= − +ε σ σ1

( ) ( ) ( )1Tr Tr Tre
E E
ν ν+

= − +σ σ1

( )3 1 2
me

E
ν

σ
−

=

3= 3 mσ=

( )3 1 2m
E eσ

ν
=

−

   : bulk modulus 
  (volumetric strain modulus) 

K

2
3 3(1 2 )

def EK λ µ
ν

= + =
−

m K eσ =
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 Introducing                  into                                 : 
 

 

   Taking into account that                    : 

 The deviatoric parts of the stress and strain tensor are related 
component by component:  

Spherical and Deviator Parts of 
Hooke’s Law 

mσ ′= +σ σ1

( )3 1 2m
E eσ

ν
=

−

( ) 1Tr
E E
ν ν+

= − +ε σ σ1

( ) ( )

( ) ( )

1

1 1 1 3 1

m m

m m m

Tr
E E

Tr Tr
E E E E E E E

ν νσ σ

ν ν ν ν ν ν νσ σ σ

+′ ′= − + + +

+ + + + ′ ′ ′= − − + + = − + 
 

ε σ σ

σ σ σ

1 1 1

1 1 1 1 1
3=

( )
1 2 1 1 1 1

3 1 2 3
E e e

E E E
ν ν ν

ν
− + +  ′ ′= + = +  − 

ε σ σ1 1

0=

2 2 , {1,2,3}ij ijG G i jσ ε′ ′ ′ ′= = ∈εσ

1 ´
3

e= +ε ε1

 Comparing this 
with the expression 

1´
E

ν+ ′=ε σ
1 1 1

E 2 2G
ν

µ
+

= =
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 The spherical and deviatoric parts of the strain tensor are 
directly proportional to the spherical and deviatoric parts 
(component by component) respectively, of the stress tensor: 

Spherical and deviatoric parts of 
Hooke’s Law 

2ij ijGσ ε′ ′=
m K eσ =

33 

https://youtu.be/CMerUTNQR-I?t=06m45s


 The internal energy density         defines a potential for the stress 
tensor and is, thus, an elastic potential: 
 

 Plotting         vs.    : 

Elastic Potential 

( ) 1ˆ : :
2

u = Cε ε ε ( )ˆ
:

u∂
= =

∂


ε
σ ε

ε

( )û ε

( ) ( )2 2

0
0 0

ˆ ˆu u
=

= =

∂ ∂
= = =

∂ ⊗ ∂ ∂ ⊗ ∂
C C

ε
ε ε

ε ε
ε ε ε ε

( )û ε ε

( ) ( )
0

0

ˆ
= : 0

u
=

=

∂
=

∂
C

ε
ε

ε
ε

ε

There is a minimum for           : 0=ε

REMARK 
The constitutive elastic constants 
tensor     is positive definite due 
to thermodynamic considerations. 

C
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https://youtu.be/CMerUTNQR-I?t=08m22s


 The elastic potential can be written as a function of the spherical 
and deviatoric parts of the strain tensor: 

Elastic Potential 

( ) 1 1ˆ
2 2

: : :u = =ε ε ε σ εC

( ) ( )21 1: : :
2 2

Tr Trλ µ λ µ= + = +ε ε ε ε ε ε ε1

( ): : : : :=ε ε ε ε = σ εC C

( )1 2
2

Trλ µ= +   :ε ε ε =1

σ=

( )Tr e= =ε 2e=



( )


2

2

03

1 1´ ´
3 3
1 2 ´ ´ ´
9 3

1 ´ ´
3

Tr

e e

e e

e

′ =

   = + + =   
   

= + + =

= +

:

: : :

:

ε

ε ε

ε ε ε

ε ε

1 1

1 1 1

( ) 2 2 21 1 1 2ˆ :́ ´ :́ ´
2 3 2 3

u e e μ e μλ µ λ µ = + + = + + 
 

ε ε ε ε ε

K

( ) 21ˆ :́ ´ 0
2

u K e µ= + ≥ε ε ε
Elastic potential in terms of the 
spherical and deviatoric parts 
of the strains.  
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 The derived expression must hold true for any deformation 
process: 

 Consider now the following particular cases of isotropic linear 
elastic material: 
 Pure spherical deformation process

 Pure deviatoric deformation process

Limits in the Elastic Properties 

( ) 21ˆ : : ´ 0
2

u K e µ= + ≥ε ε ε´

( )

( )

1

1

1
3

e=

′ = 0

ε

ε

1 ( )1 21ˆ 0
2

u K e= ≥ 0K >

( )

( )

2

2e

′=

= 0

ε ε ( )2ˆ ´ ´ 0u µ= ≥:ε ε 0µ >

: 0ij ijε ε′ ′ = ≥ε ε
REMARK 
 

   bulk modulus 

 Lamé’s second 
parameter 
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https://youtu.be/QLJ1YdDILk0?t=00m00s


    and     are related to     and     through: 

 Poisson’s ratio has a non-negative value,
 
 

 Therefore,

Limits in the Elastic Properties 

K µ E ν

( )
0

3 1 2
EK

ν
= >

− ( )
0

2 1
EGµ

ν
= = >

+

( )
0

2 1
0

E
ν
ν

>
+

≥
0E ≥  Young’s

modulus 

( )
0

3 1 2
0

E

E
ν

>
−

≥

10
2

ν≤ ≤  Poisson’s ratio 

REMARK   
In rare cases, a material can 
have a negative Poisson’s ratio. 
Such materials are named 
auxetic materials. 
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Ch.6. Linear Elasticity 

6.4 The Linear Elastic Problem 



 The linear elastic solid is subjected to body forces and prescribed 
tractions: 

 The Linear Elastic problem is the set of equations that allow 
obtaining the evolution through time of the corresponding 
displacements          , strains          and stresses          . 

Introduction 

0t =
( )
( )

,0

,0

b x

t x

( )
( )

,

,

t

t

b x

t x

Initial actions: 

Actions 
through time: 

( ), tu x ( ), txε ( ), txσ
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https://youtu.be/9J-glFC_G8Q?t=00m00s


 The Linear Elastic Problem is governed by the equations: 
1. Cauchy’s Equation of Motion.

Linear Momentum Balance Equation. 

 

2. Constitutive Equation.
Isotropic Linear Elastic Constitutive Equation. 

 

3. Geometrical Equation.
  Kinematic Compatibility. 

Governing Equations 

( ) ( ) ( )2

0 0 2

,
, ,

t
t t

t
ρ ρ

∂
⋅ + =

∂
u x

x b x∇ σ

( ) ( ), 2t Trλ µ= +xσ ε ε1

( ) ( ) ( )1, ,
2

St t= = ⊗ + ⊗x u x u uε ∇ ∇ ∇

This is a PDE system of 
15 eqns -15 unknowns: 

Which must be solved in 
the            space. 

( ), tu x
( ), txε

( ), txσ

3 unknowns 

6 unknowns 

6 unknowns 

3
+×R R
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https://youtu.be/9J-glFC_G8Q?t=01m58s


 Boundary conditions in space 
 Affect the spatial arguments of the unknowns
 Are applied on the boundary      of the solid,
 which is divided into three parts: 

 Prescribed displacements on      :
 
 

 Prescribed tractions on       : 
 
 

 Prescribed displacements and stresses on       : 

Boundary Conditions 

Γ

{0}
u u

u u u u

Vσ σ

σ σ σ σ

Γ Γ Γ = Γ ≡ ∂
Γ Γ = Γ Γ = Γ Γ = /
 

  

uΓ

σΓ

uσΓ

( ) ( ) { }

*

*

( , ) ( , )
, , 1, 2,3 u

i i

t t
t

u t u t i
 = ∀ ∈Γ ∀ = ∈

u x u x
x

x x

( ) ( ) { }

*

*

( , ) ( , )
, , 1,2,3ij j j

t t
t

t n t t i σσ
 ⋅ = ∀ ∈ Γ ∀ ⋅ = ∈

x n x
x

x x
σ t

( ) ( )
( ) ( ) { }( )

*

*

, ,
, , 1, 2,3

, ,
i i

u
jk k j

u t u t
i j k i j t

t n t t σσ
 = ∈ ≠ ∀ ∈Γ ∀ ⋅ =

x x
x

x x
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https://youtu.be/9J-glFC_G8Q?t=05m38s


Boundary Conditions 
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 Boundary conditions in time. INTIAL CONDITIONS. 
 Affect the time argument of the unknowns.
 Generally, they are the known values at        : 

 Initial displacements:

 Initial velocity:

Boundary Conditions 

0t =

( ),0 V= ∀ ∈u x 0 x

( ) ( ) ( )0
0

,
,0

not

t

t
V

t
=

∂
= = ∀ ∈

∂
u x

u x v x x
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https://youtu.be/9J-glFC_G8Q?t=15m33s


 Find the displacements         , strains          and stresses           
such that 

 

The Linear Elastic Problem 

( ), tu x ( ), txε ( ), txσ

( ) ( ) ( )2

0 0 2

,
, ,

t
t t

t
ρ ρ

∂
⋅ + =

∂
u x

x b x∇ σ

( ) ( ), 2t Trλ µ= +xσ ε ε1

( ) ( ) ( )1, ,
2

St t= = ⊗ + ⊗x u x u uε ∇ ∇ ∇

Cauchy’s Equation of Motion 

Constitutive Equation 

Geometric Equation 

*

*

:

:
u

σ

Γ =

Γ = ⋅

u u
t nσ Boundary conditions in space 

( )
( ) 0

,0

,0

=

=

u x 0

u x v

Initial conditions (Boundary conditions in time) 
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https://youtu.be/9J-glFC_G8Q?t=17m58s


 The linear elastic problem can be viewed as a system of actions or data 
inserted into a mathematical model made up of the EDP’s and 
boundary conditions , which gives a response (or solution) in 
displacements, strains and stresses. 

 

 Generally, actions and responses depend on time. In these cases, the
problem is a dynamic problem, integrated in           . 

 In certain cases, the integration space is reduced to      . The problem is
termed quasi-static.

Actions and Responses 

( )
( )
( )
( )

*

*

0

,
,
,

t
t
t

b x
t x
u x
v x

( )
( )
( )

,
,
,

t
t
t

u x
x
x

ε
σ

( )
not

, t= xAACTIONS 
( )

not
, t= xRRESPONSES 

Mathematical 
model 

EDPs+BCs 

3
+×R R

3R
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 A problem is said to be quasi-static if the acceleration term can 
be considered to be negligible. 

 This hypothesis is acceptable if actions are applied slowly. Then,

The Quasi-Static Problem 

2

2

( , )t
t

∂
= ≈

∂
u xa 0

2 2/ t∂ ∂ ≈ 0A 2 2/ t∂ ∂ ≈ 0R
2

2

( , )t
t

∂
≈

∂
u x 0
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https://youtu.be/KsF4YB44yYw?t=01m22s


 Find the displacements         , strains          and stresses           
such that 

 

( )2

0 2

, t
t

ρ
∂

≈
∂
u x

0

The Quasi-Static Problem 

( ), tu x ( ), txε ( ), txσ

( ) ( )0, ,t tρ⋅ + =x b x 0∇ σ

( ) ( ), 2t Trλ µ= +xσ ε ε1

( ) ( ) ( )1, ,
2

St t= = ⊗ + ⊗x u x u uε ∇ ∇ ∇

*

*

:

:
u

σ

Γ =

Γ = ⋅

u u
t nσ

( )
( ) 0

,0

,0

=

=

u x 0

u x v

Equilibrium Equation 

Constitutive Equation 

Geometric Equation 

Boundary Conditions in Space 

Initial Conditions 
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 The quasi-static linear elastic problem does not involve time 
derivatives. 
 Now the time variable plays the role of a loading descriptor: it describes the

evolution of the actions.

 

 For each value of the actions              -characterized by a fixed value    - a 
response              is obtained. 

 Varying     , a family of actions and its corresponding family of responses
are obtained. 

The Quasi-Static Problem 

( )
( )
( )

*

*

,
,
,

λ
λ
λ

b x
t x
u x

( )
( )
( )

,
,
,

λ
λ
λ

u x
x
x

ε
σ

( )
not

,λ= xAACTIONS ( )
not

,λ= xRRESPONSES 

Mathematical 
model 

EDPs+BCs 

*λ( )*,λxA
( )*,λxR

*λ
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https://youtu.be/KsF4YB44yYw?t=12m29s


Consider the typical material strength problem where a cantilever beam is 
subjected to a force         at it’s tip.

For a quasi-static problem,  

The response is                        , so for every time instant, it only depends on 
the corresponding value         . 

Example 

( )F t

( ) (( ))t tδ δλ=
( )tλ
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https://youtu.be/KsF4YB44yYw?t=13m25s


 To solve the isotropic linear elastic problem posed, two approaches can 
be used: 
 Displacement formulation - Navier Equations

Eliminate          and          from the general system of equations.  This 
generates a system of 3 eqns. for the 3 unknown components of         . 
 Useful with displacement BCs.
 Avoids compatibility equations.
 Mostly used in 3D problems.
 Basis of most of the numerical methods.

 Stress formulation - Beltrami-Michell Equations.
Eliminates          and          from the general system of equations.  This 
generates a system of 6 eqns. for the 6 unknown components of         . 
 Effective with  boundary conditions given in stresses.
 Must work with compatibility equations.
 Mostly used in 2D problems.
 Can only be used in the quasi-static problem.

Solution of the Linear Elastic Problem 

( ), tu x
( ), txε( ), txσ

( ), tu x ( ), txε
( ), txσ
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https://youtu.be/lqQ8NGG-mAk?t=00m00s


  The aim is to reduce this system to a system with          as the only unknowns. 
  Once these are obtained,           and           will be found through substitution. 

Displacement formulation 

( ) ( ) ( )2

0 0 2

,
, ,

t
t t

t
ρ ρ

∂
⋅ + =

∂
u x

x b x∇ σ

( ) ( ), 2t Trλ µ= +xσ ε ε1

( ) ( ) ( )1, ,
2

St t= = ⊗ + ⊗x u x u uε ∇ ∇ ∇

Cauchy’s Equation of Motion 

Constitutive Equation 

Geometric Equation 

*

*

:

:
u

σ

Γ =

Γ = ⋅

u u
t nσ Boundary Conditions in Space 

( )
( ) 0

,0

,0

=

=

u x 0

u x v

Initial Conditions 

( ), tu x
( ), txε ( ), txσ
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https://youtu.be/lqQ8NGG-mAk?t=03m40s


 Introduce the Constitutive Equation into Cauchy’s Equation of 
motion: 
 

 
 Consider the following identities:

Displacement formulation 

( ) ( ) ( )2

0 0 2

,
, ,

t
t t

t
ρ ρ

∂
⋅ + =

∂
u x

x b x∇ σ

( ) ( ), 2t Trλ µ= +xσ ε ε1
[ ]

2

0 0 2( ) 2Tr
t

λ µ ρ ρ ∂
⋅ + ⋅ + =

∂
ub∇ ε ∇ ε1

( ) ( ) ( )

( ) { }

11( )

1,2,3

k k
ij iji

j j k i k i

i

u uTr
x x x x x x

i

ε δ δ
   ∂ ∂ ∂ ∂ ∂ ∂

⋅ = = = = ⋅ =      ∂ ∂ ∂ ∂ ∂ ∂   

= ⋅ ∈  

1 u

u

∇ ε ∇

∇ ∇

⋅= u∇

( )( )u
i

⋅= ∇ ∇

( )( ) ( )Tr⋅ = ⋅u∇ ε ∇ ∇1
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 Introduce the Constitutive Equation into Cauchy’s Equation of 
motion: 
 

 Consider the following identities:

Displacement formulation 

( ) ( ) ( )2

0 0 2

,
, ,

t
t t

t
ρ ρ

∂
⋅ + =

∂
u x

x b x∇ σ

( ) ( ), 2t Trλ µ= +xσ ε ε1
[ ]

2

0 0 2( ) 2Tr
t

λ µ ρ ρ ∂
⋅ + ⋅ + =

∂
ub∇ ε ∇ ε1

( ) ( ) ( )

( ) { }

2

2

21 1 1 1 1
2 2 2 2 2

1 1 1,2,3
2 2

ij j ji i
i

j j j i j j i j i

i

i

u uu u
x x x x x x x x x

i

ε     ∂ ∂ ∂∂ ∂∂ ∂ ∂
⋅ = = + = + = + ⋅ =       ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     

 = + ⋅ ∈  

u u

u u

∇∇ ε ∇

∇ ∇ ∇

( )2

i
= u∇

⋅= u∇

( )( )i
⋅= u∇ ∇

21 1( )
2 2

⋅ = ⋅ +u u∇ ε ∇ ∇ ∇
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 Introduce the Constitutive Equation into Cauchy’s Equation of 
Movement: 
 

 
 Replacing the identities:

 Then, 

 The Navier Equations  
         are obtained: 

Displacement formulation 

( ) ( ) ( )2

0 0 2

,
, ,

t
t t

t
ρ ρ

∂
⋅ + =

∂
u x

x b x∇ σ

( ) ( ), 2t Trλ µ= +xσ ε ε1
[ ]

2

0 0 2( ) 2Tr
t

λ µ ρ ρ ∂
⋅ + ⋅ + =

∂
ub∇ ε ∇ ε1

( )( ) ( )Tr⋅ = ⋅u∇ ε ∇ ∇1 21 1( )
2 2

⋅ = ⋅ +u u∇ ε ∇ ∇ ∇

( )
2

2
0 0 2

1 12 ( )
2 2 t

λ µ ρ ρ ∂ ⋅ + ⋅ + + =  ∂ 
uu u u b∇ ∇ ∇ ∇ ∇

( ) ( )
( ) { }

2
2

0 0 2

, , 0 0 1, 2,3j ji i jj i i

t
u u b u i

λ µ µ ρ ρ

λ µ µ ρ ρ

 ∂
+ ⋅ + + = ∂
+ + + = ∈



uu u b



∇ ∇ ∇

2nd order 
PDE system 
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 The boundary conditions are also rewritten in terms of          : 
 

 

 The BCs are now: 

Displacement formulation 

( ), tu x

( ) ( ), 2t Trλ µ= +xσ ε ε1

* = ⋅t nσ
( )( )* 2Trλ µ= + ⋅t n nε ε

⋅= u∇

( )1
2

S= = ⊗ + ⊗u u u∇ ∇ ∇

( ) ( )* λ µ= ⋅ + ⊗ + ⊗ ⋅t u n u u n∇ ∇ ∇

{ }

*

* 1, 2,3i iu u i

 =


= ∈

u u
uΓon 

σΓ
( ) ( )

( ) { }

*

*
. , , 1, 2,3k k i i j j j i j iu n u n u n t i

λ µ

λ µ

 ⋅ + ⊗ + ⊗ ⋅ =


+ + = ∈

u n u u n t∇ ∇ ∇
on 

REMARK   
The initial conditions 
remain the same. 
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 Navier equations in a cylindrical coordinate system: 
 

 

 

Where: 

Displacement formulation 

 cos  
( , , )  sin  

x r
r z y r

z z

θ
θ θ

=
≡ =
 =

x

   dV r d dr dzθ=

( )
2

2

22 2z r
r

ue GG G b
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∂∂ ∂∂
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∂ ∂ ∂ ∂
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12 2 2r z ueG G G b
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θ
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∂∂ ∂∂
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∂ ∂ ∂ ∂
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2

2 22 r z
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∂ ∂∂ ∂
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∂ ∂ ∂ ∂

1 1
2

z
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r z

θ
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θ
∂∂ = −Ω = − ∂ ∂ 

1
2

r z
zr

u u
z rθω

 ∂ ∂
= −Ω = − ∂ ∂ 

( )1 1 1
2

r
z r

ru u
r r r

θ
θω

θ
∂ ∂
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r
u ue ru

r r r z
θ

θ
∂ ∂∂

= + +
∂ ∂ ∂
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https://youtu.be/lqQ8NGG-mAk?t=13m58s


 Navier equations in a spherical coordinate system: 
 

 

 

Where: 

Displacement formulation 

( )
sin  cos

, ,  sin  sin
 cos

x r
r y r

z r

θ ϕ
θ ϕ θ ϕ

θ
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= ≡ =
 =

x x
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∂ ∂ ∂ ∂
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= + + ∂ ∂ ∂ 
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  The aim is to reduce this system to a system with            as the only unknowns. 
Once these are obtained,           will be found through substitution and           by 
integrating the geometric equations. 

Stress formulation 

( ) ( )0, , 0t tρ⋅ + =x b x∇ σ

( ) ( ) 1, t Tr
E E
ν ν+

= − +xε σ σ1

( ) ( ) ( )1, ,
2

St t= = ⊗ + ⊗x u x u uε ∇ ∇ ∇

Equilibrium Equation 
(Quasi-static problem) 

Inverse Constitutive Equation 

Geometric Equation 

*

*

:

:
u

σ

Γ =

Γ = ⋅

u u
t nσ Boundary Conditions in Space 

( ), txσ

REMARK   
For the quasi-static problem, the time variable plays the role of a loading factor. 

( ), tu x( ), txε
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https://youtu.be/Y6nIhc3Knek?t=00m00s


 Taking the geometric equation and, through successive derivations, 
the displacements are eliminated: 
 
 

 Introducing the inverse constitutive equation into the compatibility 
equations and using the equilibrium equation: 

 The Beltrami-Michell Equations are obtained: 

Stress formulation 

Compatibility Equations 
(seen in Ch.3.) { }

2 22 2
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i j k l
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 The boundary conditions are: 
 Equilibrium Equations:

This is a 1st order PDE system, so they can act as boundary conditions of
the (2nd order PDE system of the) Beltrami-Michell Equations

 Prescribed stresses on :  

Stress formulation 

0 0ρ⋅ + =b∇ σ

σΓ *
σ⋅ = Γn tσ on
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 Once the stress field is known, the strain field is found by substitution. 

 The calculation, after, of the displacement field requires that the 
geometric equations be integrated with the prescribed displacements 
on     : 

Stress formulation 

REMARK   
This need to integrate the second system is a considerable disadvantage with 
respect to the displacement formulation when using numerical methods to solve 
the lineal elastic problem. 

( )
*

1( ) ( ) ( )
2

( ) ( ) u

V= ⊗ + ⊗ ∈

= ∀ ∈Γ

x u x u x x

u x u x x

ε ∇ ∇
uΓ

( ) ( ) 1, t Tr
E E
ν ν+

= − +xε σ σ1
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 From A. E. H. Love's Treatise on the mathematical theory of elasticity:  
   “According to the principle, the strains  that are produced in a body by the application, 

to a small part of its surface, of a system of forces statically equivalent to zero force 
and zero couple, are of negligible magnitude at distances which are large compared 
with the linear dimensions of the part.” 

 Expressed in another way: 
   “The difference between the stresses caused by statically equivalent load systems is 

insignificant at distances greater than the largest dimension of the area over which  
the loads are acting.” 

 

 

Saint-Venant’s Principle 

REMARK 
This principle does not have a 
rigorous mathematical proof.   

( ) ( )
( ) ( )
( ) ( )

(I) (II)

(I) (II)

(I) (II)

, ,

, ,

, ,

P P

P P

P P

t t

t t

t t

≈

≈

≈

u x u x

x x

x x

ε ε

σ σ

|P δ∀ >> 
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https://youtu.be/8mzBHFiPi-g?t=00m00s


Saint-Venant’s Principle 

 Saint Venant’s Principle is often used in strength of materials. 

 It is useful to introduce the concept of stress: 
The exact solution of this problem is very complicated. 

This load system is statically equivalent to load system (I). 
The solution of this problem is very simple. 

Saint Venant’s Principle allows approximating solution (I) by solution (II) at a 
far enough distance from the ends of the beam.  
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 The solution of the lineal elastic problem is unique: 
 It is unique in strains and stresses.
 It is unique in displacements assuming that appropriate boundary

conditions hold in order to avoid rigid body motions.

 This can be proven by Reductio ad absurdum ("reduction to the 
absurd"), as shown in pp. 189-193 of the course book. 
 This proof is valid for lineal elasticity in infinitesimal strains.
 The constitutive tensor     is used, so proof is not only valid for isotropic

problems but also for orthotropic and anisotropic ones.

Uniqueness of the solution 

C
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65 

Ch.6. Linear Elasticity 

6.5 Linear Thermoelasticity 



Hypothesis of the Linear Thermo-elastic 
Model  

 The simplifying hypothesis of the Theory of Linear Thermo-
elasticity are: 

1. Infinitesimal strains and deformation framework
 Both the displacements and their gradients are infinitesimal.

2. Existence of an unstrained and unstressed reference state
 The reference state is usually assumed to correspond to the reference

configuration.

3. Isentropic and adiabatic processes – no longer isothermal !!!
 Isentropic: entropy of the system remains constant
 Adiabatic: deformation occurs without heat transfer

( ) ( )
( ) ( )

0 0

0 0

,

,

t

t

= =

= =

x x 0

x x 0

ε ε

σ σ
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Hypothesis of the Linear Thermo-Elastic 
Model  

3. (Hypothesis of isothermal process is removed)
 The process is no longer isothermal so the temperature changes

throughout time:

  We will assume the temperature field is known. 

 But the process is still isentropic and adiabatic:
( )s t cnt≡

eQ     0
V V

r dV dS V Vρ
∂

= − ⋅ = ∀∆ ⊂∫ ∫ q n

 0r tρ − ⋅ = ∀ ∀q x∇  

0s =

heat conduction 
from the exterior 

internal 
sources 

( ) ( )

( ) ( )
0, ,0

,
, 0

not
t

t
t

t

θ θ θ

θ
θ

≠ =

∂
= ≠

∂

x x

x
x
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Generalized Hooke’s Law 

 The Generalized Hooke’s Law becomes: 
 

 

   Where 
 is the elastic constitutive tensor.

            is the absolute temperature field. 
                    is the temperature at the reference state. 
     is the tensor of thermal properties or constitutive thermal

constants tensor. 
 It is a positive semi-definite symmetric second-order tensor.

( ) ( ) ( ) ( )
( ) { }

0

0

, : , : ,

, 1, 2,3ij ijkl kl ij

t t t

i j

θ θ θ

σ ε β θ θ

= − − = − ∆


= − − ∈

x x xC Cσ ε β ε β

C
Generalized Hooke’s Law for
linear thermoelastic problems 

( ), tθ x
( )0 0, tθ θ= x

β
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REMARK   
A symmetric second-order tensor A is positive semi-definite 
when zT·A·z > 0 for every non-zero column vector z. 

https://youtu.be/mwIbwbOXRq0?t=02m45s


 An isotropic thermoelastic material must have the same elastic 
and thermal properties in all directions: 
    must be a (mathematically) isotropic 4th order tensor:

Where: 
   is the 4th order symmetric unit tensor defined as
 and    are the Lamé parameters or coefficients.

     is a (mathematically) isotropic 2nd order tensor:

Where: 
    is a scalar thermal constant parameter.

Isotropic Constitutive Constants Tensors 

( ) { }
2

, , . 1, 2,3ijkl ij kl ik jl il jk i j k l

λ µ

λδ δ µ δ δ δ δ

= ⊗ +
 = + + ∈

IC 1 1

C



[ ] 1
2 ik jl il jkijkl

δ δ δ δ = + II
λ µ

β

{ }
 

, 1,2,3ij ij i j
β
β δ

=
β = ∈

β 1

β
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 Introducing the isotropic constitutive constants tensors              and 
                        into the generalized Hooke’s Law,           

  (in indicial notation) 

 

 

 The resulting constitutive equation is, 

Isotropic Linear Thermoelastic 
Constitutive Equation 

( ) ( )( ) ( )

( )

0 0

0
1 12
2 2

ij ijkl kl ij ij kl ik jl il jk kl ij

ij kl kl ik jl kl il jk kl ij

σ ε β θ θ λδ δ µ δ δ δ δ ε β θ θ δ

λδ δ ε µ δ δ ε δ δ ε β θ θ δ

= − − = + + − − =

 = + + − − 
 

C

2λ µ= ⊗ + IC 1 1

( )
{ }

2

2 , 1,2,3ij ij ll ij ij

Tr

i j

λ µ β θ

σ λδ ε µ ε β θ δ

= + − ∆  
 

= + − ∆ ∈  

σ ε ε1 1 Isotropic linear thermoelastic 
constitutive equation.  

llε= ji ijε ε= =

ijε=

ijε=

 β=β 1
( )0: θ θ= − −Cσ ε β

θ= ∆
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1.    is isolated from the Generalized Hooke’s Law for linear
thermoelastic problems: 

2. The thermal expansion coefficients tensor     is defined as:

3. The inverse constitutive equation is obtained:

Inversion of the Constitutive Equation 

α

ε

: θ= − ∆βσ εC
1 1: :θ− −= + ∆

α


C Cε σ β

1
def

−= :Cα β

It is a 2nd order symmetric tensor which involves 
6 thermal expansion coefficients 

1 : θ−= + ∆Cε σ α
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 For the isotropic case: 
 
 
 
 

 The inverse const. eq. is re-written: 
 
 
 
 
 Where      is a scalar thermal expansion coefficient related to the

scalar thermal constant parameter    through: 

Inverse Isotropic Linear Thermoelastic 
Constitutive Equation 

( )

{ }

1

1 , 1,2,3ij ll ij ij ij

Tr
E E

i j
E E

ν ν α θ

ν νε σ δ σ α θ δ

+ = − + + ∆
 + = − + + ∆ ∈


ε σ σ1 1 Inverse isotropic linear thermo 
elastic constitutive equation.   

α
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1 2
E

να β−
=
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 Comparing the constitutive equations, 

 
 

the decomposition is made: 

Where: 
      is the non-thermal stress: the stress produced if there is no

temperature increment. 
     is the thermal stress: the “corrector” stress due to the

temperature increment. 

Thermal Stress 

( ) 2Trλ µ β θ= + − ∆σ ε ε1 1

( ) 2Trλ µ= +σ ε ε1

Isotropic linear thermoelastic constitutive equation. 

Isotropic linear elastic constitutive equation. 

nt= σ
t= σ

nt t= −σ σ σ

ntσ

tσ
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 Similarly, by comparing the inverse constitutive equations, 
 
 

 

the decomposition is made: 

Where: 
      is the non-thermal strain: the strain produced if there is no

temperature increment. 
     is the thermal strain: the “corrector” strain due to the

temperature increment. 

Thermal Strain 

( ) 1Tr
E E
ν ν α θ+

= − + + ∆ε σ σ1 1

( ) 1Tr
E E
ν ν+

= − +ε σ σ1

Inverse isotropic linear thermoelastic 
constitutive eq.  

Inverse isotropic linear elastic 
constitutive eq. 

nt= ε
t= ε

nt t= +ε ε ε

ntε

tε
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 The thermal components appear when thermal processes are considered. 

TOTAL 
NON-THERMAL 
COMPONENT 

THERMAL 
COMPONENT 

Thermal Stress and Strain 

nt t= +ε ε ε

nt t= −σ σ σ

nt = :Cσ ε

1nt −= :Cε σ

t θ= ∆σ β

t θ= ∆ε α

( ) 2nt Trλ µ= +σ ε ε1 t β θ= ∆σ 1

1( )nt Tr
E E
ν ν+

= − +ε σ σ1 t α θ= ∆ε 1

Isotropic material: Isotropic material: 

Isotropic material: Isotropic material: 

: :nt t = = − C Cσ ε ε ε
1 1nt t− −  = = + : :C Cε σ σ σ

These are the equations used 
in FEM codes. 
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Thermal Stress and Strain 

REMARK 1   
In thermoelastic problems, a state of zero strain in a body does not necessarily 
imply zero stress. 

REMARK 2   
In thermoelastic problems, a state of zero stress in a body does not necessarily 
imply zero strain. 

nt= → =0 0ε σ

t β θ= − = − ∆ ≠ 0σ σ 1

nt= → =0 0σ ε

t α θ= = ∆ ≠ 0ε ε 1
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Ch.6. Linear Elasticity 

6.6 Thermal Analogies 



 To solve the isotropic linear thermoelastic problem posed thermal 
analogies are used. 

 The thermoelastic problem is solved like an elastic problem and then,
the results are “corrected” to account for the temperature effects.

 They use the same strategies and methodologies seen in solving
isotropic linear elastic problems:
 Displacement Formulation - Navier Equations.
 Stress Formulation - Beltrami-Michell Equations.

 Two basic analogies for solving quasi-static isotropic linear
thermoelastic problems are presented:
 1st thermal analogy – Duhamel-Neumann analogy.
 2nd thermal analogy

Solution to the Linear Thermoelastic 
Problem 
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1st Thermal Analogy 

 The governing eqns. of the quasi-static isotropic linear thermoelastic 
problem are: 

( ) ( )0, ,t tρ⋅ + =x b x 0∇ σ

( ) ( ), ,t t β θ= − ∆x : xCσ ε 1

( ) ( ) ( )1, ,
2

St t= = ⊗ + ⊗x u x u uε ∇ ∇ ∇

Equilibrium Equation 

Constitutive Equation 

Geometric Equation 

*

*

:

:
u

σ

Γ =

Γ = ⋅

u u
t nσ Boundary Conditions in Space 
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1st Thermal Analogy 

 The actions and responses of the problem are: 
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( )
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( )
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x
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ε
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( ) ( )
not

,I t= xAACTIONS ( ) ( )
not

,I t= xRRESPONSES 

Elastic model 
EDPs+BCs 

REMARK   
            is known a priori, i.e., it is
independent of the mechanical response. 
This is an uncoupled thermoelastic problem. 

( ), tθ∆ x
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1st Thermal Analogy 

 To solve the problem following the methods used in linear elastic 
problems, the thermal term must be removed. 

 The stress tensor is split into                 and replaced into the governing 
equations: 
 Momentum equations

 

nt t= −σ σ σ
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1st Thermal Analogy 

 Boundary equations:

ANALOGOUS PROBLEM – A linear elastic problem can be solved as: 

0
ˆnt ρ⋅ + =b 0∇ σ

( ) 2nt Trλ µ= = +:Cσ ε ε ε1

( ) ( ) ( )1, ,
2

St t= = ⊗ + ⊗x u x u uε ∇ ∇ ∇

Equilibrium Equation 

Constitutive Equation 

Geometric Equation 
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1st Thermal Analogy 

 The actions and responses of the ANALOGOUS NON-THERMAL PROBLEM are: 

( )
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*

*

ˆ ,
ˆ ,

,
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t
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b x
t x
u x

( )
( )
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,
,
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not
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Elastic model 
EDPs+BCs 

ANALOGOUS (ELASTIC) 
PROBLEM (II) 

ORIGINAL PROBLEM (I) 
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Responses  are proven to be the solution of a thermoelastic 
problem under actions 

 If the actions and responses of the original and analogous problems are 
compared: 

 

1st Thermal Analogy 

( ) ( ) ( )( , ) ( , )
def

I II III

nt nt

t t
β θ

       
       − = − = = =       
       − − ∆       

u u 0 0
x x 0 0R R Rε ε
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( )t β θ

=
=
= − = − ∆

u 0
0ε

σ σ 1

1st Thermal Analogy 

ANALOGOUS 
ELASTIC 

PROBLEM (II) 

THERMOELASTIC 
ORIGINAL 

PROBLEM (I) 

THERMOELASTIC 
(TRIVIAL) 

PROBLEM (III) 
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2nd Thermal Analogy 

 The governing equations of the quasi-static isotropic linear thermoelastic 
problem are: 

( ) ( )0, ,t tρ⋅ + =x b x 0∇ σ

( ) ( )-1, ,t t α θ= + ∆x : xCε σ 1

( ) ( ) ( )1, ,
2

St t= = ⊗ + ⊗x u x u uε ∇ ∇ ∇

Equilibrium Equation 

Inverse Constitutive Equation 

Geometric Equation 

*

*

:

:
u

σ

Γ =

Γ = ⋅

u u
t nσ Boundary Conditions in Space 
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2nd Thermal Analogy 

 The actions and responses of the problem are: 
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REMARK 
            is known a priori, i.e., it is
independent of the mechanical response. 
This is an uncoupled thermoelastic problem. 

( ), tθ∆ x
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 If the thermal strain field is integrable, there exists a field of thermal 

displacements,           , which satisfies: 

 
 
 
 
 

 Then, the total displacement field is decomposed by defining: 

2nd Thermal Analogy 

( ),t tu x

( ) ( ) ( )

( ) { }

1,
2

1 , 1,2,3
2

t S t t t

tt
jit

ij ij
j i

t

uu i j
x x

α θ

ε α θ δ

= ∆ = = ⊗ + ⊗

 ∂∂
= ∆ = + ∈  ∂ ∂ 

x u u uε ∇ ∇ ∇1

The assumption is made that            and        are such that the thermal 
strain field                 is integrable (satisfies the compatibility equations). 

( , )tθ∆ x ( )α x

( , ) ( , ) ( , )
def

nt tt t t= −u x u x u x

REMARK 
The solution              is determined except for a rigid body motion 
characterized by a rotation tensor        and a displacement vector     . 
The family of admissible solutions is                                                 . 
This movement can be arbitrarily chosen (at convenience). 

( ) ( ) *, ,t t t ∗= + ⋅ +u x u x x c Ω

( ),t tu x
∗Ω *c

nt t= +u u u
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2nd Thermal Analogy 

 To solve the problem following the methods used in linear elastic 
problems, the thermal terms must be removed. 

 The strain tensor and the displacement vector splits,               and              
are replaced into the governing equations: 
 Geometric equations:

 Boundary equations:

nt t= +ε ε ε nt t= +u u u
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2nd Thermal Analogy 

 

 

ANALOGOUS PROBLEM – A linear elastic problem can be solved as: 

0ρ⋅ + =b 0∇ σ
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 The actions and responses of the ANALOGOUS PROBLEM are: 
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2nd Thermal Analogy 
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 If the actions and responses of the original and analogous problems are 
compared: 

 

2nd Thermal Analogy 

( ) ( ) ( )( , ) ( , )
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Responses  are proven to be the solution of a thermo-elastic 
problem under actions 
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2nd Thermal Analogy 
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2nd Analogy in structural analysis 
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 Although the 2nd analogy is more commonly used , the 1st analogy 
requires less corrections. 

 The 2nd analogy can only be applied if the thermal strain field 
is integrable. 
 It is also recommended that the integration be simple.

 The particular case 
 Homogeneous material: 
 Lineal thermal increment:

    is of special interest because the thermal strains are: 

    and trivially satisfy the compatibility conditions (involving second 
order derivatives). 

Thermal Analogies 

( ) .x constα α= =
ax by cz dθ∆ = + + +

t θ= α ∆ =1ε linear polinomial
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https://youtu.be/YbMJTKYbOlw?t=21m10s
https://youtu.be/6X_JgRCaX7E?t=00m00s


 In the particular case 
 Homogeneous material: 
 Constant thermal increment: 

    the integration of the strain field has a trivial solution because 
the thermal strains are constant                              , therefore: 

    The thermal displacement is: 

Thermal Analogies 

( ) .x constα α= =
( ) .x constθ θ∆ = = ∆

.t constθ α = ∆ε =1

( ),t t α θ ∗ ∗= ∆ + ⋅ +u x x x cΩ

rigid body motion 
(can be chosen arbitrarily: 

at convenience) 

( ),t t α θ= ∆u x x ( )1t α θ α θ+ = + ∆ = + ∆x u x x x

HOMOTHECY 
(free thermal expansion) 

98 
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Ch.6. Linear Elasticity 

6.7 Superposition Principle 



Linear Thermoelastic Problem 

 The governing eqns. of the isotropic linear thermoelastic problem are: 

( ) ( )0, ,t tρ⋅ + =x b x 0∇ σ

( ) ( ), ,t t β θ= − ∆x : xCσ ε 1

( ) ( ) ( )1, ,
2

St t= = ⊗ + ⊗x u x u uε ∇ ∇ ∇

Equilibrium Equation 

Constitutive Equation 

Geometric Equation 

*

*

:

:
u

σ

Γ =

Γ = ⋅

u u
t nσ Boundary Conditions in space 

( )
( ) 0

,0

,0

=

=

u x 0

u x v

Initial Conditions 

100 

https://youtu.be/ThcKbeW32FY?t=00m00s


Linear Thermoelastic Problem 

 Consider two possible systems of actions: 

 and their responses : 

( ) ( )
( ) ( )
( ) ( )

( ) ( )
( ) ( )

1

1*

1*

1

1
0

,

,

,

,

t

t

t

tθ∆

b x

t x

u x

x

v x

( ) ( )
( ) ( )
( ) ( )

1

1

1

,

,

,

t

t

t

u x

x

x

ε

σ

( ) ( )1 , t ≡xA

( ) ( )1 , t ≡xR

( ) ( )
( ) ( )
( ) ( )

( ) ( )
( ) ( )

2

2*

2*

2

2
0

,

,

,

,

t

t

t

tθ∆

b x

t x

u x

x

v x

( ) ( )2 , t ≡xA

( ) ( )
( ) ( )
( ) ( )

2

2

2

,

,

,

t

t

t

u x

x

x

ε

σ

( ) ( )2 , t ≡xR
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 The solution to the system of actions                                 where         
        and     are two given scalar values, is                               . 

 This can be proven by simple substitution of the linear 
combination of actions and responses into the governing 
equations and boundary conditions. 

 When dealing with non-linear problems (plasticity, finite 
deformations, etc), this principle is no longer valid. 

 The response to the lineal thermoelastic problem caused by two or more 
groups of actions is the lineal combination of the responses caused by each 
action individually.  

Superposition Principle 

( ) ( ) ( ) ( ) ( )3 1 1 2 2λ λ= +A A A
( ) ( ) ( ) ( ) ( )3 1 1 2 2λ λ= +R R R( )1λ ( )2λ
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Ch.6. Linear Elasticity 

6.8 Hooke’s Law in Voigt Notation 



 Taking into account the symmetry of the stress and strain tensors, 
these can be written in vector form: 

Stress and Strain Vectors 

x xy xz

xy y yz

xz yz z

σ τ τ
τ σ τ
τ τ σ

 
 ≡  
  

σ

.

1 1
2 2

1 1
2 2
1 1
2 2

x xy xz

x xy xz not

xy y yz xy y yz

xz yz z

xz yz z

ε γ γ
ε ε ε
ε ε ε γ ε γ
ε ε ε

γ γ ε

 
 

   
   = =   
    

 
  

ε

{ } 6

x

y

def
z

xy

xz

yz

σ
σ
σ
τ
τ
τ

 
 
 
  = ∈ 
 
 
 
  

Rσ

{ } 6

x

y

def
z

xy

xz

yz

ε
ε
ε
γ
γ
γ

 
 
 
  = ∈ 
 
 
 
  

Rε

REMARK   
The double contraction            is
transformed into the scalar (dot) 
product                : 

      

( )σ : ε

{ } { }( )⋅σ ε

{ } { }= ⋅σ : ε σ ε ij ij i iσ ε σ ε=
2nd order 
tensors 

vectors 

VOIGT 
NOTATION 
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https://youtu.be/1bcvH6_2GpU?t=00m00s


 The inverse constitutive equation is rewritten: 

 Where       is an elastic constants inverse matrix and      is a thermal 
strain vector: 

Inverse Constitutive Equation 

( ) 1Tr
E E
ν ν α θ+

= − + + ∆ε σ σ1 1 { } { } { }1ˆ t−= ⋅ +Cε σ ε

1

1 0 0 0

1 0 0 0

1 0 0 0
ˆ

10 0 0 0 0

10 0 0 0 0

10 0 0 0 0

E E E

E E E

E E E

G

G

G

ν ν

ν ν

ν ν

−

− − 
 
 

− − 
 
 − − 
 

=  
 
 
 
 
 
 
 
 

C

1ˆ −C { }tε

0 0
0 0
0 0

t

α θ
α θ

α θ

∆ 
 ≡ ∆ 
 ∆ 

ε

{ }
0
0
0

t

α θ
α θ
α θ

∆ 
 ∆ 
 ∆

=  
 
 
 
 

ε
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 By inverting the inverse constitutive equation, Hooke’s Law in terms of the 
stress and strain vectors is obtained: 

 Where      is an elastic 
 constants matrix : 

Hooke’s Law 

Ĉ

{ } { } { }( )ˆ t= ⋅ −Cσ ε ε

( )
( )( )

( )

( )

( )

1 0 0 0
1 1

1 0 0 0
1 1

1 0 0 0
1 11ˆ 1 21 1 2 0 0 0 0 0

2 1
1 20 0 0 0 0

2 1
1 20 0 0 0 0

2 1

E

ν ν
ν ν

ν ν
ν ν

ν ν
ν νν

νν ν
ν

ν
ν

ν
ν

 
 − − 
 
 − −
 
 
 − −−
 = −+ −  

− 
 − 

− 
 

− 
 − 

C
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Chapter 6
Linear Elasticity

6.1 Hypothesis of the Linear Theory of Elasticity
The linear theory of elasticity can be considered a simplification of the general
theory of elasticity, but a close enough approximation for most engineering ap-
plications. The simplifying hypotheses of the linear theory of elasticity are

a) Infinitesimal strains. The displacements and its gradients are small, see
Chapter 2.

• Small displacements. The material configuration (corresponding to the
reference time t0) is indistinguishable from the spatial one (correspond-
ing to the present time t) and, consequently, the spatial and material co-
ordinates cannot be distinguished from each other either, see Figure 6.1.

x = X+ u︸︷︷︸
≈ 0

=⇒ x≈ X (6.1)

Figure 6.1: Small displacements are considered in the linear theory of elasticity.
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264 CHAPTER 6. LINEAR ELASTICITY

From (6.1), one can write

F =
∂x
∂X

= 1 =⇒ |F| ≈ 1 . (6.2)

Remark 6.1. As a consequence of (6.1), there is no difference be-
tween the spatial and material descriptions of a property,

x = X =⇒ γ (x, t) = γ (X, t) = Γ (X, t) = Γ (x, t) ,

and all references to the spatial and material descriptions (in addition
to any associated concepts such as local derivative, material deriva-
tive, etc.) no longer make sense in infinitesimal elasticity.
Likewise, the spatial Nabla differential operator (∇) is indistin-

guishable from the material one
(

∇̄
)
,

∂ (•)
∂X

=
∂ (•)
∂x

=⇒ ∇(•) = ∇̄(•) .

Remark 6.2. As a consequence of (6.2) and the principle of conser-
vation of mass, the density in the present configuration ρt ≡ ρ (X, t)
coincides with the one in the reference configuration ρ0 ≡ ρ (X,0)
(which is assumed to be known),

ρ0 = ρt |F| ≈ ρt ,

and, therefore, the density is not an unknown in linear elasticity
problems.

• Small displacement gradients. As a consequence, no distinction is made
between the material strain tensor E(X, t) and the spatial strain tensor
e(x, t), which collapse into the infinitesimal strain tensor εεε (x, t).

E(X, t)≈ e(x, t) = εεε (x, t)⎧⎪⎪⎨
⎪⎪⎩

εεε = ∇Su =
1

2
(u⊗∇+∇⊗u)

εi j =
1

2

(
∂ui

∂x j
+

∂u j

∂xi

)
i, j ∈ {1,2,3}

(6.3)

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems

doi:10.13140/RG.2.2.25821.20961
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Linear Elastic Constitutive Equation. Generalized Hooke’s Law 265

b) Existence of a neutral state. The existence of a neutral state in which the
strains and stresses are null is accepted. Usually, the neutral state is under-
stood to occur in the reference configuration.{

εεε (x, t0) = 0
σσσ (x, t0) = 0

(6.4)

c) The deformation process is considered (in principle) to be isothermal1
and adiabatic.

Definition 6.1. Isothermal processes are those that take place at a
temperature θ (x, t) that is constant along time,

θ (x, t)≡ θ (x) .

Adiabatic processes are those that take place without heat generation
at any point and instant of time.

Heat generated inside a domain V per unit of time:

Qe =
∫
V

ρr dV −
∫

∂V

q ·n dS = 0 ∀ΔV ⊂V

=⇒ ρr−∇ ·q = 0 ∀x ∀t
Slow deformation processes are commonly considered to be adia-
batic.

6.2 Linear Elastic Constitutive Equation. Generalized
Hooke’s Law

Hooke’s law for unidimensional problems establishes the proportionality be-
tween the stress, σ , and the strain, ε , by means of the constant named elastic
modulus, E,

σ = Eε . (6.5)

In the theory of elasticity, this proportionality is generalized to the multidimen-
sional case by assuming the linearity of the relation between the components of
the stress tensor σσσ and those of the strain tensor εεε in the expression known as
generalized Hooke’s law,

1 The restriction to isothermal processes disappears in the linear theory of thermoelasticity,
which will be addressed in Section 6.6.

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems

doi:10.13140/RG.2.2.25821.20961
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266 CHAPTER 6. LINEAR ELASTICITY

Generalized
Hooke’s law

⎧⎨
⎩σσσ (x, t) =CCC : εεε (x, t)

σi j = Ci jklεkl i, j ∈ {1,2,3}
(6.6)

which constitutes the constitutive equation of a linear elastic material.
The fourth-order tensorCCC (denoted as tensor of elastic constants) has 34 = 81

components. However, due to the symmetry of the tensors σσσ and εεε , it must
exhibit certain symmetries in relation to the exchange of its indexes. These are:

Ci jkl = C jikl

Ci jkl = Ci jlk

}
→ minor symmetries

Ci jkl = Ckli j → major symmetries

(6.7)

Consequently, the number of different constants in the tensor of elastic constants
CCC is reduced to 21.

Remark 6.3. An essential characteristic of the elastic behavior
(which is verified in (6.5)) is that the stresses at a certain point and
time, σσσ (x, t), depend (only) on the strains at said point and time,
εεε (x, t), and not on the history of previous strains.

6.2.1 Elastic Potential
Consider the specific internal energy u(x, t) (internal energy per unit of mass)
and the density of internal energy û(x, t) (internal energy per unit of volume),
which related through

û(x, t) = ρ0 u(x, t) ,

ρ
du
dt
≈ ρ0

du
dt

=
d

û︷ ︸︸ ︷
(ρ0 u)
dt

=
dû
dt

,

(6.8)

where ρ0 ≈ ρ (see Remark 6.2) has been taken into account. Consider now the

energy equation in its local form2,

ρ0
du
dt

=
dû
dt

= σσσ : d+ρ0 r−∇ ·q = σσσ :
.
εεε =⇒ dû

dt
= σσσ :

.
εεε , (6.9)

2 The identity d =
.
εεε , characteristic of the infinitesimal strain case, is considered here.

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems
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Linear Elastic Constitutive Equation. Generalized Hooke’s Law 267

where the adiabatic nature of the deformation process (ρ0 r−∇ ·q = 0) has been
considered. Then, the global (integral) form of the energy equation in (6.9) is
obtained by integrating over the material volume V .

Global form of the energy equation in linear elasticity

dU
dt

=
d
dt

∫
Vt≡V

û dV =
∫
V

dû
dt

dV =
∫
V

σσσ :
.
εεε dV

with U (t) =
∫
V

û(x, t) dV

(6.10)

Here, U (t) is the internal energy of the material volume considered.

Remark 6.4. The stress power (in the case of linear elasticity) is an
exact differential,

stress power =
∫
V

σσσ :
.
εεε dV =

dU
dt

.

Replacing now (6.6) in (6.9),

dû
dt

not
=

.
û = σσσ :

.
εεε =

.εi j σi j =
.εi j Ci jkl εkl =

1

2

( .εi j Ci jkl εkl +

i↔ k
j↔ l︷ ︸︸ ︷.εi j Ci jkl εkl

)
=

=
1

2

( .εi j Ci jkl εkl +
.εkl Ckli j εi j

)
=

1

2

( .εi j Ci jkl εkl + εi j Ci jkl
.εkl
)
=

=
1

2

d
dt

(
εi j Ci jkl εkl

)
=

1

2

d
dt

(εεε :CCC : εεε) ,
(6.11)

where the symmetries in (6.7) have been taken into account. Integrating the ex-
pression obtained and imposing the condition that the density of internal energy
û(x, t0) in the neutral state be null3 (for t = t0 ⇒ εεε (x, t0) = 0) produces the
density of internal energy.

3 The condition û(x, t0) = 0 can be introduced without loss of generality.

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems
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268 CHAPTER 6. LINEAR ELASTICITY

û(x, t) =
1

2
(εεε (x, t) :CCC : εεε (x, t))+a(x)

û(x, t0) = 0 ∀x

⎫⎪⎬
⎪⎭=⇒

=⇒ 1

2
εεε (x, t0)︸ ︷︷ ︸
= 0

:CCC : εεε (x, t0)+a(x) = a(x) = 0 ∀x

(6.12)

Density of
internal energy

}
û(εεε) =

1

2
(εεε :CCC : εεε) =

1

2
εi j Ci jkl εkl (6.13)

Now, (6.13) is differentiated with respect to εεε , considering once more the
symmetries in (6.7).⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂ û(εεε)
∂εεε

=
1

2
CCC : εεε +

1

2
εεε :CCC=

1

2
CCC : εεε +

1

2
CCC : εεε =CCC : εεε = σσσ

∂ û(εεε)
∂εi j

=
1

2
Ci jkl εkl +

1

2
εkl Ckli j =

1

2
Ci jkl εkl +

1

2
Ci jkl εkl = Ci jkl εkl = σi j

(6.14)

=⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ û(εεε)
∂εεε

= σσσ

∂ û(εεε)
∂εi j

= σi j i, j ∈ {1,2,3}
(6.15)

Equation (6.15) qualifies the density of internal energy û(εεε) as a potential
for the stresses (which are obtained by differentiation of this potential), named
elastic potential.

Elastic potential

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

û(εεε) =
1

2
εεε :CCC : εεε︸︷︷︸

= σσσ
=

1

2
σσσ : εεε

∂ û(εεε)
∂εεε

= σσσ

(6.16)

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems
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6.3 Isotropy. Lamé’s Constants. Hooke’s Law for Isotropic
Linear Elasticity

Definition 6.2. An isotropic material is that which has the same
properties in all directions.

The elastic properties of a linear elastic material are contained in the tensor of
elastic constants CCC defined in (6.6) and (6.7). Consequently, the components of
this tensor must be independent of the orientation of the Cartesian system used4.
Consider, for example, the systems {x1,x2,x3} and {x1

′,x2
′,x3

′} in Figure 6.2,
the constitutive equation for these two systems is written as

{x1,x2,x3} =⇒ [σσσ ] = [CCC] : [εεε]

{x1
′,x2

′,x3
′} =⇒ [σσσ ] ′ = [CCC] ′ : [εεε] ′

(6.17)

and, for the case of an isotropic material, the components of CCC in both sys-
tems must be the same ( [CCC] = [CCC] ′ ). Therefore, the aforementioned definition
of isotropy, which has a physical character, translates into the isotropic charac-
ter, in the mathematical sense, of the tensor of elastic constants CCC.

Tensor of elastic
constants

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
CCC= λ1⊗1+2μI

Ci jkl = λδi jδkl +μ
[
δikδ jl +δilδ jk

]
i, j,k, l ∈ {1,2,3}

(6.18)

Here, λ and μ are known as Lamé’s constants, which characterize the elastic
behavior of the material and must be obtained experimentally.

Remark 6.5. The isotropy condition reduces the number of elastic
constants of the material from 21 to 2.

4 A tensor is isotropic if it maintains its components in any Cartesian coordinate system. The
most general expression of a fourth-order isotropic tensor isCCC= λ1⊗1+2μI , ∀λ ,μ . Here,
the fourth-order symmetric (isotropic) unit tensor I is defined by means of its components as
[I]i jkl =

[
δikδ jl +δilδ jk

]
/2.

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems
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270 CHAPTER 6. LINEAR ELASTICITY

Figure 6.2: Representation of the Cartesian systems {x1,x2,x3} and {x1
′,x2

′,x3
′}.

Introducing (6.18) in (6.6) results in the isotropic linear elastic constitutive
equation,

σi j = Ci jkl εkl = λδi j δkl εkl︸ ︷︷ ︸
εll

+2μ
( 1

2
δik δ jl εkl︸ ︷︷ ︸

εi j

+
1

2
δil δ jk εkl︸ ︷︷ ︸
ε ji = εi j︸ ︷︷ ︸

εi j

)
. (6.19)

Constitutive eqn. for a
linear elastic material.

Hooke’s law.

⎧⎨
⎩σσσ = λ Tr(εεε)1+2μεεε

σi j = λδi jεll +2μεi j i, j ∈ {1,2,3}
(6.20)

6.3.1 Inversion of Hooke’s Law. Young’s Modulus. Poisson’s Ratio
The constitutive equation (6.20) provides the stresses in terms of the strains. To
obtain its inverse expression, the following procedure is followed.

a) The trace of (6.20) is obtained,

Tr(σσσ) = λ Tr(εεε)Tr(1)︸ ︷︷ ︸
3

+2μ Tr(εεε) = (3λ +2μ)Tr(εεε)

(i = j) =⇒ σii = λεll δii︸︷︷︸
3

+2μεii = (3λ +2μ)εll

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=⇒

=⇒ Tr(εεε) =
1

(3λ +2μ)
Tr(σσσ) .

(6.21)

b) εεε is isolated from (6.20) and introduced in (6.21),

εεε =− 1

2μ
λ Tr(εεε)1+

1

2μ
σσσ =− λ

2μ (3λ +2μ)
Tr(σσσ)1+

1

2μ
σσσ . (6.22)

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems
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The new elastic properties E (Young’s modulus) and ν (Poisson’s ratio) are de-
fined as follows.

Young’s modulus or
tensile (elastic) modulus

E =
μ (3λ +2μ)

λ +μ

Poisson’s ratio ν =
λ

2(λ +μ)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=⇒

=⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ =
νE

(1+ν)(1−2ν)

μ =
E

2(1+ν)
= G shear (elastic) modulus

(6.23)

Equation (6.22) can be expressed in terms of E and ν , resulting in the inverse
Hooke’s law.

Inverse constitutive
equation for an isotropic

linear elastic material

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

εεε =−ν
E

Tr(σσσ)1+
1+ν

E
σσσ

εi j =−ν
E

σllδi j +
1+ν

E
σi j

i, j ∈ {1,2,3}

(6.24)

Finally, (6.24) is rewritten, using engineering notation for the components of the
strain and stress tensors.

εx =
1

E
(σx−ν (σy +σz)) γxy =

1

G
τxy

εy =
1

E
(σy−ν (σx +σz)) γxz =

1

G
τxz

εz =
1

E
(σz−ν (σx +σy)) γyz =

1

G
τyz

(6.25)
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272 CHAPTER 6. LINEAR ELASTICITY

Example 6.1 – Consider an uniaxial tensile test of a rectangular cuboid
composed of an isotropic linear elastic material with Young’s modulus E and
shear modulus G, such that its uniform stress state results in

σx �= 0 and σy = σz = τxy = τxz = τyz = 0 .

Obtain the strains in engineering notation.

Solution

From (6.25) one obtains

σy =σz = 0=⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

εx =
σx

E
εy =−ν

σx

E
εz =−ν

σx

E

τxy = τxz = τyz = 0=⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γxy =
τxy

G
= 0

γxz =
τxz

G
= 0

γyz =
τyz

G
= 0

Therefore, due to these strains, the rectangular cuboid subjected to an uni-
axial tensile test, shown in the figure below, stretches in the x-direction and
contracts in the y- and z-directions.

6.4 Hooke’s Law in Spherical and Deviatoric Components
Consider the decomposition of the stress tensor σσσ and the deformation tensor εεε
in their spherical and deviatoric parts,

σσσ =
1

3
Tr(σσσ)1+σσσ ′ = σm1+σσσ ′ , (6.26)

εεε =
1

3
Tr(εεε)1+ εεε ′ =

1

3
e1+ εεε ′ . (6.27)
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Hooke’s Law in Spherical and Deviatoric Components 273

The volumetric strain e = Tr(εεε) is obtained by computing the trace of (6.24).

e = Tr(εεε) =−ν
E

Tr(σσσ)Tr(1)︸ ︷︷ ︸
3

+
1+ν

E
Tr(σσσ) =

1−2ν
E

Tr(σσσ)︸ ︷︷ ︸
3σm

=

=
3(1−2ν)

E
σm

(6.28)

=⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σm =
E

3(1−2ν)
e = K e

K
de f
= λ +

2

3
μ =

E
3(1−2ν)

= bulk modulus

(6.29)

Introducing (6.26), (6.27) and (6.29) in (6.24), results in

εεε =−ν
E

3σm1+
1+ν

E
(σm1+σσσ ′) =

1−2ν
E

σm︸︷︷︸
E

3(1−2ν)
e

1+
1+ν

E
σσσ ′ =

=
1

3
e1+

1+ν
E

σσσ ′ =⇒ εεε =
1

3
e1+ εεε ′ =

1

3
e1+

1+ν
E

σσσ ′

=⇒ εεε ′ =
1+ν

E
σσσ ′ =

1

2μ
σσσ ′ =

1

2G
σσσ ′ .

(6.30)

Equations (6.29) and (6.30) relate the spherical part (characterized by the mean
stress σm and the volumetric strain e) and the deviatoric part (σσσ ′ and εεε ′) of the
stress and strain tensors as follows.

σm = Ke Spherical part

σσσ ′ = 2Gεεε ′

σ ′i j = 2Gε ′i j i, j ∈ {1,2,3}
}

Deviatoric part
(6.31)

Remark 6.6. Note the proportionality between σm and e as well as
between σ ′i j and ε ′i j (component to component), see Figure 6.3.
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274 CHAPTER 6. LINEAR ELASTICITY

Figure 6.3: Hooke’s law in spherical and deviatoric components.

6.5 Limits in the Values of the Elastic Properties
Thermodynamic considerations allow proving that the tensor of elastic constants
CCC is positive-definite5, and, thus,

εεε :CCC : εεε > 0 ∀εεε �= 0 . (6.32)

Remark 6.7. As a consequence of (6.32), the elastic potential is al-
ways null or positive,

û(εεε) =
1

2
εεε :CCC : εεε ≥ 0 .

Remark 6.8. The elastic potential has a minimum at the neutral state,
that is, for εεε = 0 (see Figure 6.4). In effect, from (6.15),

û(εεε) =
1

2
εεε :CCC : εεε , σσσ =

∂ û(εεε)
∂εεε

=CCC : εεε and
∂ 2û(εεε)
∂εεε⊗∂εεε

=CCC .

Then, for εεε = 0,

∂ û(εεε)
∂εεε

∣∣∣∣
εεε=0

= 0 =⇒ û(εεε) has an extreme
(maximum-minimum) at εεε = 0.

∂ 2û(εεε)
∂εεε⊗∂εεε

∣∣∣∣
εεε=0

= CCC︸︷︷︸
positive-
definite

=⇒ The extreme is a minimum.

5 A fourth-order symmetric tensor A is defined positive-definite if for all second-order
tensor x �= 0 the expression x : A : x = xi j Ai jkl xkl > 0 is satisfied and, in addition,
x : A : x = 0 ⇔ x = 0.
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Limits in the Values of the Elastic Properties 275

Figure 6.4: Elastic potential.

Consider the expression of the elastic potential (6.16) and the constitutive
equation (6.20), then,

û(εεε) =
1

2
εεε :CCC : εεε =

1

2
σσσ : εεε =

1

2

(
λ Tr(εεε)1+2μεεε

)
: εεε =

=
1

2
λ Tr(εεε) 1 : εεε︸︷︷︸

Tr(εεε)

+μεεε : εεε =
1

2
λ Tr2 (εεε)+μεεε : εεε .

(6.33)

Expression (6.33) can also be written in terms of the spherical and deviatoric
components of strain6,

û(εεε) =
1

2
λ
(

Tr(εεε)︸ ︷︷ ︸
e

)2
+μεεε : εεε =

1

2
λe2 +μεεε : εεε . (6.34)

Here, the double contraction of the infinitesimal strain tensor is

εεε : εεε =

(
1

3
e1+ εεε ′

)
:

(
1

3
e1+ εεε ′

)
=

1

9
e2 1 : 1︸︷︷︸

3

+
2

3
e 1 : εεε ′︸︷︷︸
Tr(εεε ′) = 0

+ εεε ′ : εεε ′ =

=
1

3
e2 + εεε ′ : εεε ′ .

(6.35)

Replacing (6.35) in (6.34),

û(εεε) =
1

2
λe2 +

1

3
μe2 +μεεε ′ : εεε ′ =

1

2

(
λ +

2

3
μ
)

︸ ︷︷ ︸
K

e2 +μεεε ′ : εεε ′ . (6.36)

6 The trace of a deviatoric tensor is always null, Tr(εεε ′) = 0.
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276 CHAPTER 6. LINEAR ELASTICITY

û(εεε) =
1

2
Ke2 +μεεε ′ : εεε ′ ≥ 0 (6.37)

Consider now an isotropic linear elastic material, characterized by a certain
value of its elastic properties. Equation (6.37) must be satisfied for any defor-
mation process. Consider two particular types:

a) A pure spherical deformation process

εεε(1) =
1

3
e 1

εεε ′(1) = 0

⎫⎪⎬
⎪⎭ =⇒ û(1) =

1

2
Ke2 ≥ 0 =⇒ K > 0 (6.38)

b) A pure deviatoric deformation process7

εεε(2) = εεε ′

e(2) = 0

}
=⇒ û(2) = μεεε ′ : εεε ′ ≥ 0 =⇒ μ > 0 (6.39)

Equations (6.38) and (6.39) lead to

K =
E

3(1−2ν)
> 0 and μ = G =

E
2(1+ν)

> 0 (6.40)

which are the limits in the values of the elastic constants K and G. Experience
proves that the Poisson’s ratio ν is always non-negative8 and, therefore

E
2(1+ν)

> 0

ν ≥ 0

⎫⎪⎬
⎪⎭ =⇒ E > 0 ,

E
3(1−2ν)

> 0

E ≥ 0

⎫⎪⎬
⎪⎭ =⇒ 0≤ ν ≤ 1

2
.

(6.41)

7 The double contraction or double dot product of a tensor by itself is always equal or greater
than zero: εεε ′ : εεε ′ = ε ′i j ε ′i j ≥ 0.
8 In rare cases, a material can have a negative Poisson’s ratio. Such materials are named
auxetic materials.
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The Linear Elastic Problem 277

Initial actions:

t = 0 →
{

b(x,0)
t(x,0)

Actions along time t:{
b(x, t)
t(x, t)

Figure 6.5: Linear elastic problem.

6.6 The Linear Elastic Problem
Consider the linear elastic solid9 in Figure 6.5, which is subjected to certain ac-
tions characterized by the vector of body forces b(x, t) in the interior of the vol-
ume V and the traction vector t(x, t) on the boundary ∂V . The set of equations
that allow determining the evolution along time of the displacements u(x, t),
strains εεε (x, t) and stresses σσσ (x, t) is named linear elastic problem.

6.6.1 Governing Equations
The linear elastic problem is governed by the following equations:

a) Cauchy’s equation (balance of linear momentum)

∇ ·σσσ (x, t)+ρ0b(x, t) = ρ0
∂ 2u(x, t)

∂ t2

∂σi j

∂xi
+ρ0 b j = ρ0

∂ 2u j

∂ t2
j ∈ {1,2,3}

(3 equations) (6.42)

b) Constitutive equation (isotropic linear elastic)10

σσσ (x, t) = λ Tr(εεε (x, t))1+2μεεε (x, t)

σi j = λδi j εll +2μεi j i, j ∈ {1,2,3}
(6 equations) (6.43)

9 Here, linear elastic solid refers to a continuous medium constituted by a material that obeys
the linear elastic constitutive equation.
10 The symmetry of the stress and strain tensors entails that only six of the nine equations
are different from one another. In addition, when listing the unknowns, only the different
components of these tensors will be considered.
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278 CHAPTER 6. LINEAR ELASTICITY

c) Geometric equation (compatibility relation between infinitesimal strains and
displacements)

εεε (x, t) = ∇Su(x, t) =
1

2
(u⊗∇+∇⊗u)

εi j =
1

2

(
∂ui

∂x j
+

∂u j

∂xi

)
i, j ∈ {1,2,3}

(6 equations) (6.44)

These equations involve the following unknowns:

• u(x, t) (3 unknowns)
• εεε (x, t) (6 unknowns)
• σσσ (x, t) (6 unknowns)

(6.45)

and constitute a system of partial differential equations (PDEs). The system is
composed of 15 differential equations with the 15 unknowns listed in (6.45).
These are of the type (•)(x,y,z, t), and, thus, must be solved in the R

3×R
+

space. The problem is well defined when the adequate boundary conditions are
provided.

6.6.2 Boundary Conditions
6.6.2.1 Boundary Conditions in Space

Consider the boundary Γ ≡ ∂V of the solid is divided into three parts, Γu, Γσ
and Γuσ , characterized by (see Figure 6.6)

Γu
⋃

Γσ
⋃

Γuσ = Γ ≡ ∂V ,

Γu
⋂

Γσ = Γu
⋂

Γuσ = Γuσ
⋂

Γσ = { /0} .
(6.46)

These allow defining the boundary conditions in space, that is, those conditions
that affect the spatial arguments (x,y,z) of the unknowns (6.45) of the problem.

• Boundary Γu: prescribed displacements

u(x, t) = u∗ (x, t)
ui (x, t) = u∗i (x, t) i ∈ {1,2,3}

}
∀x ∈ Γu ∀t (6.47)

• Boundary Γσ : prescribed tractions

σσσ (x, t) ·n = t∗ (x, t)
σi j (x, t) ·n j = t∗i (x, t) i, j ∈ {1,2,3}

}
∀x ∈ Γσ ∀t (6.48)
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The Linear Elastic Problem 279

Figure 6.6: Boundary conditions in space.

• Boundary Γuσ : prescribed displacements and tractions11

ui (x, t) = u∗i (x, t)
σ jk (x, t) ·nk = t∗j (x, t)

∣∣∣∣∣ (i, j,k ∈ {1,2,3}, i �= j
) ∀x ∈ Γuσ ∀t (6.49)

Example 6.2 – Exemplification of the boundary conditions in space.

Solution

The different types of boundary conditions in space are illustrated in the fol-
lowing figure of a beam.

11 In Γuσ certain components (components i ) have prescribed displacements while the others
(components j ) have the traction vector prescribed.
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280 CHAPTER 6. LINEAR ELASTICITY

6.6.2.2 Boundary Conditions in Time: Initial Conditions

In general, at the initial or reference time t = 0 the displacements and velocities
are known.

u(x,0) = 0
∂u(x, t)

∂ t

∣∣∣∣
t=0

not
=

.u(x,0) = v0 (x)

⎫⎪⎬
⎪⎭ ∀x ∈V (6.50)

6.6.3 Quasi-Static Problem
The system of equations (6.42) to (6.50) can be visualized, from a mechanical
point of view, as a system of actions or data (the body forces b(x, t), the traction
vector t∗ (x, t), the prescribed displacements u∗ (x, t) and the initial velocities
v0 (x)) that, introduced into a mathematical model composed of the differen-
tial equations given in Section 6.6.1 and the boundary conditions described in
Section 6.6.2, provides the response or solution in the form of the displacement
field u(x, t), the deformation field εεε (x, t) and the stress field σσσ (x, t).

b(x, t)
u∗ (x, t)
t∗ (x, t)
v0 (x)

⎫⎪⎪⎬
⎪⎪⎭

︸ ︷︷ ︸
Actions

not
=AAA(x, t)

⇒
〈MAT HEMAT ICAL

MODEL :
PDEs+BCs

〉
⇒

⎧⎨
⎩

u(x, t)
εεε (x, t)
σσσ (x, t)︸ ︷︷ ︸

Responses
not
=RRR(x, t)

(6.51)

In the most general case12, both the actions and the responses depend on time
(see Figure 6.7) and the system of PDEs must be integrated over both the space

Figure 6.7: Evolution of the response along time.

12 In this case (general problem), the problem is named dynamic problem.
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The Linear Elastic Problem 281

and the time variables
(
R

3×R
+
)
. However, in certain cases, the integration

space can be reduced in one dimension, the one corresponding to time. This is
the case for the so-called quasi-static problems.

Definition 6.3. A quasi-static linear elastic problem is a linear elas-
tic problem in which the acceleration is considered to be negligible,

a =
∂ 2u(x, t)

∂ t2
≈ 0 .

This hypothesis is acceptable when the actions are applied slowly.
In such case, the variation of the actions AAA along time is slow(
∂ 2
AAA/∂ t2 ≈ 0

)
and, due to the continuous dependency of the results

on the data, the variation of the response RRR along time is also small(
∂ 2
RRR/∂ t2 ≈ 0

)
. Consequently, the second derivative of the response

is considered negligible and, in particular,

∂ 2u(x, t)
∂ t2

≈ 0 .

The governing differential equations are reduced to the following in the case
of a quasi-static problem:

a) Cauchy’s equation, also known as equilibrium equation.

∇ ·σσσ (x, t)+ρ0b(x, t) = ρ0
∂ 2u(x, t)

∂ t2
= 0 (6.52)

b) Constitutive equation

σσσ (x, t) = λ Tr(εεε (x, t))1+2μεεε (x, t) (6.53)

c) Geometric equation, which no longer involves any time derivative.

εεε (x, t) = ∇Su(x, t) =
1

2
(u⊗∇+∇⊗u) (6.54)
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282 CHAPTER 6. LINEAR ELASTICITY

The system of differential equations only needs to be integrated in space
(solved in R

3 ) with the boundary conditions in space of Section 6.6.2.1. More-
over, time merely serves as a parameter describing the evolution of the actions,
which are usually described in terms of the load factor or pseudo-time λ (t).

b(x,λ )
u∗ (x,λ )
t∗ (x,λ )

⎫⎬
⎭

︸ ︷︷ ︸
Actions

not
=AAA(x,λ )

⇒
〈MAT HEMAT ICAL

MODEL :
PDEs+BCs

〉
⇒

⎧⎨
⎩

u(x,λ )
εεε (x,λ )
σσσ (x,λ )︸ ︷︷ ︸

Responses
not
=RRR(x,λ )

(6.55)

In other words, for each value of the actions (characterized by a fixed value of
λ ∗),AAA(xλ ∗), a responseRRR(x,λ ∗) is obtained. Varying the value of λ ∗ produces
a family of actions and its corresponding family of responses.

Example 6.3 – Application to a typical problem of strength of materials.

Solution

Consider a cantilever beam subjected to a force F (t) at its free end. Under
the quasi-static problem hypothesis, and considering a parametrized action
of the type λF∗, the response (deflection at its free end) can be computed as

δ (λ ) = λ
F∗l3

3EI
.

This is the classical solution obtained in strength of materials.
Now, if the evolution along time of λ (t) can take any form, the value of
δ (t) = δ (λ (t)) corresponding to each instant of time only depends on the
corresponding value of λ .
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6.7 Solution to the Linear Elastic Problem
The linear elastic problem can be typically solved following two different ap-
proaches:

a) Displacement formulation
b) Stress formulation

Their names are directly related to which is the main unknown being considered
in each formulation (displacements or stresses, respectively).

Remark 6.9. At present, the displacement formulation has greater
application because most numerical methods used to solve the linear
elastic problem are based on this approach.

6.7.1 Displacement Formulation: Navier’s Equation
Consider the equations that constitute the linear elastic problem:

∇ ·σσσ +ρ0b = ρ0
∂ 2u
∂ t2

Cauchy’s equation

σσσ = λ Tr(εεε)1+2μεεε Constitutive equation

εεε = ∇Su =
1

2
(u⊗∇+∇⊗u) Geometric equation

(6.56)
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284 CHAPTER 6. LINEAR ELASTICITY

Γu : u = u∗

Γσ : t∗ = σσσ ·n

}
Boundary conditions in space (6.57)

u(x,0) = 0
.u(x,0) = v0

}
Initial conditions (6.58)

The aim is to pose a reduced system in which only the displacement field
u(x, t) intervenes as an unknown. The first step consists in replacing the consti-
tutive equation in the Cauchy’s equation, both given in (6.56).

∇ ·σσσ +ρ0b = ∇ ·
(

λ Tr(εεε)1+2μεεε
)
+ρ0b = ρ0

∂ 2u
∂ t2

=⇒ λ∇ · (Tr(εεε)1
)
+2μ∇ · εεε +ρ0b = ρ0

∂ 2u
∂ t2

(6.59)

Consider the following identities13.

[
∇ · εεε]i = ∂εi j

∂x j
=

∂
∂x j

(
1

2

(
∂ui

∂x j
+

∂u j

∂xi

))
=

1

2

∂ 2ui

∂x j∂x j
+

1

2

∂
∂xi

(
∂u j

∂x j

)
=

=
1

2

[
∇2u

]
i +

1

2

∂
∂xi

(∇ ·u) =
[

1

2
∇2u+

1

2
∇(∇ ·u)

]
i

i ∈ {1,2,3}

∇ · εεε =
1

2
∇(∇ ·u)+ 1

2
∇2u

(6.60)

[
∇ · (Tr(εεε)1

)]
i =

∂
∂x j

(εll δi j) =
∂

∂x j

(
∂ul

∂xl
δi j

)
=

∂
∂xi

(
∂ul

∂xl

)
=

=
∂

∂xi
(∇ ·u) = [∇(∇ ·u)]i i ∈ {1,2,3}

∇ · (Tr(εεε)1
)
= ∇(∇ ·u)

(6.61)

13 The Laplace operator of a vector v is defined as
[
∇2v

]
i
de f
= ∂ 2vi/(∂x j∂x j).
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Equation (6.59) can be rewritten by replacing the expressions in the identities
(6.60) and (6.61), resulting in

Navier’s
equation

⎧⎨
⎩ (λ +μ)∇(∇ ·u)+μ∇2u+ρ0b = ρ0

∂ 2u
∂ t2

(λ +μ)u j, ji +μ ui, j j +ρ0 bi = ρ0 üi i ∈ {1,2,3}
(6.62)

which constitutes a system of second-order PDEs in displacements u(x, t) (that
must be, thus, integrated in R

3×R
+), and receives the name of Navier’s equa-

tion.
The boundary conditions can also be written in terms of the displacements as

follows. Replacing the constitutive equation of (6.56) in the boundary conditions
in Γσ of (6.57) results in

t∗ = σσσ ·n =
(
λ Tr(εεε)1+2μεεε

) ·n = λ (Tr(εεε))n+2μεεε ·n =

= λ (∇ ·u)n+2μ
(
∇S ·u) ·n = λ (∇ ·u)n+μ (u⊗∇+∇⊗u) ·n

(6.63)

and the boundary conditions in space (6.57) expressed in terms of the displace-
ments are obtained.

u = u∗

ui = u∗i i ∈ {1,2,3}
}

in Γu

λ (∇ ·u)n+μ (u⊗∇+∇⊗u) ·n = t∗

λ ul,l ni +μ (ui, j n j +u j,i n j) = t∗i i, j ∈ {1,2,3}
}

in Γσ

(6.64)

The initial conditions (6.58) remain unchanged. Integrating the system (6.62)
yields the displacement field u(x, t). Differentiation of this field and substitution
in the geometric equation of (6.56) produces the strain field εεε (x, t), and, finally,
replacing the strain in the constitutive equation results in the stress field σσσ (x, t).

6.7.1.1 Navier’s Equation in Cylindrical and Spherical Coordinates

Navier’s equation (6.62) is expressed in compact or index notation and is inde-
pendent of the coordinate system considered. The components of this equation
are expressed as follows in the cylindrical and spherical coordinate systems (see
section 2.15).
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286 CHAPTER 6. LINEAR ELASTICITY

Cylindrical coordinates

(λ +2μ)
∂e
∂ r
− 2μ

r
∂ωz

∂θ
+2μ

∂ωθ
∂ z

+ρbr = ρ
∂ 2ur

∂ t2

(λ +2μ)
1

r
∂e
∂θ
−2μ

∂ωr

∂ z
+2μ

∂ωz

∂ r
+ρbθ = ρ

∂ 2uθ
∂ t2

(λ +2μ)
∂e
∂ z
− 2μ

r
∂ (rωθ )

∂ r
+

2μ
r

∂ωr

∂θ
+ρbz = ρ

∂ 2uz

∂ t2

(6.65)

where

ωr =−Ωθz =
1

2

(
1

r
∂uz

∂θ
− ∂uθ

∂ z

)

ωθ =−Ωzr =
1

2

(
∂ur

∂ z
− ∂uz

∂ r

)

ωz =−Ωrθ =
1

2

(
1

r
∂ (ruθ )

∂ r
− 1

r
∂ur

∂θ

)

e =
1

r
∂ (rur)

∂ r
+

1

r
∂uθ
∂θ

+
∂uz

∂ z

x(r,θ ,z) not≡
⎡
⎣ x = r cosθ

y = r sinθ
z = z

⎤
⎦

Figure 6.8: Cylindrical coordinates.
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Spherical coordinates

(λ +2μ)
∂e
∂ r
− 2μ

r sinθ
∂
(
ωφ sinθ

)
∂θ

+
2μ

r sinθ
∂ωθ
∂φ

+ρbr = ρ
∂ 2ur

∂ t2

(λ +2μ)
1

r
∂e
∂θ
− 2μ

r sinθ
∂ωr

∂φ
+

2μ
r sinθ

∂
(
rωφ sinθ

)
∂ r

+ρbθ = ρ
∂ 2uθ
∂ t2

(λ +2μ)
1

r sinθ
∂e
∂φ
− 2μ

r
∂ (rωθ )

∂ r
+

2μ
r

∂ωr

∂θ
+ρbφ = ρ

∂ 2uφ

∂ t2

(6.66)

where

ωr =−Ωθφ =
1

2

(
1

r sinθ
∂
(
uφ sinθ

)
∂θ

− 1

r sinθ
∂uθ
∂φ

)

ωθ =−Ωφr =
1

2

(
1

r sinθ
∂ur

∂φ
− 1

r
∂
(
ruφ
)

∂ r

)

ωz =−Ωrθ =
1

2

(
1

r
∂ (ruθ )

∂ r
− 1

r
∂ur

∂θ

)

e =
1

r2 sinθ

(
∂
(
r2ur sinθ

)
∂ r

+
∂ (ruθ sinθ)

∂θ
+

∂
(
ruφ
)

∂φ

)

x(r,θ ,φ) not≡
⎡
⎣ x = r sinθ cosφ

y = r sinθ sinφ
z = z cosθ

⎤
⎦

Figure 6.9: Spherical coordinates.
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288 CHAPTER 6. LINEAR ELASTICITY

6.7.2 Stress Formulation: Beltrami-Michell Equation
This formulation is solely valid for the quasi-static case discussed in Sec-
tion 6.6.3. Consider, thus, the equations that constitute the quasi-static linear
elastic problem:

∇ ·σσσ +ρ0b = 0 Equilibrium equation

εεε =−ν
E

Tr(σσσ)1+
1+ν

E
σσσ Inverse constitutive equation

εεε = ∇Su =
1

2
(u⊗∇+∇⊗u) Geometric equation

(6.67)

Γu : u = u∗

Γσ : t∗ = σσσ ·n

}
Boundary conditions in space (6.68)

where the inverse constitutive (6.24) (strains in terms of stresses) has been con-
sidered in (6.67).

The starting point of the stress formulation is the geometric equation of (6.67)
from which, by means of successive differentiation, the displacements are elim-
inated and the compatibility equations14 are obtained,

εi j,kl + εkl, i j− εik, jl− ε jl, ik = 0 i, j,k, l ∈ {1,2,3} . (6.69)

Then, the equations of the problem are deduced in the following manner:

a) The constitutive equation of (6.67) is replaced in the compatibility equa-
tions (6.69).

b) The resulting expression is introduced in the equilibrium equation of (6.67).

This results in the equation

Beltrami-Michell equation

∇2σi j +
1

1+ν
σll,i j =− ν

1−ν
δi j (ρ0 bl), l− (ρ0 bi), j− (ρ0 b j), i

i, j ∈ {1,2,3}

(6.70)

which receives the name of Beltrami-Michell equation and constitutes a system
of second-order PDEs in stresses σσσ (x) that must be solved in R

3.
The boundary conditions of this system are the equilibrium equation of (6.67),

which, being a system of first-order PDEs, acts as the boundary conditions of the
second-order system in (6.70), and the boundary conditions in Γσ .

14 The deduction of the compatibility equations has been studied in Chapter 3, Section 3.3.
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Unicity of the Solution to the Linear Elastic Problem 289

∇ ·σσσ +ρ0b = 0 Equilibrium equation (6.71)

σσσ ·n = t∗ in Γσ Boundary conditions in Γσ (6.72)

The integration of the system in (6.70) yields the stress field σσσ (x). Substi-
tution of the stresses in the inverse constitutive equation of (6.67) results in
the strains εεε (x). However, to obtain the displacement field u(x), the geomet-
ric equations must be integrated, taking into account the boundary conditions
in Γu

15. ⎧⎪⎨
⎪⎩

εεε (x) =
1

2

(
u(x)⊗∇+∇⊗u(x)

)
x ∈V

u(x) = u∗ (x) ∀x ∈ Γu

(6.73)

Thus, the system of second-order PDEs must be integrated in R
3.

Remark 6.10. The need to integrate the second system (6.73) (when
the stress formulation is followed) is a disadvantage (with respect
to the displacement formulation described in Section 6.7.1) when
numerical methods are used to solve the linear elastic problem.

6.8 Unicity of the Solution to the Linear Elastic Problem

Theorem 6.1. The solution

RRR(x, t) not≡
⎡
⎣u(x, t)

εεε (x, t)
σσσ (x, t)

⎤
⎦

to the linear elastic problem posed in (6.42) to (6.44) is unique.

Proof
Consider the actions defined byAAA(x, t) not≡ [b(x, t) , u∗ (x, t) , t∗ (x, t) , v0 (x)]T ,

in the domains V , Γu, Γσ and V , respectively, (satisfying Γσ
⋃

Γu = ∂V and

15 An analytical procedure to integrate these geometric equations was provided in Chapter 3,
Section 3.4.2
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290 CHAPTER 6. LINEAR ELASTICITY

Figure 6.10: Linear elastic problem.

Γσ
⋂

Γu = /0) act on the linear elastic problem schematically represented in Fig-
ure 6.10.

The possible solutionsRRR(x, t) not≡ [u(x, t) , εεε (x, t) , σσσ (x, t)]T to the linear elas-
tic problem must satisfy the equations:

∇ ·σσσ +ρ0b = ρ0
∂ 2u
∂ t2

Cauchy’s equation

σσσ = λ Tr(εεε)1+2μεεε Constitutive equation

εεε = ∇Su =
1

2
(u⊗∇+∇⊗u) Geometric equation

(6.74)

Γu : u = u∗

Γσ : t∗ = σσσ ·n

}
Boundary conditions in space (6.75)

u(x,0) = 0
.u(x,0) = v0

}
Initial conditions (6.76)

The unicity of the solution is proven as follows. Suppose the solution is not
unique, that is, there exist two different solutions to the problem,

RRR
(1) (x, t) not≡

⎡
⎢⎣u(1) (x, t)

εεε(1) (x, t)
σσσ (1) (x, t)

⎤
⎥⎦ and RRR

(2) (x, t) not≡

⎡
⎢⎣u(2) (x, t)

εεε(2) (x, t)
σσσ (2) (x, t)

⎤
⎥⎦

such that RRR
(1) �=RRR

(2) ,

(6.77)

which, therefore, must satisfy equations (6.74) to (6.76) and are the elastic re-
sponses to the same action AAA(x, t) not≡ [b(x, t) , u∗ (x, t) , t∗ (x, t) , v0 (x)]T . Con-
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sider now a possible response constituted by the difference RRR(2)−RRR
(1),

R̃RR(x, t) de f
= RRR

(2)−RRR
(1) not≡

⎡
⎢⎣u(2) (x, t)−u(1) (x, t)

εεε(2) (x, t)− εεε(1) (x, t)
σσσ (2) (x, t)−σσσ (1) (x, t)

⎤
⎥⎦ de f
=

⎡
⎢⎣ ũ(x, t)

ε̃εε (x, t)
σ̃σσ (x, t)

⎤
⎥⎦ . (6.78)

Note how the answer R̃RR satisfies the following equations:

• Cauchy’s equation with b = 0 16

∇ · σ̃σσ (x, t) = ∇ ·
(

σσσ (2) (x, t)−σσσ (1) (x, t)
)
= ∇ ·σσσ (2)−∇ ·σσσ (1) =

=

(
−ρ0 b+ρ0

∂ 2u(2)

∂ t2

)
−
(
−ρ0 b+ρ0

∂ 2u(1)

∂ t2

)
=

= ρ0
∂ 2u(2)

∂ t2
−ρ0

∂ 2u(1)

∂ t2
= ρ0

∂ 2ũ
∂ t2

(6.79)

• Constitutive equation17

σ̃σσ (x, t) = σσσ (2) (x, t)−σσσ (1) (x, t) =CCC : εεε(2)−CCC : εεε(1) =

=CCC :
(

εεε(2)− εεε(1)
)
=CCC : ε̃εε

(6.80)

• Geometric equation

ε̃εε (x, t) = εεε(2) (x, t)− εεε(1) (x, t) = ∇Su(2)−∇Su(1) =

= ∇S
(

u(2)−u(1)
)
= ∇Sũ

(6.81)

• Boundary conditions in Γu with ũ∗ = 0

Γu →

⎧⎪⎪⎨
⎪⎪⎩

ũ(x, t) = u(2) (x, t)−u(1) (x, t) = u∗ −u∗ = 0 ∀t =⇒

=⇒ ∂ ũ(x, t)
∂ t

=
.
ũ(x, t) = 0

(6.82)

16 The fact that the Nabla operator (∇∗ (•)) is a linear operator is used advantageously here,
that is, ∇ ∗ (a+b) = ∇ ∗ a+∇ ∗ b, where ∗ symbolizes any type of differential operation.

Likewise, the operator ∂ 2 (•, t)/∂ t2 is also a linear operator.
17 The property that the operator CCC : is a linear operator is applied here, that is,
CCC : (a+b) =CCC : a+CCC : b.
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• Boundary conditions in Γσ with t̃∗ = 0

Γσ → σ̃σσ (x, t) ·n =
(

σσσ (2) (x, t)−σσσ (1) (x, t)
)
·n = σσσ (2) ·n−σσσ (1) ·n =

= t∗ − t∗ = 0
(6.83)

• Initial conditions with v0 = 0⎧⎪⎪⎨
⎪⎪⎩

ũ(x,0) = u(2) (x,0)−u(1) (x,0) = 0−0 = 0

∂ ũ(x,0)
∂ t

=
.
ũ(x,0) = .u(2) (x,0)− .u(1) (x,0) = v0−v0 = 0

(6.84)

Consider now the calculation of the integral

∫
∂V

n ·
(

σ̃σσ ·
.
ũ
)

dS =
∫

Γu
⋃

Γσ

= 0 in Γσ︷ ︸︸ ︷(
n · σ̃σσ) · .

ũ︸︷︷︸
= 0 in Γu

dS

Divergence
Theorem

=
∫
V

∇ ·
(

σ̃σσ ·
.
ũ
)

dV = 0 , (6.85)

where the conditions (6.82) and (6.83) have been applied. Operating on (6.85)
results in⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∇ ·
(

σ̃σσ ·
.
ũ
)
=
(
∇ · σ̃σσ) · .

ũ+ σ̃σσ :
(

∇
.
ũ
)
= ρ0

∂ 2ũ
∂ t2

·
.
ũ+ σ̃σσ :

(
∇

.
ũ
)T

∂
∂xi

(
σ̃i j

.
ũ j

)
=

∂ σ̃i j

∂xi

.
ũ j + σ̃i j

∂
.
ũ j

∂xi
= ρ0

∂ 2ũ j

∂ t2

.
ũ j + σ̃ ji

∂
.
ũ j

∂xi
i, j ∈ {1,2,3}

(6.86)
where the condition (6.79) has been considered. On the other hand18,

(
∇

.
ũ
)T

=
.
ũ⊗∇ =

1

2

( .
ũ⊗∇+∇⊗

.
ũ
)

︸ ︷︷ ︸.
ε̃εε = ∇S

.
ũ

+
1

2

( .
ũ⊗∇−∇⊗

.
ũ
)

︸ ︷︷ ︸.
Ω̃ΩΩ = ∇a

.
ũ

=
.
ε̃εε +

.
Ω̃ΩΩ =⇒

σ̃σσ :
(

∇
.
ũ
)T

= σ̃σσ :
.
ε̃εε + σ̃σσ :

.
Ω̃ΩΩ︸ ︷︷ ︸

= 0

=⇒ σ̃σσ :
(

∇
.
ũ
)T

= σ̃σσ :
.
ε̃εε .

(6.87)

18 The fact that σ̃σσ is a symmetric tensor and
.
Ω̃ΩΩ is an antisymmetric one is considered here,

which leads to σ̃σσ :
.
Ω̃ΩΩ = σ̃i j

.
Ω̃i j = 0.
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In addition19,

ρ0
∂ 2 ũ
∂ t2

·
.
ũ = ρ0

∂ 2
.
ũ

∂ t2
·

.
ũ =

1

2
ρ0

∂
( .

ũ ·
.
ũ
)

∂ t
=

1

2
ρ0

∂
( ṽ2︷︸︸︷

ṽ · ṽ )
∂ t

=

= ρ0
d
dt

(
1

2
ṽ2

)
=⇒ ρ0

∂ 2 ũ
∂ t2

·
.
ũ = ρ0

d
dt

(
1

2
ṽ2

)
.

(6.88)

Replacing (6.88) and (6.87) in (6.86), and the resulting expression in (6.85), and
taking into account the definition of internal energy U given in (6.10) produces∫

V

∇ ·
(

σ̃σσ ·
.
ũ
)

dV =
∫
V

ρ0
d
dt

(
1

2
ṽ2

)
dV +

∫
V

σ̃σσ :
.
ε̃εε dV = 0 =⇒

d
dt

∫
V

1

2
ρ0 ṽ2dV

︸ ︷︷ ︸
dK̃/dt

+
∫
V

σ̃σσ :
.
ε̃εε dV

︸ ︷︷ ︸
dŨ/dt

= 0 =⇒ (6.89)

dK̃
dt

+
dŨ
dt

=
d
dt

(
K̃+ Ũ

)
= 0 ∀t ≥ 0 . (6.90)

Note, though, that at the initial time t = 0 the following is satisfied (see (6.10),
(6.13) and (6.84))

K̃
∣∣∣
t=0

=
∫
V

1

2
ρ0ṽ2

∣∣∣
t=0

dV =
∫
V

1

2
ρ0 ṽ0︸︷︷︸.

ũ0 = 0

· ṽ0 dV = 0

Ũ
∣∣∣
t=0
=
∫
V

û(x, t)
∣∣∣
t=0

dV =
∫
V

1

2
ε̃εε
∣∣∣
t=0︸ ︷︷ ︸

= 0

:CCC : ε̃εε
∣∣∣
t=0

dV = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
⇒
(
K̃+ Ũ

)∣∣∣
t=0
= 0

(6.91)
and the integration of (6.90) with the initial condition (6.91) leads to

K̃+ Ũ = 0 ∀t ≥ 0 , (6.92)

where

K̃ =
∫
V

1

2
ρ0 ṽ2︸︷︷︸
≥ 0

dV ≥ 0 ∀t ≥ 0 . (6.93)

19 Here, the definition |ṽ| de f
= ṽ is used.
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Comparing (6.92) and (6.93) necessarily leads to the conclusion

K̃+ Ũ = 0

K̃ ≥ 0

}
∀t ≥ 0 =⇒ Ũ =

∫
V

1

2
ε̃εε :CCC : ε̃εε dV ≤ 0 ∀t ≥ 0 . (6.94)

On the other hand, since the tensor of elastic constants CCC is positive-definite
(see (6.32)) ,

ε̃εε (x, t) :CCC : ε̃εε (x, t)≥ 0 ∀x ∈V ∀t ≥ 0 =⇒
Ũ =

∫
V

1

2
ε̃εε :CCC : ε̃εε dV ≥ 0 ∀t ≥ 0 .

(6.95)

Then, comparing (6.94) and (6.95) necessarily leads to

Ũ (t)≤ 0

Ũ (t)≥ 0

}
∀t ≥ 0 =⇒ Ũ (t) =

∫
V

1

2
ε̃εε :CCC : ε̃εε dV = 0 ∀t ≥ 0 . (6.96)

Considering once more the positive-definite condition of tensor CCC 20,

Ũ =
∫
V

1

2
ε̃εε :CCC : ε̃εε︸ ︷︷ ︸
≥ 0

dV = 0 ∀t ≥ 0 =⇒ ε̃εε :CCC : ε̃εε = 0 ∀x , ∀t ≥ 0 (6.97)

and, necessarily, from the positive-definite condition of CCC it is deduced that

ε̃εε :CCC : ε̃εε = 0 ⇐⇒ ε̃εε (x, t) = 0 ∀x , ∀t ≥ 0 (6.98)

ε̃εε (x, t) = εεε(2)− εεε(1) = 0 =⇒ εεε(2) = εεε(1) . (6.99)

In addition, replacing (6.99) in (6.81) results in

ε̃εε (x, t) = ∇S · ũ = 0 =⇒ 1

2

(
∂ ũi

∂x j
+

∂ ũ j

∂xi

)
= 0 i, j ∈ {1,2,3} , (6.100)

20 The following theorem of integral calculus is applied here:

If φ (x)≥ 0 and

∫
Ω

φ (x) dΩ = 0 =⇒ φ (x) = 0 ∀x ∈Ω .
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which is a system of six homogeneous and first-order PDEs. Its integration leads
to the solution21

ũ(x, t) = Ω̃ΩΩ ·x︸︷︷︸
rotation

+ c̃︸︷︷︸
translation

with

Ω̃ΩΩ not≡

⎡
⎢⎣ 0 −θ̃3 θ̃2

θ̃3 0 −θ̃1

−θ̃2 θ̃1 0

⎤
⎥⎦ and c̃ not≡

⎡
⎢⎣ c̃1

c̃2

c̃3

⎤
⎥⎦ ,

(6.101)

where Ω̃ΩΩ is an antisymmetric tensor (rotation tensor dependent on three con-

stants θ̃1, θ̃2 and θ̃3) and c̃ is a constant vector equivalent to a translation. Ulti-
mately, the solution (6.100) to the system (6.101) are the displacements ũ(x, t)
compatible with a null strain ε̃εε (x, t) = 0, which correspond to a rigid body

motion. The integration constants in Ω̃ΩΩ and c̃ are determined by imposing the
boundary conditions (6.82) (ũ(x, t) = 0 ∀x ∈ Γu), therefore, if the rigid body

motion is impeded through the restrictions in Γu, one obtains Ω̃ΩΩ = 0 and c̃ = 0.
In conclusion,

ũ(x, t) = Ω̃ΩΩ ·x+ c̃
Ω̃ΩΩ≡ 0 ; c̃≡ 0

}
=⇒ ũ(x, t) = u(2)−u(1) = 0 =⇒ u(2) = u(1) .

(6.102)
Finally, replacing (6.99) in (6.80) yields

σ̃σσ (x, t) =CCC : ε̃εε = 0 = σσσ (2)−σσσ (1) =⇒ σσσ (2) = σσσ (1) . (6.103)

Then, observing (6.99) , (6.102) and (6.103) leads to the conclusion

u(2) = u(1)

εεε(2) = εεε(1)

σσσ (2) = σσσ (1)

⎫⎬
⎭ =⇒ RRR

(2) =RRR
(1) . (6.104)

Therefore, the solution is unique (QED).

6.9 Saint-Venant’s Principle
Saint-Venant’s principle is an empirical principle that does not have a rigor-
ous proof. Consider a solid Ω that is subjected to a system of forces on its

21 This solution can be obtained applying the methodology used in Chapter 3, Section 3.4.2
to integrate the strain field.
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296 CHAPTER 6. LINEAR ELASTICITY

Figure 6.11: Saint-Venant’s principle.

boundary characterized by the traction vector t∗ (see Figure 6.11). These ac-
tions will lead to a solution or response in displacements, strains and stresses,

RRR
(I) (x, t) not≡ [u(I) (x, t) , εεε(I) (x, t) , σσσ (I) (x, t)

]T
. Consider now a part Γ̂ of the

boundary Γσ
(
Γ̂ ⊂ Γσ

)
of said medium, whose typical dimension is �, and re-

place the system of actions applied on the boundary, t(I), by another system,

t(II), that is statically equivalent to t(I) 22, without modifying the actions on the
rest of Γσ . Modifying the actions in this way will presumably result in the new

responses RRR(II) (x, t) not≡ [u(II) (x, t) , εεε(II) (x, t) , σσσ (II) (x, t)
]T

.
Saint-Venant’s principle states that, for the points belonging to the domain Ω

that are sufficiently far from the boundary Γ̂ , the solution in both cases is prac-
tically the same, that is, for a point P of the interior of Ω ,

u(I) (xp, t)≈ u(II) (xp, t)

εεε(I) (xp, t)≈ εεε(II) (xp, t)

σσσ (I) (xp, t)≈ σσσ (II) (xp, t)

⎫⎪⎬
⎪⎭ ∀P

∣∣ δ � � . (6.105)

In other words, if the distance δ between the point being considered and the
part of the boundary in which the actions have been modified is large in com-
parison with the dimension � of the modified zone, the response in said point is
equivalent in both cases.

22 Two systems of forces t(I) and t(II) are said to be statically equivalent if the resultant
(forces and moments) of both systems is the same.
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Linear Thermoelasticity. Thermal Stresses and Strains 297

Example 6.4 – Description of Saint-Venant’s principle in strength of materi-
als and how it relates to the concept of stress.

Solution

Consider a beam (or prismatic piece) with a cross-section A subjected to
a tensile point force F in its ends, as shown in the figure below. The exact
solution to the original elastic problem (system (I)) is extremely complicated,
especially in the vicinity of the points of application of the point forces. If
the forces F are now replaced by a statically equivalent system of uniformly
distributed tensile loads in the end sections σ = F/A (system (II)), the elastic
solution to the corresponding problem is extremely simple and coincides (for
a Poisson’s ratio of ν = 0) with the axial stress solution provided by strength
of materials (uniformly distributed stresses in all the piece, σx = F/A). At
a far enough distance from the beam’s ends (once or twice the edge), Saint-
Venant’s principle allows approximating solution (I) with solution (II), and
also allows dimensioning the strength characteristics of the piece for practical
purposes.

6.10 Linear Thermoelasticity. Thermal Stresses and
Strains

The main difference of linear thermoelasticity with respect to the linear elasticity
studied up to this point is that the deformation process is no longer assumed to
be isothermal (see Section 6.1). Now, the thermal effects are included and the
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temperature θ (x, t) is considered to evolve along time, that is,

θ (x, t) �= θ (x,0) not
= θ0 ,

.
θ (x, t) =

∂θ (x, t)
∂ t

�= 0 .
(6.106)

Nevertheless, the hypothesis that the processes are adiabatic (slow) is maintained
and, thus,

ρ0 r−∇ ·q≈ 0 . (6.107)

6.10.1 Linear Thermoelastic Constitutive Equation
Hooke’s law (6.6) in this case is generalized to

σσσ =CCC : εεε−βββ (θ −θ0)

σi j = Ci jkl εkl−βi j (θ −θ0) i, j ∈ {1,2,3} , (6.108)

Here, CCC is the tensor of elastic constants defined in (6.7), θ (x, t) is the tempera-
ture field, θ0 (x) = θ (x,0) is the distribution of temperatures in the neutral state
(reference configuration) and βββ is the (symmetric) tensor of thermal properties.

Tensor of thermal
properties

{
βββ = βββ T

βi j = β ji i, j ∈ {1,2,3} (6.109)

In the case of an isotropic material, tensor CCC must be a fourth-order isotropic
tensor and βββ , a second-order isotropic one23, that is,{

CCC= λ1⊗1+2μI
Ci jkl = λδi jδkl +μ

(
δikδ jl +δilδ jk

)
i, j,k, l ∈ {1,2,3}{

βββ = β1
βi j = βδi j i, j ∈ {1,2,3}

(6.110)

where now a single thermal property β appears in addition to the elastic con-
stants λ and μ . Replacing (6.110) in the constitutive equation (6.108) and defin-

ing (θ −θ0)
not
= Δθ , yields

23 The most general expression of a second-order isotropic tensor is βββ = β1 ∀β .
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Constitutive equation of an
isotropic linear thermoelastic material

σσσ = λ Tr(εεε)1+2μεεε−βΔθ1

σi j = λεllδi j +2μεi j−βΔθδi j i, j ∈ {1,2,3}

(6.111)

6.10.2 Inverse Constitutive Equation
Equation (6.111) can be inverted as follows.⎧⎪⎨
⎪⎩

σσσ =CCC : εεε−Δθ βββ ⇒ εεε =CCC
−1 : σσσ +Δθ CCC

−1 : βββ︸ ︷︷ ︸
ααα

=CCC
−1 : σσσ +Δθ ααα

ααα de f
= CCC

−1 : βββ → Tensor of thermal expansion coefficients
(6.112)

where ααα is a second-order (symmetric) tensor involving six thermal properties
named coefficients of thermal expansion. For an isotropic case, in agreement
with (6.111) and (6.24), and after certain algebraic manipulation, one obtains

Inverse constitutive equation of an
isotropic linear thermoelastic material

εεε =−ν
E

Tr(σσσ)1+
1+ν

E
σσσ +αΔθ 1

εi j =−ν
E

σll δi j +
1+ν

E
σi j +αΔθ δi j i, j ∈ {1,2,3}

(6.113)

Here, α is a scalar denoted as coefficient of thermal expansion, related to the
thermal property β in (6.111) by means of

Thermal expansion
coefficient

→ α =
1−2ν

E
β . (6.114)
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6.10.3 Thermal Stresses and Strains
Comparing the linear elastic constitutive equation (6.20) and the linear thermoe-
lastic one (6.111) suggests the following decomposition.

σσσ = λ Tr(εεε) 1+2μεεε︸ ︷︷ ︸
σσσ nt

−β Δθ 1︸ ︷︷ ︸
σσσ t

= σσσnt −σσσ t

⎧⎪⎨
⎪⎩

Non-thermal stress → σσσnt de f
= λ Tr(εεε)1+2μεεε

Thermal stress → σσσ t de f
= β Δθ 1

(6.115)

Here, σσσnt represents the stress produced if there do not exist any thermal phe-
nomena and σσσ t is named thermal stress and acts as the “correcting” stress due
to the thermal increment.

A similar operation can be performed on the inverse constitutive equations
for the linear elastic and linear thermoelastic cases of (6.24) and (6.113), re-
spectively, resulting in

εεε =−ν
E

Tr(σσσ)1+
1+ν

E
σσσ︸ ︷︷ ︸

εεεnt

+α Δθ 1︸ ︷︷ ︸
εεε t

= εεεnt + εεε t

⎧⎪⎨
⎪⎩

Non-thermal strain → εεεnt de f
= −ν

E
Tr(σσσ)1+

1+ν
E

σσσ

Thermal strain → εεε t de f
= α Δθ 1

(6.116)

In conclusion, the stress and strain tensors in linear thermoelasticity can be de-
composed into

Total Non-thermal
component

Thermal
component

σσσ = σσσ nt −σσσ t
σσσnt =CCC : εεε

Isotropic material:
σσσ nt = λ Tr(εεε)1+2μεεε

σσσ t = Δθ βββ
Isotropic material:

σσσ t = β Δθ 1
(6.117)

εεε = εεεnt + εεε t

εεεnt =CCC
−1 : σσσ

Isotropic material:

εεεnt =−ν
E

Tr(σσσ)1+
1+ν

E
σσσ

εεε t = Δθ ααα
Isotropic material:

εεε t = α Δθ 1
(6.118)
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where the thermal components appear due to the thermal processes being taken
into account. The following expressions result from (6.117) and (6.118).

εεεnt =CCC
−1 : σσσ =⇒ σσσ =CCC : εεεnt =CCC :

(
εεε− εεε t) (6.119)

σσσnt =CCC : εεε =⇒ εεε =CCC
−1 : σσσnt =CCC

−1 :
(
σσσ +σσσ t) (6.120)

Remark 6.11. Unlike what occurs in elasticity, in the thermoelastic
case a state of null strain in a point of a medium does not imply a
state of null stress in said point. In effect, for εεε = 0 in (6.117),

εεε = 0 =⇒ σσσ nt = 0 =⇒ σσσ =−σσσ t =−β Δθ 1 �= 0 .

Δθ �= 0

εεε = 0
σσσ =−σσσ t =−β Δθ 1

Remark 6.12. Analogously, in thermoelasticity a state of null stress
in a point of a medium does not imply a state of null strain in said
point since (6.118) with σσσ = 0 yields

σσσ = 0 =⇒ εεεnt = 0 =⇒ εεε = εεε t = α Δθ 1 �= 0 .

Δθ �= 0

σσσ = 0 εεε = εεε t = α Δθ 1
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Figure 6.12: Actions on a continuous medium.

6.11 Thermal Analogies
The thermal analogies arise from the search of procedures to solve the linear
thermoelastic problem using the strategies and methodologies developed in Sec-
tion 6.7 for the linear elastic problem (without considering thermal effects).

Two analogies are presented in this section which, for the sake of simplicity,
are restricted to the isotropic quasi-static problem, although they can be directly
extrapolated to the general anisotropic dynamic problem.

6.11.1 First Thermal Analogy (Duhamel-Newman Analogy)
Consider the continuous medium in Figure 6.12 on which the body forces b(x, t)
and an increment of temperature Δθ (x, t) are acting, and on whose boundaries
Γu and Γσ act the prescribed displacements u∗ (x, t) and a traction vector t∗ (x, t),
respectively.

The equations of the (isotropic quasi-static) linear thermoelastic problem are

Governing
equations

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∇ ·σσσ +ρ0b = 0 Equilibrium equation

σσσ =CCC : εεε−β Δθ 1 Constitutive equation

εεε = ∇Su Geometric equation

Boundary
conditions

{
Γu : u = u∗

Γσ : σσσ ·n = t∗

(6.121)
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which compose the actions (data) AAA(x, t) and responses (unknowns) RRR(x, t) of

the problem24.

b(x, t)
u∗ (x, t)
t∗ (x, t)

Δθ (x, t)

⎫⎪⎪⎬
⎪⎪⎭

︸ ︷︷ ︸
Actions

not
=AAA

(I) (x, t)

⇒
〈MAT HEMAT ICAL

MODEL :
PDEs+BCs

〉
⇒
⎧⎨
⎩

u(x, t)
εεε (x, t)
σσσ (x, t)︸ ︷︷ ︸

Responses
not
=RRR

(I) (x, t)

(6.122)

To be able to apply the resolution methods typical of the liner elastic problem
developed in Section 6.7, the thermal term in the equations of the thermoelastic
problem (6.121) must be eliminated (at least, in appearance). To this aim, the
decomposition of the stress tensor σσσ =σσσnt−σσσ t is replaced in (6.121) as follows.

a) Equilibrium equation

σσσ = σσσ nt −σσσ t =⇒
∇ ·σσσ = ∇ ·σσσ nt −∇ · σσσ t︸︷︷︸

β Δθ1

= ∇ ·σσσnt −∇(β Δθ) (6.123)

∇ ·σσσ +ρ0b = 0 =⇒ ∇ ·σσσ nt +ρ0

(
b− 1

ρ0
∇(β Δθ)︸ ︷︷ ︸

not
= b̂

)
= 0

=⇒ ∇ ·σσσ nt + b̂ = 0

(6.124)

which constitutes the equilibrium equation of the medium subjected to the

pseudo-body forces b̂(x, t) defined by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b̂(x, t) = b(x, t)− 1

ρ0
∇(β Δθ)

b̂i (x, t) = bi (x, t)− 1

ρ0

∂ (β Δθ)
∂xi

i ∈ {1,2,3}
(6.125)

b) Constitutive equation

σσσ nt =CCC : εεε = λ Tr(εεε)1+2μεεε (6.126)

24 The field of thermal increments Δθ (x, t) is assumed to be known a priori and, there-
fore, independent of the mechanical response of the problem. This situation is known as the
uncoupled thermomechanical problem.
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c) Geometric equation (remains unchanged)

εεε = ∇2u (6.127)

d) Boundary condition in Γu

Γu : u = u∗ (6.128)

e) Boundary condition in Γσ

σσσ = σσσ nt −σσσ t

σσσ ·n = t∗

}
=⇒ σσσnt · n−σσσ t · n = t∗ =⇒

σσσ nt ·n = t∗+ σσσ t ·n︸ ︷︷ ︸
β Δθ 1 ·n

= t∗+β Δθ n︸ ︷︷ ︸
t̂∗

=⇒ Γσ : σσσnt ·n = t̂∗
(6.129)

where t̂∗ (x, t) is a pseudo-traction vector defined by

t̂∗ = t∗+β Δθ n . (6.130)

Equations (6.123) to (6.130) allow rewriting the original problem (6.121) as

Governing
equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ ·σσσnt +ρ0b̂ = 0

with b̂ = b− 1

ρ0
∇(β Δθ)

Equilibrium
equation

σσσnt =CCC : εεε = λ Tr(εεε)1+2μεεε Constitutive
equation

εεε = ∇Su Geometric
equation

Boundary
conditions

{
Γu : u = u∗

Γσ : σσσnt ·n = t̂∗ with t̂ = t+β Δθ n

(6.131)

which constitutes the so-called analogous problem, a linear elastic problem that
can be solved with the methodology indicated for this type of problems in Sec-
tion 6.7 and characterized by the following actions and responses.
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b̂(x, t)
u∗ (x, t)
t̂∗ (x, t)

⎫⎬
⎭

︸ ︷︷ ︸
Actions

not
=AAA

(II) (x, t)

⇒
〈MAT HEMAT ICAL

MODEL :
PDEs+BCs

〉
⇒
⎧⎨
⎩

u(x, t)
εεε (x, t)

σσσnt (x, t)︸ ︷︷ ︸
Responses

not
=RRR

(II) (x, t)

(6.132)

Comparing the actions and responses of the original problem (6.122) with
those of the analogous problem (6.132), reveals the difference between them to
be

AAA
(I)−AAA

(II) not≡

⎡
⎢⎢⎣

b
u∗

t∗

Δθ

⎤
⎥⎥⎦−

⎡
⎢⎢⎣

b̂
u∗

t̂∗

0

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

b− b̂
0

t∗ − t̂∗

Δθ

⎤
⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

1

ρ0
∇(β Δθ)

0
−β Δθ n

Δθ

⎤
⎥⎥⎥⎥⎦ de f
= AAA

(III) (x, t)

RRR
(I)−RRR

(II) not≡
⎡
⎣ u

εεε
σσσ

⎤
⎦−

⎡
⎣ u

εεε
σσσnt

⎤
⎦=

⎡
⎢⎢⎣ 0

0
σσσ −σσσnt︸ ︷︷ ︸
−σσσ t

⎤
⎥⎥⎦=

⎡
⎢⎣ 0

0
−β Δθ 1

⎤
⎥⎦ de f
= RRR

(III) (x, t)

(6.133)
where (6.130) and (6.117) have been taken into account.

Remark 6.13. It can be directly verified that, in (6.133), RRR(III) is the

response corresponding to the system of actions AAA(III) in the ther-
moelastic problem (6.121).

Equation (6.133) suggests that the original problem (I) may be interpreted as
the sum (superposition) of two problems or states:

STATE (II) (to be solved): analogous elastic state in which the temperature
does not intervene and that can be solved by means of elastic procedures.

+
STATE (III) (trivial): trivial thermoelastic state in which the responses

RRR
(III) (x) given in (6.133) are known without the need of any calculations.
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306 CHAPTER 6. LINEAR ELASTICITY

Once STATE (II) is computed, the solution to the original thermoelastic prob-
lem of STATE (I) is obtained as

Solution to the
original thermoelastic

problem

⎧⎨
⎩

u(I) = u(II)

εεε(I) = εεε(II)

σσσ (I) = σσσ (II)−β Δθ1
(6.134)

The procedure to solve the thermoelastic problem based on the first thermal
analogy is summarized as a superposition of states in Figure 6.13.

STATE ACTION RESPONSE

(I) Thermoelastic (original)

⎡
⎢⎢⎢⎣

b(x, t)
u∗ (x, t)
t∗ (x, t)

Δθ (x, t)

⎤
⎥⎥⎥⎦

⎡
⎢⎣ u(x, t)

εεε (x, t)
σσσ (x, t)

⎤
⎥⎦

(II) Elastic (analogous)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b̂ = b− 1

ρ0
∇(β Δθ)

u∗ (x, t)

t̂∗ = t∗+β Δθ n

Δθ = 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣ u(x, t)

εεε (x, t)
σσσnt (x, t)

⎤
⎥⎦

(III) Thermoelastic (trivial)

⎡
⎢⎢⎢⎢⎢⎣

b̃ =
1

ρ0
∇(β Δθ)

ũ∗ = 0
t̃∗ =−β Δθ n

Δθ (x, t)

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎣ u = 0

εεε = 0
σσσ =−β Δθ1

⎤
⎥⎦

Figure 6.13: First thermal analogy.

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems

doi:10.13140/RG.2.2.25821.20961



Con
tin

uum
M

ech
an

ics
for

Engin
eer

s

Theo
ry

an
d Pro

blem
s

©
X. O

liv
er

an
d C. A

ge
let

de Sar
ac

ibar

Thermal Analogies 307

6.11.2 Second Thermal Analogy
The second thermal analogy is based on expressing the equations that constitute
the problem in terms of the thermal strains εεε t defined in (6.118). Consider the
equations of the original thermoelastic problem, with the constitutive equation
in its inverse form

Governing
equations

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∇ ·σσσ +ρ0b = 0 Equilibrium equation

εεε =CCC
−1 : σσσ +α Δθ 1 Inverse constitutive

equation

εεε = ∇Su Geometric equation

Boundary
conditions

{
Γu : u = u∗

Γσ : σσσ ·n = t∗

(6.135)

which constitute the actions (data) AAA(x, t) and responses (unknowns) RRR(x, t) of
the problem.

b(x, t)
u∗ (x, t)
t∗ (x, t)

Δθ (x, t)

⎫⎪⎪⎬
⎪⎪⎭

︸ ︷︷ ︸
Actions

not
=AAA

(I) (x, t)

⇒
〈MAT HEMAT ICAL

MODEL :
PDEs+BCs

〉
⇒
⎧⎨
⎩

u(x, t)
εεε (x, t)
σσσ (x, t)︸ ︷︷ ︸

Responses
not
=RRR

(I) (x, t)

(6.136)

Hypothesis 6.1. Assume that the coefficient of thermal expansion
α (x) and the thermal increment Δθ (x, t) are such that the thermal
strain field

εεε t (x, t) = α (x)Δθ (x, t)1

is integrable (satisfies the compatibility conditions).

Consequently, there exists a thermal displacement field ut (x, t) that satisfies

⎧⎪⎪⎨
⎪⎪⎩

εεε t (x, t) = α Δθ 1 = ∇Sut =
1

2
(ut ⊗∇+∇⊗ut)

ε t
i j = α Δθ δi j =

1

2

(
∂ut

i
∂x j

+
∂ut

j

∂xi

)
i, j ∈ {1,2,3}

(6.137)
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308 CHAPTER 6. LINEAR ELASTICITY

Remark 6.14. The solution ut (x, t) to the system of differential equa-
tions (6.137) exists if and only if the strain field εεε t (x, t) satisfies the
compatibility conditions (see Chapter 3). In addition, this solution is
determined except for a rigid body motion characterized by a rota-
tion tensor ΩΩΩ∗ and a displacement vector c∗ (both constant). That is,
there exists a family of admissible solutions of the form

ut (x, t) = ũ(x, t) + ΩΩΩ∗ ·x︸ ︷︷ ︸
rotation

+ c∗︸︷︷︸
translation︸ ︷︷ ︸

rigid body motion

.

The rigid body motion may be chosen arbitrarily (in the form which
is most convenient for the resolution process).

Once the thermal displacements have been defined, a decomposition of the
total displacements into their thermal and non-thermal parts can be performed
as follows.

unt (x, t) de f
= u(x, t)−ut (x, t) =⇒ u = unt +ut (6.138)

To eliminate the thermal term in the equations that constitute the thermoe-
lastic problem (6.135), the decompositions of the displacements and strains
(u = unt +ut and εεε = εεεnt + εεε t) is introduced in the equations of (6.135), which
result in

a) Equilibrium equation (remains unchanged)

∇ ·σσσ +ρ0b = 0 (6.139)

b) Inverse constitutive equation

εεεnt =CCC
−1 : σσσ =−ν

E
Tr(σσσ)1+

1+ν
E

σσσ (6.140)

c) Geometric equation

εεε = ∇Su = ∇S (unt +ut) = ∇Sunt +∇Sut︸︷︷︸
εεε t

= ∇Sunt + εεε t

εεε = εεεnt + εεε t

⎫⎬
⎭=⇒ εεεnt = ∇Sunt

(6.141)
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d) Boundary condition in Γu

u = u∗
u = unt +ut

}
=⇒ Γu : unt = u∗ −ut (6.142)

e) Boundary condition in Γσ (remains unchanged)

Γσ : σσσ ·n = t∗ (6.143)

Equations (6.139) to (6.143) allow rewriting the original problem (6.135) as

Governing
equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ ·σσσ +ρ0b = 0 Equilibrium
equation

εεεnt =CCC
−1 : σσσ =

=−ν
E

Tr(σσσ)1+
1+ν

E
σσσ

Constitutive
equation

εεεnt = ∇Sunt Geometric
equation

Boundary
conditions

{
Γu : u = u∗ −ut

Γσ : σσσ ·n = t∗

(6.144)

which constitutes the so-called analogous problem, a linear elastic problem char-
acterized by the following actions and responses

b̂(x, t)
u∗ (x, t)−ut (x, t)
t̂∗ (x, t)

⎫⎬
⎭

︸ ︷︷ ︸
Actions

not
=AAA

(II) (x, t)

⇒
〈 MAT HEM.

MODEL :
PDEs+BCs

〉
⇒

⎧⎨
⎩

unt (x, t)
εεεnt (x, t)
σσσ (x, t)︸ ︷︷ ︸

Responses
not
=RRR

(II) (x, t)

(6.145)
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Comparing the actions and responses of the original problem (6.136) and the
analogous problem (6.145), reveals the difference between them to be

AAA
(I)−AAA

(II) not≡

⎡
⎢⎢⎣

b
u∗

t∗

Δθ

⎤
⎥⎥⎦−

⎡
⎢⎢⎣

b
u∗ −ut

t∗

0

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

0
ut

0
Δθ

⎤
⎥⎥⎦ de f
= AAA

(III) (x, t)

RRR
(I)−RRR

(II) not≡
⎡
⎣ u

εεε
σσσ

⎤
⎦−

⎡
⎣unt

εεεnt

σσσ

⎤
⎦=

⎡
⎣ut

εεε t

0

⎤
⎦=

⎡
⎢⎣ ut

α Δθ1
0

⎤
⎥⎦ de f
= RRR

(III) (x, t)

(6.146)

where equations (6.138) and (6.118) have been taken into account.

Remark 6.15. It can be directly verified that, in (6.146), RRR(III) is the

response corresponding to the system of actions AAA(III) in the ther-
moelastic problem (6.135).

Therefore, the original problem (I) can be interpreted as the sum (superposi-
tion) of two problems or states:

STATE (II) (to be solved): analogous elastic state in which the temperature
does not intervene and that can be solved by means of elastic procedures.

+
STATE (III) (trivial): trivial thermoelastic state in which the responses

RRR
(III) (x) given in (6.146) are known without the need of any calculations.

Once STATE (II) is computed, the solution to the original thermoelastic prob-
lem of STATE (I) is obtained as

Solution to the
original thermoelastic

problem

⎧⎪⎨
⎪⎩

u(I) = u(II) +ut

εεε(I) = εεε(II) +α Δθ1
σσσ (I) = σσσ (II)

(6.147)

where ut is known from the integration process of the thermal strain field
in (6.137). The procedure to solve the thermoelastic problem based on the sec-
ond thermal analogy is summarized as a superposition of states in Figure 6.14.
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STATE ACTION RESPONSE

(I) Thermoelastic (original)

⎡
⎢⎢⎢⎣

b(x, t)
u∗ (x, t)
t∗ (x, t)

Δθ (x, t)

⎤
⎥⎥⎥⎦

⎡
⎢⎣ u(x, t)

εεε (x, t)
σσσ (x, t)

⎤
⎥⎦

(II) Elastic (analogous)

⎡
⎢⎢⎢⎣

b(x, t)
u∗ −ut

t∗ (x, t)
Δθ = 0

⎤
⎥⎥⎥⎦

⎡
⎢⎣unt (x, t)

εεεnt (x, t)
σσσ (x, t)

⎤
⎥⎦

(III) Thermoelastic (trivial)

⎡
⎢⎢⎢⎣

b = 0
ũ∗ = ut

t̃∗ = 0
Δθ (x, t)

⎤
⎥⎥⎥⎦

⎡
⎢⎣u = ut (x, t)

εεε = α Δθ1
σσσ = 0

⎤
⎥⎦

Figure 6.14: Second thermal analogy.
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312 CHAPTER 6. LINEAR ELASTICITY

Example 6.5 – Solve the problem of a beam fully-fixed at its ends and sub-
jected to a constant thermal increment Δθ using the second thermal analogy.

Solution

The classic procedure followed in strength of materials to solve this problem
consists in the superposition (sum) of the following situations: 1) The struc-
ture is initially considered to be hyperstatic; 2) the right end is freed to allow
for thermal expansion, which takes place with null stresses (since it is an iso-
static structure); and 3) the displacement of the beam’s right end is recovered
until it is brought again to zero.
This procedure coincides exactly with the application of the second thermal
analogy in which the thermal displacement field ut is defined by the thermal
expansion of the piece with its right end freed (state III). Said expansion
produces a displacement in the right end of value u|x=� = α Δθ� and, when
recovering the displacement at this end, the boundary condition

Γu : u = u∗︸︷︷︸
0

− ut =−ut ,

which corresponds exactly to state II of Figure 6.14, is being implicitly ap-
plied.

Remark 6.16. The application of the second thermal analogy essen-
tially resides in the integration of the thermal strain field εεε t (x, t) to
obtain the thermal displacement field ut (x, t) (see Remark 6.14). If
the thermal strains are not integrable, the analogy cannot be applied.
Comparing its advantages and disadvantages with respect to the first
thermal analogy, it is also recommended that the integration of the
thermal strains be, in addition to possible, simple to perform.
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Remark 6.17. The case involving

• a homogeneous material (ααα (x) = const.= ααα)

• a linear thermal increment (Δθ = ax+by+ cz+d)

is of particular interest. In this case, the product Δθααα is a linear
polynomial and the thermal strains εεε t = Δθααα automatically satisfy
the compatibility conditions (6.69) (which are equations that only
contain second-order derivatives) and, therefore, the thermal strain
field is guaranteed to be integrable.

Remark 6.18. In the case involving

• a homogeneous material (ααα (x) = const.= α)

• a constant thermal increment (Δθ = const.)

the integration of the thermal strain field εεε t = Δθα1 = const. is triv-
ial, resulting in

ut (x, t) = α Δθ x+ΩΩΩ∗ ·x+ c∗︸ ︷︷ ︸
rigid body motion

,

where the rigid body motion can be chosen arbitrarily (see Re-
mark 6.14). If this motion is considered to be null, the solution to
the thermal displacement field is

ut (x, t) = α Δθ x =⇒ x+ut = x+α Δθ x = (1+α Δθ)x ,

which means that STATE (III) in the second thermal analogy (see
Figure 6.15) is an homothecy, with respect to the origin of coordi-
nates, of value (1+α Δθ). This homothecy is known as free thermal
expansion (see Figure 6.15).
The value of the thermal displacement (associated with the free ther-
mal expansion) in the boundary Γu can be trivially determined in this
case without need of formally integrating the thermal strains.
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314 CHAPTER 6. LINEAR ELASTICITY

Figure 6.15: Free thermal expansion in a homogeneous material subjected to a constant

thermal increment.

6.12 Superposition Principle in Linear Thermoelasticity
Consider the linear thermoelastic problem in Figure 6.16 and its corresponding
governing equations

∇ ·σσσ +ρ0b = ρ0
∂ 2u
∂ t2

Cauchy’s equation

σσσ = λ Tr(εεε)1+2μεεε︸ ︷︷ ︸
CCC : εεε

−β Δθ 1 Constitutive equation

εεε = ∇Su =
1

2
(u⊗∇+∇⊗u) Geometric equation

(6.148)

Γu : u = u∗

Γσ : t∗ = σσσ ·n

}
Boundary conditions in space (6.149)

Figure 6.16: Linear thermoelastic problem.
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u(x,0) = 0
.u(x,0) = v0

}
Initial conditions (6.150)

which define the generic set of actions and responses

b̂(x, t)
u∗ (x, t)
t∗ (x, t)
Δθ (x, t)
v0 (x)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭︸ ︷︷ ︸

Actions
not
=AAA(x, t)

⇒
〈MAT HEMAT ICAL

MODEL :
PDEs+BCs

〉
⇒

⎧⎨
⎩

u(x, t)
εεε (x, t)
σσσ (x, t)︸ ︷︷ ︸

Responses
not
=RRR(x, t)

(6.151)

Remark 6.19. The different (scalar, vector, tensor and differential)
operators that intervene in the governing equations of the problem
(6.148) to (6.150) are linear, that is, given any two scalars a and b,

∇ · (•) → linear =⇒ ∇ · (ax+by) = a ∇ ·x+b ∇ ·y ,

CCC : (•) → linear =⇒ CCC : (ax+by) = aCCC : x+bCCC : y ,

∇S (•) → linear =⇒ ∇S (ax+by) = a ∇Sx+b ∇Sy ,

∂ 2

∂ t2
(•)→ linear =⇒ ∂ 2 (ax+by)

∂ t2
= a

∂ 2x
∂ t2

+b
∂ 2y
∂ t2

.

Consider now two possible systems of actions AAA(1) and AAA
(2),

AAA
(1) (x, t) not≡

⎡
⎢⎢⎢⎢⎢⎢⎣

b(1) (x, t)
u∗(1) (x, t)
t∗(1) (x, t)
Δθ (1) (x, t)
v(1)0 (x)

⎤
⎥⎥⎥⎥⎥⎥⎦ and AAA

(2) (x, t) not≡

⎡
⎢⎢⎢⎢⎢⎢⎣

b(2) (x, t)
u∗(2) (x, t)
t∗(2) (x, t)
Δθ (2) (x, t)
v(2)0 (x)

⎤
⎥⎥⎥⎥⎥⎥⎦ , (6.152)
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and their corresponding responses, RRR(1) and RRR
(2),

RRR
(1) (x, t) not≡

⎡
⎢⎣u(1) (x, t)

εεε(1) (x, t)
σσσ (1) (x, t)

⎤
⎥⎦ and RRR

(2) (x, t) not≡

⎡
⎢⎣u(2) (x, t)

εεε(2) (x, t)
σσσ (2) (x, t)

⎤
⎥⎦ . (6.153)

Theorem 6.2. Superposition principle.

The solution (response) to the system of actions

AAA
(3) = λ (1)

AAA
(1) +λ (2)

AAA
(2)

(where λ (1) and λ (2) are any two scalars) is

RRR
(3) = λ (1)

RRR
(1) +λ (2)

RRR
(2)

In other words, the solution to the linear thermoelastic problem
when considering a linear combination of different systems of ac-
tions is the same linear combination of the individual solutions to
each of these systems of actions.

Proof
Replacing the actions AAA

(3) = λ (1)
AAA

(1) + λ (2)
AAA

(2) and the responses

RRR
(3) = λ (1)

RRR
(1) + λ (2)

RRR
(2) in the equations of the problem, and taking into

account the linearity of the different operators (see Remark 6.19) yields

a) Cauchy’s equation

∇ ·σσσ (3) +ρ0 b(3) = λ (1)
(

∇ ·σσσ (1) +ρ0b(1)
)

︸ ︷︷ ︸
ρ0

∂ 2u(1)

∂ t2

+λ (2)
(

∇ ·σσσ (2) +ρ0b(2)
)

︸ ︷︷ ︸
ρ0

∂ 2u(2)

∂ t2

=

= ρ0

∂ 2
(

λ (1) u(1) +λ (2) u(2)
)

∂ t2
= ρ0

∂ 2u(3)

∂ t2

∇ ·σσσ (3) +ρ0 b(3) = ρ0
∂ 2u(3)

∂ t2

(6.154)
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b) Constitutive equation

σσσ (3)−
(
CCC : εεε(3)−β Δθ (3)1

)
= λ (1)

(
σσσ (1)−

(
CCC : εεε(1)−β Δθ (1)1

))
︸ ︷︷ ︸

= 0

+

λ (2)
(

σσσ (2)−
(
CCC : εεε(2)−β Δθ (2)1

))
︸ ︷︷ ︸

= 0

= 0

σσσ (3) =CCC : εεε(3)−β Δθ (3)1

(6.155)

c) Geometric equation

εεε(3)−∇Su(3) = λ (1)
(

εεε(1)−∇Su(1)
)

︸ ︷︷ ︸
= 0

+λ (2)
(

εεε(2)−∇Su(2)
)

︸ ︷︷ ︸
= 0

= 0

εεε(3) = ∇Su(3)

(6.156)

d) Boundary condition in Γu

u(3)−u∗(3) = λ (1)
(

u(1)−u∗(1)
)

︸ ︷︷ ︸
= 0

+λ (2)
(

u(2)−u∗(2)
)

︸ ︷︷ ︸
= 0

= 0

Γu : u(3) = u∗(3)
(6.157)

e) Boundary condition in Γσ

σσσ (3) ·n− t∗(3) = λ (1)
(

σσσ (1) ·n− t∗(1)
)

︸ ︷︷ ︸
= 0

+λ (2)
(

σσσ (2) ·n− t∗(2)
)

︸ ︷︷ ︸
= 0

= 0

Γσ : σσσ (3) ·n = t∗(3)
(6.158)

f) Initial conditions

.u(3) (x,0)−v(3)0 = λ (1)
( .u(1) (x,0)−v(1)0

)
︸ ︷︷ ︸

= 0

+λ (2)
( .u(2) (x,0)−v(2)0

)
︸ ︷︷ ︸

= 0

= 0

.u(3) (x,0) = v(3)0

(6.159)
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318 CHAPTER 6. LINEAR ELASTICITY

Consequently, RRR(3) = λ (1)
RRR

(1) +λ (2)
RRR

(2) not≡ [u(3), εεε(3), σσσ (3)
]T

is the solu-

tion to the thermoelastic problem subjected to the actions: AAA(3) = λ (1)
AAA

(1) +
λ (2)

AAA
(2) (QED).

6.13 Hooke’s Law in terms of the Stress and Strain
“Vectors”

The symmetry of the stress and the strain tensors, σσσ and εεε , means that only six
of its nine components in a certain Cartesian system are different. Therefore,
and to “economize” in writing, only these six different components are used in
engineering, and they are expressed in the form of the stress and strain “vec-
tors”. These are constructed in R

6, systematically arranging the elements of the
upper triangle of the matrix of components of the corresponding tensor in the
following manner25.

σσσ not≡

⎡
⎢⎣ σx τxy τxz

τxy σy τyz

τxz τyz σz

⎤
⎥⎦ → {σσσ} de f

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σx

σy

σz

τxy

τxz

τyz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.160)

The same arrangement is followed in the case of the strains, with the particularity
that the strain vector {εεε} is constructed using the angular strains γxy = 2εxy,
γxz = 2εxz and γyz = 2εyz (see Chapter 2, Section 2.11.4).

εεε not≡

⎡
⎢⎣ εx εxy εxz

εxy εy εyz

εxz εyz εz

⎤
⎥⎦ not
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

εx
1

2
γxy

1

2
γxz

1

2
γxy εy

1

2
γyz

1

2
γxz

1

2
γyz εz

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

→ {εεε} de f
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

εx

εy

εz

γxy

γxz

γyz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.161)

25 The notation {x} is used to denote the vector in R
6 constructed from the symmetric ten-

sor x.
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Hooke’s Law in terms of the Stress and Strain “Vectors” 319

Remark 6.20. An interesting property of this construction is that the
double contraction of the stress and strain tensors is transformed into
the dot product (in R

6) of the stress and strain vectors,

σσσ : εεε︸︷︷︸
second-order

tensors

= {σσσ} · {εεε}︸ ︷︷ ︸
vectors

⇐⇒ σi j εi j = σi εi

which can be verified by performing said operations, using the defi-
nitions in (6.160) and (6.161).

The inverse constitutive equation (6.113),

εεε =−ν
E

Tr(σσσ)1+
1+ν

E
σσσ +αΔθ 1 , (6.162)

can now be rewritten in terms of the stress and strain vectors as

{εεε}= ĈCC
−1 · {σσσ}+{εεε}t , (6.163)

where ĈCC−1 is the inverse matrix of elastic constants,

ĈCC
−1 not≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

E
−ν
E

−ν
E

0 0 0

−ν
E

1

E
−ν
E

0 0 0

−ν
E

−ν
E

1

E
0 0 0

0 0 0
1

G
0 0

0 0 0 0
1

G
0

0 0 0 0 0
1

G

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.164)

and {εεε}t is a thermal strain vector defined by means of an adequate translation
of the thermal strain tensor εεε t = α Δθ 1,
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320 CHAPTER 6. LINEAR ELASTICITY

εεε t not≡

⎡
⎢⎢⎢⎢⎣

α Δθ 0 0

0 α Δθ 0

0 0 α Δθ

⎤
⎥⎥⎥⎥⎦ → {εεε}t de f

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α Δθ
α Δθ
α Δθ

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6.165)

Finally, the inversion of equation (6.163) provides Hooke’s law in terms of
the stress and strain vectors,

Hooke’s law
in terms of the

stress and strain vectors

{σσσ}= ĈCC · ({εεε}−{εεε}t)
(6.166)

where ĈCC is the matrix of elastic constants.

ĈCC
not≡ E (1−ν)

(1+ν)(1−2ν)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
ν

1−ν
ν

1−ν
0 0 0

ν
1−ν

1
ν

1−ν
0 0 0

ν
1−ν

ν
1−ν

1 0 0 0

0 0 0
1−2ν

2(1−ν)
0 0

0 0 0 0
1−2ν

2(1−ν)
0

0 0 0 0 0
1−2ν

2(1−ν)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.167)
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PROBLEMS

Problem 6.1 – Justify whether the following statements are true or false.

a) The terms isentropic and adiabatic are equivalent when dealing with a
thermoelastic material.

b) The second thermal analogy is always applicable to linear thermoelas-
tic materials.

Solution

a) According to the second law of thermodynamics (5.114),

ρ0θ .si
loc = ρ0θ .s− (ρ0 r−∇ ·q)≥ 0 .

All processes are reversible in the case of a thermoelastic material and, thus, the
inequality becomes an equality,

ρ0θ .si
loc = ρ0θ .s− (ρ0 r−∇ ·q) = 0 . [1]

An isentropic process (entropy remains constant) is characterized by
.s = 0. On

the other hand, an adiabatoc process (variation of heat is null) satisfies

ρ0 r−∇ ·q = 0 .

Therefore, if an isentropic process is assumed, and its mathematical expression
is introduced in [1], the definition of an adiabatic process is obtained,

ρ0θ .s︸︷︷︸
= 0

−(ρ0 r−∇ ·q) = 0 =⇒ ρ0 r−∇ ·q = 0 .

Conversely, if an adiabatic process is assumed, and its mathematical expression
is introduced in [1], the definition of an isentropic process is obtained,

ρ0θ .s− (ρ0 r−∇ ·q)︸ ︷︷ ︸
= 0

= 0 =⇒ .s = 0 .

In conclusion, the statement is true.
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322 CHAPTER 6. LINEAR ELASTICITY

b) The second thermal analogy is not always applicable. The condition that the
thermal strain field be integrable must be verified, that is, the thermal strain field
εεε t (x, t) must satisfy the compatibility conditions (3.19),

εi j,kl + εkl, i j− εik, jl− ε jl, ik = 0 i, j,k, l ∈ {1,2,3} .

Given that these involve second-order derivatives of the components of the strain
tensor with respect to x, y and z, they will be automatically satisfied if α = const.
and Δθ = const., or if α Δθ is linear in x, y and z (which is the definition of a
linear thermoelastic material). Therefore, the statement is true.

Problem 6.2 – An isotropic linear elastic solid is subjected to a constant pres-
sure of value p on all of its external boundary, in addition to a thermal incre-
ment of Δθ = θ (x,y,z) in its interior. Both actions cancel each other out such
that no displacements are observed in the solid. Obtain the value of Δθ in each
point of the solid.

Solution

The first thermal analogy described in Section 6.11.1 will be applied. To this
aim, the original problem I is decomposed into the sum of problems II and III as
described in Figure 6.13.

PROBLEM I

Actions:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

b = 0
t∗ =−pn in Γσ

u∗ = 0 in Γu

Δθ = Δθ

Responses:

⎧⎪⎨
⎪⎩

u
εεε
σσσ

PROBLEM III
This problem is solved first since its solution is trivial.

Actions:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

bIII =
1

ρ
β∇(Δθ)

t∗III =−β Δθ n in Γσ

u∗III = 0 in Γu

ΔθIII = Δθ

Responses:

⎧⎪⎨
⎪⎩

uIII = 0
εεε III = 0
σσσ III =−β Δθ1
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PROBLEM II

Actions:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

bII =
1

ρ
β∇(Δθ)

t∗II = (−p+β Δθ)n in Γσ

u∗II = u∗ = 0 in Γu

ΔθII = 0

To solve problem II, Navier’s equation (6.62) is taken into account, together with
the fact that uII = 0.

(λ +μ)∇(∇ ·uII)+μ∇2uII +ρbII = 0 =⇒
bII = 0 =⇒ β∇(Δθ) = 0 =⇒ Δθ is uniform

In addition, uII = 0 also results in

εεε II =
1

2
(uII⊗∇+∇⊗uII) = 0 ,

σσσ II = λ (∇ ·uII)1+μ (uII⊗∇+∇⊗uII) = 0 .

Since the traction vector t∗II is defined in terms of the stress tensor σσσ II ,

σσσ II ·n = t∗II = (−p+β Δθ)n = 0 ∀n =⇒ −p+β Δθ = 0 ,

and the value of the thermal increment is finally obtained,

Δθ =
p
β

.

Problem 6.3 – A cylindrical shell of height h, internal radius R and external
radius 2R is placed inside an infinitely rigid cylindrical cavity of height h and
radius 2R+ a, with a << R. Assume the cylindrical shell is subjected to a uni-
form temperature field Δθ .

a) Determine the value of Δθ ∗ required for the external lateral walls of the
cylindrical shell and the rigid walls of the cavity to come into contact.
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324 CHAPTER 6. LINEAR ELASTICITY

b) Plot, indicating the most significant values, the curve δ −Δθ , where δ
is the lengthening of the internal radius of the cylindrical shell. Deter-
mine the value of Δθ such that this radius recovers its initial value.

c) Plot, indicating the most significant values, the curves σrr−Δθ , σθθ −
Δθ and σzz−Δθ , in points A and B.

Hypotheses:

1) Young’s modulus: E
2) Poisson’s coefficient: ν = 0

3) Thermal expansion coefficient: α
4) Isotropic linear elastic material
5) Weights can be neglected
6) The friction between the walls is negligible

Solution

a) Two distinct phases can be identified in this problem:

First phase

The cylindrical shell has not come into contact with the rigid walls of the
cavity. The boundary condition on the lateral walls, both internal and ex-
ternal, will be null radial stress. The two cylinders will come into contact
when

ur (r = 2R) = a .
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Second phase
The cylindrical shell and the rigid walls of the cavity are in contact and,
therefore, the boundary condition on the external lateral wall is different
than that of the first phase. In this case, a null radial displacement will
be imposed. Nonetheless, the internal wall will retain the same boundary
condition as in the previous phase.
A positive Δθ will reduce the internal radius since the external radius
cannot increase because it is limited by the infinitely rigid walls of the
cavity. Then, the only possibility is that the cylindrical shell continues
expanding inwards. There will be a point in which the internal radius,
which had increased in the first phase, will recover its initial value.

The first thermal analogy (see Section 6.11.1) and the superposition principle
(see Section 6.12) will be applied. To this aim, the original problem (problem I)
is decomposed into the sum of problems II and II as described in Figure 6.13.

PROBLEM III
The actions in problem III, the trivial problem, are

bIII =
1

ρ
∇ · (βββ Δθ) .

In this case, however, Δθ is uniform and βββ is a spherical and constant tensor
(βββ = β1). Therefore,

bIII = 0 .

The boundary conditions are

1) Prescribed displacements in Γu : uIII = 0.

2) Prescribed stresses in Γσ : t =−βββ Δθn =−β Δθn.

The solution to this problem is known to be

uIII = 0
εεε III = 0
σσσ III =−β Δθ1

[1]

PROBLEM II
The actions in problem II, the analogous problem, are

bII = b− 1

ρ
∇ · (βββ Δθ) .

Here, b = 0 because the weight of the cylinder is assumed to be negligible and
the second term is zero, as seen in problem III. Therefore,

bII = 0 .
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326 CHAPTER 6. LINEAR ELASTICITY

The boundary conditions are

1) Prescribed displacements in Γu : uII = u∗, where u∗ is the displacement
imposed in problem I.

2) Prescribed stresses in Γσ : tII = σσσ II · n = t∗ + βββ Δθ n = t∗ + β Δθ n,
where t∗ is the traction vector imposed in problem I.

The analogous problem will now be solved assuming an infinitesimal strains
hypothesis, since a << R and the strains are due to Δθ , which are generally
infinitesimal. Due to cylindrical symmetry, the displacement vector u is known
to be of the form

uII (r,z)
not≡ [ur (r) , 0 , uz (z)]

T .

In addition, uz (z) = 0 will be imposed in all points since no information on the
top and bottom surfaces of the cylindrical shell is given. Boundary conditions
in displacements cannot be imposed for these surfaces because there is no way
to determine the integration constants of uz that would appear if uz �= 0 were
considered. Therefore, the displacement vector

uII (r,z)
not≡ [ur (r) , 0 , 0 ]T

is adopted. Navier’s equation (6.62) will be used to solve this problem,

(λ +μ)∇(∇ ·uII)+μ∇2uII +ρ0bII = ρ0
∂ 2uII

∂ t2
= 0 .

Note that the problem requires working in cylindrical coordinates and, thus, the
equation must be adapted to this system of coordinates. Given the simplifications
introduced into the problem, only the radial component of the equation will
result in a non-trivial solution,

(λ +2G)
∂e
∂ r
− 2G

r
∂ωz

∂θ
+2G

∂ωθ
∂ z

+ρbr = ρ
∂ 2ur

∂ t2
, [2]

where br is the radial component of bII and with

ωθ =
1

2

(
∂ur

∂ z
+

∂uz

∂ r

)
= 0 ,

ωz =
1

2

(
1

r
∂ (r uθ )

∂ r
− 1

r
∂ur

∂θ

)
= 0 ,

e =
1

r
∂ (r ur)

∂ r
+

1

r
∂uθ
∂θ

+
∂uz

∂ z
=

1

r
∂ (r ur)

∂ r
.
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The values of the parameters λ , G and β that intervene in Navier’s equation
must also be determined from the known parameters (E , α , ν = 0) as follows.

ν =
λ

2(λ +μ)
= 0 =⇒ λ = 0

μ =
E

2(1+ν)
=⇒ μ = G =

E
2

β =
E

1−2ν
α =⇒ β = Eα

[3]

The problem can be considered to be a quasi-static and, taking into account
bII = 0 and the relations derived in [3], the Navier’s stokes equation [2] is re-
duced to

(λ +2G)
∂e
∂ r

= 0 =⇒ E
∂
∂ r

(
1

r
∂
∂ r

(r ur)

)
= 0 .

Integrating this last expression leads to

1

r
∂
∂ r

(r ur) = 2A =⇒ ∂
∂ r

(r ur) = 2Ar =⇒ r ur = Ar2 +B

=⇒ ur = Ar+
B

r
=⇒ uII (r)

not≡
[

Ar+
B

r
, 0 , 0

]T

,

[4]

where A and B are the integration constants. The strain tensor corresponding
to this displacement vector is easily obtained by means of the geometric equa-
tion (6.3),

εεε II (r)
not≡

⎡
⎢⎢⎢⎣

A− B

r2
0 0

0 A+
B

r2
0

0 0 0

⎤
⎥⎥⎥⎦ . [5]

Finally, the stress tensor is obtained through the constitutive equation of an
isotropic linear elastic material (6.20), particularized with the expressions in [3],

σσσ II = λ (Tr(εεε II))1+2μεεε II =⇒ σσσ II = Eεεε II . [6]

First phase
The integration constants A and B must be determined by means of the
boundary conditions. Stresses can be imposed in both lateral walls of the
cylindrical shell as follows.
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BOUNDARY CONDITION AT r = 2R

If r = 2R and according to the boundary conditions in Γσ of the analogous
problem,

tII = σσσ II ·n = t∗+βββ Δθ n = t∗+β Δθ n .

Here, the following is known:

n = [1 , 0 , 0 ]T : outward unit normal vector.

t∗ = 0, since, for this phase, problem I has no loading on the lateral walls.

σσσ II is given by [5] and [6].

Therefore, the boundary condition is reduced to

σrr (r = 2R) = β Δθ ,

which, replacing the value of the radial stress from [6] and, consider-
ing [3], results in

A− B

4R2
= α Δθ . [7]

BOUNDARY CONDITION AT r = R

If r = R and according to the boundary conditions in Γσ of the analogous
problem,

tII = σσσ II ·n = t∗+βββ Δθ n = t∗+β Δθ n .

Here, the following is known:

n = [−1 , 0 , 0 ]T : outward unit normal vector.

t∗ = 0, since, for this phase, problem I has no loading on the lateral walls.

σσσ II is given by [5] and [6].

Therefore, the boundary condition is reduced to

σrr (r = R) = β Δθ ,

which, replacing the value of the radial stress from [6] and, consider-
ing [3], results in

A− B

R2
= α Δθ . [8]

From [7] and [8], the values

A = α Δθ and B = 0 [9]
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are obtained. Now, replacing [9] in [4], [5] and [6] results in the displace-
ments, strains and stresses of the analogous problem.

uII
not≡ [α Δθr , 0 , 0

]T

εεε II
not≡

⎡
⎢⎣α Δθ 0 0

0 α Δθ 0

0 0 0

⎤
⎥⎦

σσσ II
not≡

⎡
⎢⎣Eα Δθ 0 0

0 Eα Δθ 0

0 0 0

⎤
⎥⎦

[10]

Taking into account the superposition principle (see Section 6.12), and
expressions [1], [3] and [10], the original problem is solved for the first
phase.

u not≡ [α Δθr , 0 , 0
]T

εεε not≡

⎡
⎢⎣α Δθ 0 0

0 α Δθ 0

0 0 0

⎤
⎥⎦

σσσ not≡

⎡
⎢⎣ 0 0 0

0 0 0

0 0 −Eα Δθ

⎤
⎥⎦

[11]

To obtain the value of Δθ ∗ for which the external lateral walls of the cylindrical
shell and the rigid walls of the cavity come into contact, it is enough to impose
that

ur (r = 2R) = a =⇒ α Δθ ∗ 2R = a .

Then, the temperature field required for the external lateral walls of the cylindri-
cal shell and the rigid walls of the cavity to come into contact is

Δθ ∗ =
a

2αR
. [12]

b) First, the value Δθ ∗∗ for which the internal radius recovers its initial position
will be determined. To this aim, the same geometry as in the initial problem will
be used, but now there will exist contact between the cylindrical shell and the
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330 CHAPTER 6. LINEAR ELASTICITY

rigid walls of the cavity, which corresponds to the second phase defined in the
previous section. So, a new problem must be solved, with the same geometry as
before but considering different boundary conditions.

Second phase
The first phase will be obviated in this section, but one must bear in mind
that the solid now starts from a state that results from the previous phase,
that is, it has already suffered certain displacements, strains, stresses and

thermal increments. The variable Δθ will be used.
As before, the first thermal analogy will be applied. Problem III remains
unchanged and, thus, so does its result [1]. Therefore, problem II must be
solved with the same expressions [4], [5] and [6]. The integration con-
stants A and B must be determined by means of the boundary conditions.
Stresses can be imposed on the internal lateral wall of the cylindrical shell
and displacements, on its external lateral wall.

BOUNDARY CONDITION AT r = 2R

If r = 2R and according to the boundary conditions in Γu of the analogous
problem,

ur (r = 2R) = 0 .

Therefore, the following condition is obtained,

A2R+
B

2R
= 0 . [13]

BOUNDARY CONDITION AT r = R

If r = R and according to the boundary conditions in Γσ of the analogous
problem,

tII = σσσ II ·n = t∗+βββ Δθ n = t∗+β Δθ n .

Here, the following is known:

n not≡ [−1 , 0 , 0 ]T : outward unit normal vector.

t∗ = 0, since, for this phase, problem I has no loading on the lateral walls.

σσσ II is given by [5] and [6].

Therefore, the boundary condition is reduced to

σrr (r = R) = β Δθ ,

which, replacing the value of the radial stress from [6], and consider-
ing [3], results in

A− B

R2
= α Δθ . [14]
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From [13] and [14], the values

A =
1

5
α Δθ and B =−4

5
α ΔθR2 [15]

are obtained. Introducing now [15] in [4], [5] and [6] results in the dis-
placements, strains and stresses of the analogous problem.

uII
not≡
[

1

5
α Δθ

(
r− 4R2

r

)
, 0 , 0

]T

εεε II
not≡

⎡
⎢⎢⎢⎢⎢⎣

1

5
α Δθ

(
1+

4R2

r2

)
0 0

0
1

5
α Δθ

(
1− 4R2

r2

)
0

0 0 0

⎤
⎥⎥⎥⎥⎥⎦

σσσ II
not≡

⎡
⎢⎢⎢⎢⎢⎣

1

5
Eα Δθ

(
1+

4R2

r2

)
0 0

0
1

5
Eα Δθ

(
1− 4R2

r2

)
0

0 0 0

⎤
⎥⎥⎥⎥⎥⎦

[16]

Taking into account the superposition principle (see Section 6.12), and
expressions [1], [3] and [16], the original problem is solved for the second
phase.

u not≡
[

1

5
α Δθ

(
r− 4R2

r

)
, 0 , 0

]T

εεε not≡

⎡
⎢⎢⎢⎢⎢⎣

1

5
α Δθ

(
1+

4R2

r2

)
0 0

0
1

5
α Δθ

(
1− 4R2

r2

)
0

0 0 0

⎤
⎥⎥⎥⎥⎥⎦

[17a]
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σσσ not≡

⎡
⎢⎢⎢⎢⎢⎣

4

5
Eα Δθ

(
−1+

R2

r2

)
0 0

0
4

5
Eα Δθ

(
−1− R2

r2

)
0

0 0 −Eα Δθ

⎤
⎥⎥⎥⎥⎥⎦ [17b]

Note that, up to this point, the second phase has been solved assuming
an initial neutral state. In reality, this phase starts from the final state of
the first phase, which has the displacements, strains, stresses and thermal
increments corresponding to Δθ = Δθ ∗,

uinitial = u f irst phase (Δθ = Δθ ∗) ,
εεε initial = εεε f irst phase (Δθ = Δθ ∗) ,
σσσ initial = σσσ f irst phase (Δθ = Δθ ∗) .

[18]

In fact, the variable Δθ in [17] is not a total thermal increment but the
difference in temperature at the moment corresponding to Δθ ∗, that is,

Δθ = Δθ −Δθ ∗ . [19]

Then, considering [17], [18] and [19], the actual displacements, strains
and stresses during the second phase are obtained,

usecond phase = uinitial +u
(
Δθ
)
,

εεεsecond phase = εεε initial + εεε
(
Δθ
)
,

σσσ second phase = σσσ initial +σσσ
(
Δθ
)
.

[20]

Therefore, to determine Δθ ∗∗, it is enough to impose that the displacement,
according to the first phase, of the internal radius be equal but of opposite sign
to that of the second phase. In this way, the total displacement will be null.

First phase: displacement for r = R and Δθ = Δθ ∗. From [11] and [12],

δ1 = ur (r = R, Δθ = Δθ ∗) = α Δθ ∗R =
a

2
. [21]

Second phase: displacement for r = R and Δθ = Δθ ∗∗. From [17],

δ2 = ur
(
r = R, Δθ = Δθ ∗∗

)
=−3

5
α Δθ ∗∗R . [22]

Then,

δ1 =−δ2 =⇒ Δθ ∗∗ =
5a

6αR
. [23]
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Finally, from [19] the total thermal increment is obtained,

Δθ ∗∗ = Δθ ∗∗+Δθ ∗ =
5a

6αR
+

a

2αR
=⇒ Δθ ∗∗ =

4a

3αR

Now, the curve δ−Δθ can be plotted, where δ is the displacement of the internal
radius of the cylindrical shell.

c) Expressions [11] and [17] must be used to plot the curves σrr−Δθ ,
σθθ −Δθ and σzz−Δθ for points B(r = R) and A(r = 2R).
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EXERCISES

6.1 – A cylinder composed of an isotropic linear elastic material stands on a
rigid base. At a very small distance “a” (a� h) of its top face there is another
rigid surface. A uniform pressure p acts on all the lateral surface of the cylinder.
Plot, indicating the most significant values, the following curves:

a) Curve p−δ , where δ is the shortening of the radius of the cylinder, R.
b) Curve p−σA, where σA is the stress normal to the bottom contact sur-

face at point A.

Additional hypotheses:

1) Weights can be neglected.
2) Lamé’s constants: λ = μ
3) The problem is assumed

to be quasi-static.

6.2 – The solid sphere A with external radius R1 and the solid spherical B, with
external radius R2 are composed of the same material. The external surface of
A and the internal surface of B are separated by a very small distance “a”
(a� R1 and a� R2).

a) Determine what value of the uniform normal pressure p shown in the
figure is required for the two surfaces to be in contact.

b) Plot, indicating the most significant values, the curve p− δ , where δ is
the shortening of R2.
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336 CHAPTER 6. LINEAR ELASTICITY

Additional hypotheses:

1) Young’s modulus: E
2) Lamé’s constants: λ = μ
3) R1 = R

4) R2 = 2R

6.3 – Two solid cylinders composed of different elastic materials are vertically
superimposed and confined between two infinitely rigid walls. The cylinders are
subjected to the external pressures p and α p (p > 0, α > 0) as shown in the
figure.

a) Determine the displacement field of the two cylinders in terms of the
integration constants (justify the assumptions used).

b) Indicate the boundary conditions that need to be applied for the different
boundaries of the problem.

c) Assuming a constant value α such that the contact surface between the
two cylinders does not have a vertical displacement, calculate the inte-
gration constants and the value of α .

Additional hypotheses:

1) Top cylinder: λ1 = μ1

2) Bottom cylinder: λ2 = μ2

3) The friction between the cylin-
ders and between the cylinders
and the walls is assumed to be
null.

4) Weights can be neglected.
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6.4 – A cylinder with radius Ri is placed in the interior of a cylindrical shell
with internal radius Ri + 2e and external radius Re. There is an elastic gasket
between the cylinder and the cylindrical shell which has an internal radius Ri

and a thickness “e”. The cylindrical shell is subjected to an external pressure p.

a) Determine the displacement, strain and stress fields of the cylinder and
the cylindrical shell.

b) Plot the curves Ur− p, where Ur is the radial displacement, and σrr− p,
where σrr is the radial stress at points A, B and C of the figure.

Data:
Ri = 1

Re = 2

ν = 0

E (Young’s modulus)

Additional hypotheses:

1) The constitutive law of the elastic gasket is p∗ = K δ ∗, where p∗ is the pres-
sure acting on the gasket, δ ∗ is the shortening of its thickness and K is its
elastic modulus.

2) e� Ri

3) A plane strain behavior in an infinitesimal strain framework may be as-
sumed.

6.5 – The figure below schematizes the layout of a railway rail composed of
straight rails of length “L”, separated by an elastic gasket with elastic modu-
lus K. Due to symmetry and construction considerations, it can be assumed that
the section x = 0 suffers no longitudinal displacements and the inferior part of
the rail suffers no vertical displacements. A constant thermal increment Δθ is
imposed in all points of the rail.
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a) Obtain the displacement, strain and stress fields in terms of the corre-
sponding integration constants.

b) Indicate the boundary conditions that must be applied to determine the
integration constants.

c) Determine the integration constants and obtain the corresponding dis-
placement, strain and stress fields.

d) Particularize these results for the cases K = 0 (open junction) and
K → ∞ (continuous rail).

Additional hypotheses:

1) Assume the displacements are of the form u = [u(x) , v(y) , w(z) ]T .
2) Linear elastic material
3) λ = μ
4) The weight of the rail can be neglected.

6.6 – A solid cylinder with radius R and height h is placed between two in-
finitely rigid walls, fitting perfectly between them without producing any stress.
A thermal increment Δθ > 0 is applied on the cylinder. Determine:

a) The displacement field in terms of the corresponding integration con-
stants.

b) The integration constants.
c) The stress state. Plot its variation along the radius.

Additional hypotheses:

1) Material properties: λ = μ and
α = α (r) = α0 +α1r

2) The friction between the cylinder
and the walls is negligible.

3) Weights can be neglected.
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Overview 

 Plane Linear Elasticity Theory 

 Plane Stress 
 Simplifying Hypothesis
 Strain Field
 Constitutive Equation
 Displacement Field
 The Linear Elastic Problem in Plane Stress
 Examples

 Plane Strain 
 Simplifying Hypothesis
 Strain Field
 Constitutive Equation
 Stress Field
 The Linear Elastic Problem in Plane Stress
 Examples
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Lecture 1 

Lecture 2 

Lecture 4 

Lecture 3 

https://youtu.be/2Kqw2u4ejNo?t=00m00s
https://youtu.be/WHVFqzYGDL0?t=00m00s
https://youtu.be/BexEunHS7iU?t=00m00s
https://youtu.be/6wWGtZrALdg?t=00m00s


Overview (cont’d)

 The Plane Linear Elastic Problem 
 Governing Equations

 Representative Curves 
 Isostatics or stress trajectories

 Isoclines

 Isobars

 Maximum shear lines
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Lecture 5 

Lecture 6 

https://youtu.be/cFKXS0joP3c?t=00m00s
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Ch.7. Plane Linear Elasticity 

7.1 Plane Linear Elasticity Theory 



 For some problems, one of the principal directions is known 
a priori: 
 Due to particular geometries, loading and boundary conditions

involved.
 The elastic problem can be solved independently for this direction.
 Setting the known direction as z, the elastic problem analysis is

reduced to the x-y plane 

 There are two main classes of plane linear elastic problems: 
 Plane stress
 Plane strain

Plane Linear Elasticity 

PLANE ELASTICITY

REMARK   
The isothermal case will not be studied here for the 
sake of simplicity. Generalization of the results 
obtained to thermo-elasticity is straight-forward. 
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https://youtu.be/2Kqw2u4ejNo?t=00m00s
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Ch.7. Plane Linear Elasticity 

7.2 Plane Stress 



 Simplifying hypothesis of a plane stress linear elastic problem: 

1. Only stresses “contained in the x-y plane” are not null

2. The stress are independent of the z direction.

Hypothesis on the Stress Tensor 

[ ]
0
0

0 0 0

x xy

xy yxyz

σ τ
τ σ

 
 

≡  
 
 

σ

( )
( )
( )

, ,

, ,

, ,

x x

y y

xy xy

x y t

x y t

x y t

σ σ

σ σ

τ τ

=

=

=
REMARK   
The name “plane stress” arises 
from the fact that all (not null) 
stress are contained in the x-y 
plane. 
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 These hypothesis are valid when: 

 The thickness is much smaller than the typical dimension associated to the
plane of analysis: 

 The actions           ,             and            are contained in the plane of 
analysis (in-plane actions) and independent of the third dimension, z. 

           is only non-zero on the 
 contour of the body’s thickness: 

Geometry and Actions in Plane Stress 

e L<<

( ), tb x ( )* , tu x ( )* , tt x

( )* , tt x
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 The strain field is obtained from the inverse Hooke’s Law: 

 

 As 

 And the strain tensor for plane stress is: 

Strain Field in Plane Stress 

( ), ,x x x y tσ σ=

( ), ,y y x y tσ σ= ( ), ,x y t=ε ε

( )

1 0
2

1, , 0
2

0 0

x xy

xy y

z

x y t

ε γ

γ ε

ε

 
 
 
 ≡  
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1z x y
νε ε ε
ν

= − +
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0
0
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1
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ν ν
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=
=

+
= − +ε σ σ1
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z x y yz yz
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E

E

νε σ νσ γ ε τ

ε σ νσ γ ε

νε σ σ γ ε

+
= − = =

= − = =

= − + = =
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 Operating on the result yields: 

Constitutive equation in Plane Stress 

{ } { }
plane
stress= ⋅σ εC

2

1 0
1 0

1
10 0

2

x x

y y

xy xy

E
σ ν ε
σ ν ε

ν
τ ν γ

    
    =    −    −     { }= σ { }= ε

plane
stress= C

Constitutive equation 
in plane stress 

(Voigt’s notation) 
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 The displacement field is obtained from the geometric equations, 
                        .  These are split into:

 Those which do not affect the displacement     :

 

 Those in which     appears:
 

Displacement Field in Plane Stress 
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 The problem can be reduced to the two dimensions of the plane of 
analysis. 
 The unknowns are:

 The additional unknowns (with respect to the general problem) are either null,
or independently obtained, or irrelevant:

The Linear Elastic Problem in 
Plane Stress 

( )
1z x y
νε ε ε
ν

= − +
−

0z xz yz xz yzσ τ τ γ γ= = = = =

( ), , ,zu x y z t does not appear 
in the problem 

( ), , x

y

u
x y t

u
 

≡  
 

u { }( ), ,
x

y

xy

x y t
ε
ε
γ

 
 ≡  
 
 

ε { }( ), ,
x

y

xy

x y t
σ
σ
τ

 
 ≡  
 
 

σ

REMARK   
This is an ideal elastic problem because it 
cannot be exactly reproduced as a particular 
case of the 3D elastic problem. There is no 
guarantee that the solution to                and  
              will allow obtaining the solution to    
                 for the additional geometric eqns. 

( ), ,yu x y t
( ), ,xu x y t

( ), , ,zu x y z t

14 

https://youtu.be/6wWGtZrALdg?t=01m54s


 3D problems which are typically assimilated to a plane stress state are 
characterized by: 
 One of the body’s dimensions is significantly smaller than the other two.
 The actions are contained in the plane formed by the two “large” dimensions.

Examples of Plane Stress Analysis 

Slab loaded on 
the mean plane Deep beam 

15 

https://youtu.be/6wWGtZrALdg?t=03m13s
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Ch.7. Plane Linear Elasticity 

7.3 Plane Strain 



 Simplifying hypothesis of a plane strain linear elastic problem: 

1. The displacement field is

2. The displacement variables associated to the x-y plane are
independent of the z direction.

Hypothesis on the Displacement Field 

0

x

y

u
u
 
 =  
 
 

u

( )
( )

, ,

, ,
x x

y y

u u x y t

u u x y t

=

=
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https://youtu.be/BexEunHS7iU?t=00m11s


 These hypothesis are valid when: 

 The body being studied is generated by moving the plane of analysis
along a generational line.

 The actions           ,              and             are contained in the plane 
of analysis and independent of the third dimension, z. 

 In the central section, considered as the “analysis section” the 
following holds (approximately) true: 

Geometry and Actions in Plane Strain 

( ), tb x ( )* , tu x ( )* , tt x

0zu =

0xu
z

∂
=

∂

0yu
z

∂
=

∂

18 
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 The strain field is obtained from the geometric equations: 

 

 

 

 And the strain tensor for plane strain is: 

Strain Field in Plane Strain 

( )

1 0
2

1, , 0
2

0 0 0

x xy

xy yx y t

ε γ

γ ε

 
 
 
 ≡  
 
 
  

ε
REMARK   
The name “plane strain” arises 
from the fact that all strain is 
contained in the x-y plane. 

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

, ,
, , 0

, , , ,
, , 0

, , , ,, ,
, , 0

x z
x z

y x z
y xz

y yx z
xy yz

u x y t ux y t
x z

u x y t u x y t ux y t
y z x

u x y t u x y tu x y t ux y t
y x z y

ε ε

ε γ

γ γ

∂ ∂
= = =

∂ ∂
∂ ∂ ∂

= = + =
∂ ∂ ∂

∂ ∂∂ ∂
= + = + =

∂ ∂ ∂ ∂

0zu =

0xu
z

∂
=

∂

0yu
z

∂
=

∂
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https://youtu.be/BexEunHS7iU?t=05m28s


 Introducing the strain tensor into Hooke’s Law                          and 
operating on the result yields: 

 As 

 And the stress tensor 
 for plane strain is: 

Stress Field in Plane Strain 

( )( )Tr Gλ= +σ ε 2 ε1

( )
( )
( )

2

2 0

( ) 0

x x y x xy xy

y x y y xz xz

z x y x y yz yz

G G

G G

v G

σ λ ε ε ε τ γ

σ λ ε ε ε τ γ

σ λ ε ε σ σ τ γ

= + + =

= + + = =

= + = + = =
( )2 y xGλ ε λε= + +

( ), ,x y t=σ σ

( ), ,x x x y tε ε=

( ), ,y y x y tε ε=

( ), ,z z x y tε ε=

( ), ,xy xy x y tγ γ=

( )
0

, , 0
0 0

x xy

xy y

z

x y t
σ τ
τ σ

σ

 
 ≡  
  

σ with ( )z x yσ ν σ σ= +
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 Introducing the values of the strain tensor into the constitutive equation 
and operating on the result yields: 

Constitutive equation in Plane Strain 

{ } { }
plane
strain= ⋅Cσ ε

( )
( )( )

( )

1 0
1

1
1 0

1 1 2 1
1 20 0

2 1

x x

y y

xy xy

E

ν
νσ ε

ν νσ ε
ν ν ν

τ γν
ν

 
 −    

−     =    + − −       − 
 − { }= σ { }= ε

plane
strain= C

Constitutive equation 
in plane strain 

(Voigt’s notation) 

( ) ( )
( )( )

1
2

1 1 2 1x x y x y

E
G

ν νσ λ ε λε ε ε
ν ν ν

−  = + + = + + − − 

( )2 1xy xy xy
EGτ γ γ
ν

= =
+

( ) ( )
( )( )

1
2

1 1 2 1y y x y x

E
G

ν νσ λ ε λε ε ε
ν ν ν

−  = + + = + + − − 
( ) 2Trλ µ= +σ ε ε1
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https://youtu.be/BexEunHS7iU?t=09m09s


 The problem can be reduced to the two dimensions of the plane of 
analysis. 
 The unknowns are:

 The additional unknowns (with respect to the general problem) are either null
or obtained from the unknowns of the problem:

The Lineal Elastic Problem in 
Plane Strain (summary) 

0z xz yz xz yzε γ γ τ τ= = = = =

0zu =

( )z x yσ ν σ σ= +

( ), , x

y

u
x y t

u
 

≡  
 

u { }( ), ,
x

y

xy

x y t
ε
ε
γ

 
 ≡  
 
 

ε { }( ), ,
x

y

xy

x y t
σ
σ
τ

 
 ≡  
 
 

σ
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 3D problems which are typically assimilated to a plane strain state are 
characterized by: 
 The body is generated by translating a generational section with actions

contained in its plane along a line perpendicular to this plane.
 The plane strain hypothesis                         must be justifiable. This typically 

occurs when:
1. One of the body’s dimensions is significantly larger than the other two.

Any section not close to the extremes can be considered a symmetry 
plane   and satisfies: 

2. The displacement in z is blocked at the extreme sections.

Examples of Plane Strain Analysis 

( )0z xz yzε γ γ= = =

0zu =

0xu
z

∂
=

∂

0yu
z

∂
=

∂
0

x

y

u
u
 
 =  
 
 

u

23 
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 3D problems which are typically assimilated to a plane strain state are: 

Examples of Plane Strain Analysis 

Pressure pipe 

Tunnel 

Continuous brake shoe 

Solid with blocked z 
displacements at the ends 

24 
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Ch.7. Plane Linear Elasticity 

7.4 The Plane Linear Elastic Problem 



 A lineal elastic solid is subjected to body forces and prescribed 
traction and displacement 

 The Plane Linear Elastic problem is the set of equations that 
allow obtaining the evolution through time of the corresponding 
displacements            , strains             and stresses             . 

Plane problem 

Actions: 

( ), ,x y tu ( ), ,x y tε ( ), ,x y tσ

( )
( )

*

*

, ,

, ,
x

y

t x y t

t x y t

  =  
  

*t

( )
( )

*

*

, ,

, ,
x

y

u x y t

u x y t

  =  
  

*u

On       : σΓ

On       : uΓ

On       :Ω
( )
( )

, ,
, ,

x

y

b x y t
b x y t
  =  
  

b
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 The Plane Linear Elastic Problem is governed by the equations: 
1. Cauchy’s Equation of Motion.

Linear Momentum Balance Equation. 

 

Governing Equations 

( ) ( ) ( )2

0 0 2

,
, ,

t
t t

t
ρ ρ

∂
⋅ + =

∂
u x

x b x∇ σ

2D 

2

2

2

2

2

2

xyx xz x
x

xy y yz y
y

yzxz z z
z

ub
x y z t

u
b

x y z t
ub

x y z t

τσ τ ρ ρ

τ σ τ
ρ ρ

ττ σ ρ ρ

∂∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂
∂∂ ∂ ∂

+ + + =
∂ ∂ ∂ ∂
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 The Plane Linear Elastic Problem is governed by the equations: 
2. Constitutive Equation (Voigt’s notation).

Isotropic Linear Elastic Constitutive Equation. 

Governing Equations 

( ), :t =x Cσ ε

2D 

{ } { }= ⋅Cσ ε

{ }
x

y

xy

ε
ε
γ

 
 =  
 
 

ε{ }
x

y

xy

σ
σ
τ

 
 ≡  
 
 

σWith                   ,                      and 

( )
2

1 0
1 0

1
0 0 1 2

E
ν

ν
ν

ν

 
 =  −  − 

C

E E
ν ν
=
=

PLANE 
STRESS 

( )

21

1

EE
ν
νν
ν

=
−

=
−

PLANE 
STRAIN 
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 The Plane Linear Elastic Problem is governed by the equations: 
3. Geometrical Equation.

  Kinematic Compatibility. 

Governing Equations 

( ) ( ) ( )1, ,
2

St t= = ⊗ + ⊗x u x u uε ∇ ∇ ∇

This is a PDE system of 
8 eqns -8 unknowns: 

Which must be solved in 
the              space. 

( ), tu x
( ), txε

( ), txσ

2 unknowns 

3 unknowns 

3 unknowns 

2
+× 

2D 

x
x

y
y

yx
xy

u
x
u
y

uu
y x

ε

ε

γ

∂
=
∂
∂

=
∂

∂∂
= +
∂ ∂
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 Boundary conditions in space 
 Affect the spatial arguments of the unknowns
 Are applied on the contour      of the solid,
 which is divided into: 

 Prescribed displacements on      :

 Prescribed stresses on       : 

Boundary Conditions 

Γ

uΓ

σΓ

( )
( )

* *
*

* *

, ,

, ,
x x

y y

u u x y t

u u x y t

 = =  
=  

u

( )
( )

* *
*

* *

, ,

, ,
x x

y y

t t x y t

t t x y t

 = =  
=  

t * = ⋅t nσ

x

y

n
n
  =  
  

n

x xy

xy y

σ τ
τ σ
 

≡  
 

σ

with 
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 INTIAL CONDITIONS (boundary conditions in time) 
 Affect the time argument of the unknowns.
 Generally, they are the known values at        : 

 Initial displacements:

 Initial velocity:

 

Boundary Conditions 

0t =

( ), ,0 x

y

u
x y

u
 

= = 
 

u 0

( ) ( ) ( )0
0

v, ,
, ,0 ,

v
x x

y yt

ux y t
x y x y

ut
=

   ∂
≡ = = =   ∂    

u
u v
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 The 8 unknowns to be solved in the problem are: 

 

 Once these are obtained, the following are calculated explicitly: 

 

Unknowns 

( ), , x xy

xy y
x y t

σ τ
τ σ
 

≡  
 

σ( )
1
2, ,

1
2

x xy

xy y

x y t
ε γ

γ ε

 
 

≡  
 
  

ε( , , ) x

y

u
x y t

u
 

=  
 

u

PLANE STRESS 

PLANE STRAIN 

( )
1z x y
νε ε ε
ν

= +
−

( )z x yσ ν σ σ= +
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Ch.7. Plane Linear Elasticity 

7.5 Representative Curves 



 Traditionally, plane stress states where graphically represented 
with the aid of the following contour lines: 
 Isostatics or stress trajectories
 Isoclines
 Isobars
 Maximum shear lines
 Others: isochromatics, isopatchs, etc.

Introduction 

34 

https://youtu.be/nb1uNX9jKBQ?t=00m00s


 System of curves which are tangent to the principal axes of stress 
at each material point . 
 They are the envelopes of the principal stress vector fields.
 There will exist two (orthogonal) families of curves at each point:

 Isostatics      , tangents to the largest principal stress.
 Isostatics      , tangents to the smallest principal stress.

Isostatics or Stress Trajectories 

1σ

2σ

REMARK   
The principal stresses are orthogonal 
to each other, therefore, so will the two 
families of isostatics orthogonal to 
each other. 

35 

https://youtu.be/nb1uNX9jKBQ?t=00m40s


 Singular point: characterized by the stress state 

 Neutral point: characterized by the stress state 

Singular and Neutral Points 

Mohr’s Circle of 
a neutral point 

Mohr’s Circle of 
a singular point 

0x y xyσ σ τ= = =

0
x y

xy

σ σ

τ

=

=

REMARK   
In a singular point, all directions 
are principal directions. Thus, in 
singular points isostatics tend to 
loose their regularity and can 
abruptly change direction.  

36 

https://youtu.be/nb1uNX9jKBQ?t=01m29s


 Consider the general equation of an isostatic curve: 

 

 

 
 

 Solving the 2nd order eq.: 

 

Differential Equation of the Isostatics 

( )y f x=

( )2

2 2
1

xy

x y

y
y

τ
σ σ

′
=

− ′−
( )2 1 0x y

xy

y y
σ σ
τ
−

′ ′+ − =

( ) 2

2 2 tgtg 2
1 tg

tg

xy

x y

dy y
d x

τ αα
σ σ α

α

= =
− −

′= =

( ) 2

' 1
2 2
x y x y

xy xy

y
σ σ σ σ

τ τ

−  −
= − ± +  

 

Differential equation 
of the isostatics 

( ),x yφ      Known this function,
the eq. can be integrated 
to obtain a family of 
curves of the type: 

( )y f x C= +

37 



 Locus of the points along which the principal stresses are in the 
same direction. 
 The principal stress vectors in all points of an isocline are parallel to

each other, forming a constant angle     with the x-axis.

 These curves can be directly found using photoelasticity methods.

Isoclines 

θ

38 

https://youtu.be/nb1uNX9jKBQ?t=01m59s


 To obtain the general equation of an isocline with angle    , the 
principal stress      must form an angle           with the x-axis: 

 

Equation of the Isoclines 

θ
1σ α θ=

( )
2

tg 2 xy

x y

τ
θ

σ σ
=

−
Algebraic equation 

of the isoclines 

( ),x yϕ

For each value of     , the equation of 
the family of isoclines parameterized 
in function of    is obtained:

θ

θ
( ),y f x θ=

REMARK   
Once the family of isoclines is 
known, the principal stress 
directions in any point of the 
medium can be obtained and, 
thus, the isostatics calculated. 

39 



 Envelopes of the maximum shear stress (in modulus) vector fields. 
 They are the curves on which the shear stress modulus is a maximum.
 Two planes of maximum shear stress correspond to each material

point,          and        .
 These planes are easily determined using Mohr’s Circle.

Maximum shear lines 

minτmaxτ

REMARK   
The two planes form a 45º 
angle with the principal 
stress directions and, thus, 
are orthogonal to each 
other. They form an angle 
of 45º with the isostatics. 

42 

https://youtu.be/nb1uNX9jKBQ?t=02m36s


 Consider the general equation of a slip line            , the relation                    
                            and 
 Then, 

Equation of the maximum shear lines 

4
πβ α= + ( ) 1tan 2 tan 2

2 tan 2
πβ α

α
 = − = − 
 

2
tan 2 xy

x y

τ
α

σ σ
=

−

( )y f x=

( ) ( )

( )

2

1 2 tantan 2
tan 2 2 1 tan

tan

x y

xy

notdy y
d x

σ σ ββ
α τ β

β

−
= − = − =

−

′= = ( )2
2

2 1
x y

xy

y
y

σ σ
τ
− ′

− =
′−

( )2 4
1 0xy

x y

y y
τ

σ σ
′ ′− − =

−
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 Solving the 2nd order eq.: 

Equation of the maximum shear lines 

Differential 
equation of the 

slip lines 

2
2 2

' 1xy xy

x y x y

y
τ τ

σ σ σ σ
 

= ± +  − − 

( ),x yφ      Known this function, 
the eq. can be integrated 
to obtain a family of 
curves of the type: 

( )y f x C= +
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Chapter 7
Plane Linear Elasticity

7.1 Introduction
As seen in Chapter 6, from a mathematical point of view, the elastic problem
consists in a system of PDEs that must be solved in the three dimensions of
space and in the dimension associated with time

(
R

3×R
+
)
. However, in certain

situations, the problem can be simplified so that it is reduced to two dimensions
in space in addition to, obviously, the temporal dimension

(
R

2×R
+
)
. This sim-

plification is possible because, in certain cases, the geometry and boundary con-
ditions of the problem allow identifying an irrelevant direction (associated with
a direction of the problem) such that solutions independent of this dimension can
be posed a priori for this elastic problem.

Consider a local coordinate system {x,y,z} in which the aforementioned ir-
relevant direction (assumed constant) coincides with the z-direction. Then, the
analysis is reduced to the x-y plane and, hence, the name plane elasticity used to
denote such problems. In turn, these are typically divided into two large groups
associated with two families of simplifying hypotheses, plane stress problems
and plane strain problems.

For the sake of simplicity, the isothermal case will be considered here, even
though there is no intrinsic limitation to generalizing the results that will be
obtained to the thermoelastic case.

7.2 Plane Stress State
The plane stress state is characterized by the following simplifying hypotheses:

1) The stress state is of the type

[σσσ ]xyz
not≡

⎡
⎢⎢⎣

σx τxy 0

τxy σy 0

0 0 0

⎤
⎥⎥⎦ . (7.1)

339



Con
tin

uum
M

ech
an

ics
for

Engin
eer

s

Theo
ry

an
d Pro

blem
s

©
X. O

liv
er

an
d C. A

ge
let

de Sar
ac

ibar

340 CHAPTER 7. PLANE LINEAR ELASTICITY

2) The non-zero stresses (that is, those associated with the x-y plane) do not
depend on the z-variable,

σx = σx (x,y, t) , σy = σy (x,y, t) and τxy = τxy (x,y, t) . (7.2)

To analyze under which conditions these hypotheses are reasonable, consider
a plane elastic medium whose dimensions and form associated with the x-y plane
(denoted as plane of analysis) are arbitrary and such that the third dimension (de-
noted as the thickness of the piece) is associated with the z-axis (see Figure 7.1).
Assume the following circumstances hold for this elastic medium:

a) The thickness e is much smaller than the typical dimension associated with
the plane of analysis x-y,

e� L . (7.3)

b) The actions (body forces b(x, t), prescribed displacements u∗ (x, t) and trac-
tion vector t∗ (x, t) ) are contained within the plane of analysis x-y (its z-
component is null) and, in addition, do not depend on the third dimension,

b not≡

⎡
⎢⎢⎣

bx (x,y, t)

by (x,y, t)

0

⎤
⎥⎥⎦ , Γu : u∗ not≡

⎡
⎢⎢⎣

u∗x (x,y, t)

u∗y (x,y, t)

−

⎤
⎥⎥⎦ ,

Γσ = Γ +
σ

⋃
Γ−σ

⋃
Γ e

σ : t∗ not≡

⎡
⎢⎢⎣

t∗x (x,y, t)

t∗y (x,y, t)

−

⎤
⎥⎥⎦ .

(7.4)

c) The traction vector t∗ (x, t) is only non-zero on the boundary of the piece’s
thickness (boundary Γ e

σ ), whilst on the lateral surfaces Γ +
σ and Γ−σ it is null

(see Figure 7.1).

Γ +
σ

⋃
Γ−σ : t∗ not≡

⎡
⎢⎢⎣

0

0

0

⎤
⎥⎥⎦ . (7.5)

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems

doi:10.13140/RG.2.2.25821.20961
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Plane Stress State 341

Figure 7.1: Example of a plane stress state.

Remark 7.1. The piece with the actions defined by (7.4) and (7.5) is
compatible with the plane stress state given by (7.1) and (7.2), and
schematized in Figure 7.21. In effect, applying the boundary condi-
tions Γσ on the piece yields:

• Lateral surfaces Γ +
σ and Γ−σ

n not≡

⎡
⎢⎣ 0

0

±1

⎤
⎥⎦ , σσσ ·n not≡

⎡
⎢⎣σx τxy 0

τxy σy 0

0 0 0

⎤
⎥⎦
⎡
⎢⎣ 0

0

±1

⎤
⎥⎦=

⎡
⎢⎣0

0

0

⎤
⎥⎦ ,

• Edge Γ e
σ

n not≡

⎡
⎢⎣nx

ny

0

⎤
⎥⎦ , σσσ (x,y, t) ·n not≡

⎡
⎢⎢⎣

σx τxy 0

τxy σy 0

0 0 0

⎤
⎥⎥⎦
⎡
⎢⎣nx

ny

0

⎤
⎥⎦=

⎡
⎢⎣ tx (x,y, t)

ty (x,y, t)

0

⎤
⎥⎦ ,

which is compatible with the assumptions (7.4) and (7.5) .

1 The fact that all the non-null stresses are contained in the x-y plane is what gives rise to the
name plane stress.

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems

doi:10.13140/RG.2.2.25821.20961
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342 CHAPTER 7. PLANE LINEAR ELASTICITY

Figure 7.2: Plane stress state.

7.2.1 Strain Field. Constitutive Equation
Consider now the linear elastic constitutive equation (6.24),

εεε =−ν
E

Tr(σσσ)1+
1+ν

E
σσσ =−ν

E
Tr(σσσ)1+

1

2G
σσσ , (7.6)

which, applied on the stress state in (7.1) and in engineering notation, provides
the strains (6.25)2

εx =
1

E
(σx−ν (σy +σz)) =

1

E
(σx−νσy) γxy =

1

G
τxy ,

εy =
1

E
(σy−ν (σx +σz)) =

1

E
(σy−νσx) γxz =

1

G
τxz = 0 ,

εz =
1

E
(σz−ν (σx +σy)) =−ν

E
(σx +σy) γyz =

1

G
τyz = 0 ,

(7.7)

where the conditions σz = τxz = τyz = 0 have been taken into account. From (7.2)
and (7.7) it is concluded that the strains do not depend on the z-coordinate either
(εεε = εεε (x,y, t)). In addition, the strain εz in (7.7) can be solved as

εz =− ν
1−ν

(εx + εy) . (7.8)

2 The engineering angular strains are defined as γxy = 2εxy, γxz = 2εxz and γyz = 2εyz.

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems

doi:10.13140/RG.2.2.25821.20961
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Plane Stress State 343

In short, the strain tensor for the plane stress case results in

εεε (x,y, t) not≡

⎡
⎢⎢⎢⎣

εx
1

2
γxy 0

1

2
γxy εy 0

0 0 εz

⎤
⎥⎥⎥⎦ with εz =− ν

1−ν
(εx + εy) (7.9)

and replacing (7.8) in (7.7) leads, after certain algebraic operations, to

σx =
E

1−ν2
(εx +νεy) , σy =

E
1−ν2

(εy +νεx) ,

and τxy =
E

2(1+ν)
γxy ,

(7.10)

which can be rewritten as⎡
⎢⎢⎣

σx

σy

τxy

⎤
⎥⎥⎦

︸ ︷︷ ︸
{σσσ}

=
E

1−ν2

⎡
⎢⎢⎢⎣

1 ν 0

ν 1 0

0 0
1−ν

2

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
CCC

plane
stress

⎡
⎢⎢⎣

εx

εy

γxy

⎤
⎥⎥⎦

︸ ︷︷ ︸
{εεε}

=⇒ {σσσ}=CCC
plane
stress · {εεε} .

(7.11)

7.2.2 Displacement Field
The components of the geometric equation of the problem (6.3),

εεε (x, t) = ∇Su(x, t) =
1

2
(u⊗∇+∇⊗u) , (7.12)

can be decomposed into two groups:

1) Those that do not affect the displacement uz (and are hypothetically inte-
grable in R

2 for the x-y domain),

εx (x,y, t) =
∂ux

∂x

εy (x,y, t) =
∂uy

∂y

γxy (x,y, t) = 2εxy =
∂ux

∂y
+

∂uy

∂x

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

integration
in R

2

=⇒
{

ux = ux (x,y, t)

uy = uy (x,y, t)
. (7.13)
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344 CHAPTER 7. PLANE LINEAR ELASTICITY

2) Those in which the displacement uz intervenes,

εz (x,y, t) =
∂uz

∂ z
=− ν

1−ν
(εx + εy) ,

γxz (x,y, t) = 2εxz =
∂ux

∂ z
+

∂uz

∂x
= 0 ,

γyz (x,y, t) = 2εyz =
∂uy

∂ z
+

∂uz

∂y
= 0 .

(7.14)

Observation of (7.1) to (7.14) suggests considering an ideal elastic plane
stress problem reduced to the two dimensions of the plane of analysis and char-
acterized by the unknowns

u(x,y, t) not≡
[

ux

uy

]
, {εεε (x,y, t)} not≡

 εx

εy

γxy

 and {σσσ (x,y, t)} not≡

 σx

σy

τxy

 , (7.15)

in which the additional unknowns with respect to the general problem are either
null, or can be calculated in terms of those in (7.15), or do not intervene in the
reduced problem,

σz = τxz = τyz = γxz = γyz = 0 , εz =−
ν

1−ν
(εx + εy) ,

and uz (x,y,z, t) does not intervene in the problem.
(7.16)

Remark 7.2. The plane stress problem is an ideal elastic problem
since it cannot be exactly reproduced as a particular case of a three-
dimensional elastic problem. In effect, there is no guarantee that the
solution of the reduced plane stress ux (x,y, t) and uy (x,y, t) will al-
low obtaining a solution uz (x,y,z, t) for the rest of components of
the geometric equation (7.14).

7.3 Plane Strain
The strain state is characterized by the simplifying hypotheses

u not≡

ux

uy

uz

=

ux (x,y, t)
uy (x,y, t)

0

 . (7.17)
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Again, it is illustrative to analyze in which situations these hypotheses are plau-
sible. Consider, for example, an elastic medium whose geometry and actions
can be generated from a bidimensional section (associated with the x-y plane
and with the actions b(x, t), u∗ (x, t) and t∗ (x, t) contained in this plane) that
is translated along a straight generatrix perpendicular to said section and, thus,
associated with the z-axis (see Figure 7.3).

The actions of the problem can then be characterized by

b not≡

⎡
⎢⎣bx (x,y, t)

by (x,y, t)

0

⎤
⎥⎦ , Γu : u∗ not≡

⎡
⎢⎣u∗x (x,y, t)

u∗y (x,y, t)
0

⎤
⎥⎦ and Γσ : t∗ not≡

⎡
⎢⎣ t∗x (x,y, t)

t∗y (x,y, t)
0

⎤
⎥⎦ . (7.18)

In the central section (which is a plane of symmetry with respect to the z-axis)
the conditions

uz = 0 ,
∂ux

∂ z
= 0 and

∂uy

∂ z
= 0 (7.19)

are satisfied and, thus, the displacement field in this central section is of the form

u(x,y, t) not≡

⎡
⎢⎣ux (x,y, t)

uy (x,y, t)

0

⎤
⎥⎦ . (7.20)

Figure 7.3: Example of a plane strain state.
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346 CHAPTER 7. PLANE LINEAR ELASTICITY

7.3.1 Strain and Stress Fields
The strain field corresponding with the displacement field characteristic of a
plane strain state (7.20) is

εx (x,y, t) =
∂ux

∂x
, εz (x,y, t) =

∂uz

∂ z
= 0 ,

εy (x,y, t) =
∂uy

∂y
, γxz (x,y, t) =

∂ux

∂ z
+

∂uz

∂x
= 0 ,

γxy (x,y, t) =
∂ux

∂y
+

∂uy

∂x
, γyz (x,y, t) =

∂uy

∂ z
+

∂uz

∂y
= 0 .

(7.21)

Therefore, the structure of the strain tensor is3

εεε (x,y, t) not≡

⎡
⎢⎢⎢⎣

εx
1

2
γxy 0

1

2
γxy εy 0

0 0 0

⎤
⎥⎥⎥⎦ . (7.22)

Consider now the lineal elastic constitutive equation (6.20)

σσσ = λ Tr(εεε)1+2μεεε = λ Tr(εεε)1+2Gεεε , (7.23)

which, applied to the strain field (7.21), produces the stresses

σx = λ (εx + εy)+2μεx = (λ +2G)εx +λεy , τxy = Gγxy ,

σy = λ (εx + εy)+2μεy = (λ +2G)εy +λεx , τxz = Gγxz = 0 ,

σz = λ (εx + εy) , τyz = Gγyz = 0 .

(7.24)

Considering (7.21) and (7.24), one concludes that stresses do not depend on the
z-coordinate either (σσσ = σσσ (x,y, t)). On the other hand, the stress σz in (7.24)
can be solved as

σz =
λ

2(λ +μ)
(σx +σy) = ν (σx +σy) (7.25)

3 By analogy with the plane stress case, the fact that all non-null strains are contained in the
x-y plane gives rise to the name plane strain.
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and the stress tensor for the plane strain case results in

σσσ (x,y, t) not≡

⎡
⎢⎢⎣

σx τxy 0

τxy σy 0

0 0 σz

⎤
⎥⎥⎦ with σz =−ν (σx +σy) , (7.26)

where the non-null components of the stress tensor (7.26) are

σx = (λ +2G)εx +λεy =
E (1−ν)

(1+ν)(1−2ν)

(
εx +

ν
1−ν

εy

)
,

σy = (λ +2G)εy +λεx =
E (1−ν)

(1+ν)(1−2ν)

(
εy +

ν
1−ν

εx

)
,

and τxy = Gγxy =
E

2(1+ν)
γxy .

(7.27)

Equation (7.27) can be rewritten in matrix form as

⎡
⎢⎢⎣

σx

σy

τxy

⎤
⎥⎥⎦

︸ ︷︷ ︸
{σσσ}

=
E (1−ν)

(1+ν)(1−2ν)

⎡
⎢⎢⎢⎢⎣

1
ν

1−ν
0

ν
1−ν

1 0

0 0
1−2ν

2(1−ν)

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
CCC

plane
strain

⎡
⎢⎢⎣

εx

εy

γxy

⎤
⎥⎥⎦

︸ ︷︷ ︸
{εεε}

⇒

{σσσ}=CCC
plane
strain · {εεε} .

(7.28)

Similarly to the plane stress problem, (7.20), (7.21) and (7.26) suggest con-
sidering an elastic plane strain problem reduced to the two dimensions of the
plane of analysis x-y and characterized by the unknowns

u(x,y, t) not≡
[

ux

uy

]
, {εεε (x,y, t)} not≡

⎡
⎢⎣ εx

εy

γxy

⎤
⎥⎦ and {σσσ (x,y, t)} not≡

⎡
⎢⎣ σx

σy

τxy

⎤
⎥⎦ , (7.29)
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348 CHAPTER 7. PLANE LINEAR ELASTICITY

Figure 7.4: The plane linear elastic problem.

in which the additional unknowns with respect to the general problem are either
null or can be calculated in terms of those in (7.29),

uz = 0 , εz = γxz = γyz = τxz = τyz = 0 and σz = ν (σx +σy) . (7.30)

7.4 The Plane Linear Elastic Problem
In view of the equations in Sections 7.2 and 7.3, the linear elastic problem for
the plane stress and plane strain problems is characterized as follows (see Fig-
ure 7.4).

Equations 4

a) Cauchy’s equation

∂σx

∂x
+

∂τxy

∂y
+ρbx = ρ

∂ 2ux

∂ t2

∂τxy

∂x
+

∂σy

∂y
+ρby = ρ

∂ 2uy

∂ t2

(7.31)

4 The equation corresponding to the z-component either does not intervene (plane stress), or
is identically null (plane strain).
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b) Constitutive equation

{σσσ} not≡

⎡
⎢⎣ σx

σy

τxy

⎤
⎥⎦ , {εεε} not≡

⎡
⎢⎣ εx

εy

γxy

⎤
⎥⎦ ; {σσσ}=CCC · {εεε} , (7.32)

where the constitutive matrix CCC can be written in a general form, from (7.11)
and (7.28), as

CCC
not≡ Ē

1− ν̄2

⎡
⎢⎢⎢⎣

1 ν̄ 0

ν̄ 1 0

0 0
1− ν̄

2

⎤
⎥⎥⎥⎦

Plane stress

{
Ē = E

ν̄ = ν

Plane strain

⎧⎪⎪⎨
⎪⎪⎩

Ē =
E

1−ν2

ν̄ =
ν

1−ν

(7.33)

c) Geometric equation

εx =
∂ux

∂x
, εy =

∂uy

∂y
, γxy =

∂ux

∂y
+

∂uy

∂x
(7.34)

d) Boundary conditions in space

Γu : u∗ not≡
[

u∗x (x,y, t)
u∗y (x,y, t)

]
, Γσ : t∗ not≡

[
t∗x (x,y, t)
t∗y (x,y, t)

]

t∗ = σσσ ·n , σσσ not≡
[

σx τxy

τxy σy

]
, n not≡

[
nx

ny

] (7.35)

e) Initial conditions

u(x,y, t)
∣∣∣
t=0

= 0 ,
.u(x,y, t)

∣∣∣
t=0

= v0 (x,y) (7.36)
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350 CHAPTER 7. PLANE LINEAR ELASTICITY

Unknowns

u(x,y, t) not≡
[

ux

uy

]
, εεε (x,y, t) not≡

⎡
⎢⎣ εx

1

2
γxy

1

2
γxy εy

⎤
⎥⎦, σσσ (x,y, t) not≡

[
σx τxy

τxy σy

]
(7.37)

Equations (7.31) to (7.37) define a system of 8 PDEs with 8 unknowns that
must be solved in the reduced space-time domain R

2×R
+. Once the problem

is solved, the following can be explicitly calculated:

Plane stress → εz =
ν

1−ν
(εx + εy)

Plane strain → σz = ν (σx +σy)
(7.38)

7.5 Problems Typically Assimilated to Plane Elasticity
7.5.1 Plane Stress
The stress and strain states produced in solids that have a dimension consider-
ably inferior to the other two (which constitute the plane of analysis x-y) and
whose actions are contained in said plane are typically assimilated to a plane
stress state. The slab loaded on its mean plane and the deep beam of Figure 7.5
are classic examples of structures that can be analyzed as being in a plane stress
state. As a particular case, the problems of simple and complex bending in beams
considered in strength of materials can also be assimilated to plane stress prob-
lems.

Figure 7.5: Slab loaded on its mean plane (left) and deep beam (right).
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7.5.2 Plane Strain
The solids whose geometry can be obtained by translation of a plane section
with actions contained in its plane (plane of analysis x-y) along a generatrix line
perpendicular to said section are typically assimilated to plane strain states. In
addition, the plane strain hypothesis εz = γxz = γyz = 0 must be justifiable. In
general, this situation occurs in two circumstances:

1) The dimension of the piece in the z-direction is very large (for the purposes
of analysis, it is assumed to be infinite). In this case, any central transversal
section (not close to the extremes) can be considered a symmetry plane and,
thus, satisfies the conditions

uz = 0 ,
∂ux

∂ z
= 0 and

∂uy

∂ z
= 0 , (7.39)

which result in the initial condition of the plane strain state (7.17),

u not≡

⎡
⎢⎣ux

uy

uz

⎤
⎥⎦=

⎡
⎢⎣ux (x,y, t)

uy (x,y, t)

0

⎤
⎥⎦ . (7.40)

Examples of this case are a pipe under internal (and/or external) pressure
(see Figure 7.6), a tunnel (see Figure 7.7) and a strip foundation (see Fig-
ure 7.8).

Figure 7.6: Pressure tube.

2) The length of the piece in the longitudinal direction is reduced, but the dis-
placements in the z-direction are impeded by the boundary conditions at the
end sections (see Figure 7.9).

In this case, the plane strain hypothesis (7.17) can be assumed for all the
transversal sections of the piece.
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Figure 7.7: Tunnel.

Figure 7.8: Strip foundation.

Figure 7.9: Solid with impeded z-displacements.
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7.6 Representative Curves of Plane Elasticity
There is an important tradition in engineering of graphically representing the
distribution of plane elasticity. To this aim, certain families of curves are used,
whose plotting on the plane of analysis provides useful information of said stress
state.

7.6.1 Isostatics or stress trajectories

Definition 7.1. The isostatics or stress trajectories are the envelopes
of the vector field determined by the principal stresses.

Considering the definition of the envelope of a vector field, isostatics are, at each
point, tangent to the two principal directions and, thus, there exist two families
of isostatics:

− Isostatics σ1, tangent to the direction of the largest principal stress.
− Isostatics σ2, tangent to the direction of the smallest principal stress.

In addition, since the principal stress directions are orthogonal to each other,
both families of curves are also be orthogonal. The isostatic lines provide infor-
mation on the mode in which the flux of principal stresses occurs on the plane
of analysis.

As an example, Figure 7.10 shows the distribution of isostatics on a supported
beam with uniformly distributed loading.

Definition 7.2. A singular point is a point characterized by the stress
state

σx = σy and τxy = 0

and its Mohr’s circle is a point on the axis σ (see Figure 7.11).

A neutral point is a singular point characterized by the stress state

σx = σy = τxy = 0

and its Mohr’s circle is the origin of the σ − τ space (see Fig-
ure 7.11).
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354 CHAPTER 7. PLANE LINEAR ELASTICITY

Figure 7.10: Isostatics or stress trajectories on a beam.

Figure 7.11: Singular and neutral points.

Remark 7.3. All directions in a singular point are principal stress di-
rections (the pole is the Mohr’s circle itself, see Figure 7.11). Conse-
quently, the isostatics tend to loose their regularity in singular points
and can brusquely change their direction.

7.6.1.1 Differential Equation of the Isostatics

Consider the general equation of an isostatic line y = f (x) and the value of the
angle formed by the principal stress direction σ1 with respect to the horizontal
direction (see Figure 7.12),

tan(2α) =
2τxy

σx−σy
=

2tanα
1− tan2α

tanα =
dy
dx

not
= y′

⎫⎪⎪⎪⎬
⎪⎪⎪⎭⇒

2τxy

σx−σy
=

2y′

1− (y′)2
⇒

(y′)2 +
σx−σy

τxy
y′ −1 = 0

(7.41)
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Figure 7.12: Determination of the differential equation of the isostatics.

and solving the second-order equation (7.41) for y′, the differential equation of
the isostatics is obtained.

Differential
equation

of the isostatics
→ y′ =−σx−σy

2τxy
±
√(

σx−σy

2τxy

)2

+1︸ ︷︷ ︸
ϕ (x,y)

(7.42)

If the function ϕ (x,y) in (7.42) is known, this equation can be integrated to
obtain the algebraic equation of the family of isostatics,

y = f (x)+C . (7.43)

The double sign in (7.42) leads to two differential equations corresponding to
the two families of isostatics.

Example 7.1 – A rectangular plate is subjected to the following stress states.

σx =−x3 ; σy = 2x3−3xy2 ; τxy = 3x2y ; τxz = τyz = σz = 0

Obtain and plot the singular points and distribution of isostatics.

Solution

The singular points are defined by σx = σy and τxy = 0 . Then,

τxy = 3x2y = 0 =⇒

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x = 0 =⇒
{

σx =−x3 = 0

σy = 2x3−3xy2 = 0
∀y

y = 0 =⇒
{

σx =−x3

σy = 2x3−3xy2 = 2x3
=⇒ x = 0
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Therefore, the locus of singular points is the straight line x = 0. These singu-
lar points are, in addition, neutral points (σx = σy = 0).

The isostatics are obtained from (7.42),

y′ =
dy
dx

=−σx−σy

2τxy
±
√(

σx−σy

2τxy

)2

+1 ,

which, for the given data of this problem, results in⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dy
dx

=
x
y

dy
dx

=
−y
x

=⇒ integrating =⇒ x2− y2 =C1

xy =C2

.

Therefore, the isostatics are two families of equilateral hyperboles orthogo-
nal to each other.

On the line of singular points x = 0 (which divides the plate in two regions)
the isostatics will brusquely change their slope. To identify the family of
isostatics σ1, consider a point in each region:

− Point (1,0): σx = σ2 =−1; σy = σ1 =+2; τxy = 0
(isostatic σ1 in the y-direction)

− Point (−1,0): σx = σ1 =+1; σy = σ2 =−2; τxy = 0
(isostatic σ1 in the x-direction)

Finally, the distribution of isostatics is as follows:
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7.6.2 Isoclines

Definition 7.3. Isoclines are the locus of the points in the plane of
analysis along which the principal stress directions form a certain
angle with the x-axis.

It follows from its definition that in all the points of a same isocline the principal
stress directions are parallel to each other, forming a constant angle θ (which
characterizes the isocline) with the x-axis (see Figure 7.13).

7.6.2.1 Equation of the Isoclines

The equation y= f (x) of the isocline with an angle θ is obtained by establishing
that the principal stress direction σ1 forms an angle α = θ with the horizontal
direction, that is,

Algebraic equation
of the isoclines

tan(2θ) =
2τxy

σx−σy︸ ︷︷ ︸
ϕ (x,y)

(7.44)

This algebraic equation allows isolating, for each value of θ ,

y = f (x,θ) , (7.45)

which constitutes the equation of the family of isoclines parametrized in terms
of the angle θ .

Figure 7.13: Isocline.
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358 CHAPTER 7. PLANE LINEAR ELASTICITY

Remark 7.4. Determining the family of isoclines allows knowing, at
each point in the medium, the direction of the principal stresses and,
thus, the obtainment of the isostatics can be sought. Given that iso-
clines can be determined by means of experimental methods (meth-
ods based on photoelasticity) they provide, indirectly, a method for
the experimental determination of the isostatics.

7.6.3 Isobars

Definition 7.4. Isobars are the locus of points in the plane of analy-
sis with the same value of principal stress σ1 (or σ2).

Two families of isobars will cross at each point of the plane of analysis: one
corresponding to σ1 and another to σ2. Note that the isobars depend on the value
of σ1, but not on its direction (see Figure 7.14).

7.6.3.1 Equation of the Isobars

The equation that provides the value of the principal stresses (see Chapter 4) im-
plicitly defines the algebraic equation of the two families of isobars y = f1 (x,c1)
and y = f2 (x,c2),

Algebraic
equation

of the
isobars

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ1 =
σx +σy

2
+

√(
σx−σy

2

)2

+ τ2
xy︸ ︷︷ ︸

ϕ1 (x,y)

= const.= c1

σ2 =
σx +σy

2
−
√(

σx−σy

2

)2

+ τ2
xy︸ ︷︷ ︸

ϕ2 (x,y)

= const.= c2

(7.46)

which leads to {
y = f1 (x,c1)

y = f2 (x,c2)
(7.47)
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Figure 7.14: Isobars.

7.6.4 Maximum Shear Stress or Slip Lines

Definition 7.5. Maximum shear stress lines or slip lines are the en-
velopes of the directions that, at each point, correspond with the
maximum value (in modulus) of the shear (or tangent) stress.

Remark 7.5. At each point of the plane of analysis there are two
planes on which the shear stresses reach the same maximum value
(in module) but that have opposite directions, τmax and τmin. These
planes can be determined by means of the Mohr’s circle and form
a 45◦ angle with the principal stress directions (see Figure 7.15).
Therefore, their envelopes (maximum shear stress lines) are two
families of curves orthogonal to each other that form a 45◦ angle
with the isostatics.

7.6.4.1 Differential Equation of the Maximum Shear Lines

Consider β is the angle formed by the direction of τmax with the horizontal

direction (see Figure 7.16). In accordance with Remark 7.55,

β = α− π
4

=⇒ tan(2β ) = tan
(

2α− π
2

)
=− 1

tan(2α)
, (7.48)

5 Here, the trigonometric expression tan(θ −π/2) =−cotθ =−1/tanθ is used.

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems

doi:10.13140/RG.2.2.25821.20961



Con
tin

uum
M

ech
an

ics
for

Engin
eer

s

Theo
ry

an
d Pro

blem
s

©
X. O

liv
er

an
d C. A

ge
let

de Sar
ac

ibar

360 CHAPTER 7. PLANE LINEAR ELASTICITY

Figure 7.15: Maximum shear stress planes.

where α is the angle formed by the principal stress direction σ1 with the
horizontal direction. Consequently, considering the general equation of a slip
line, y = f (x), the expression (7.48) and the relation tan(2α) = 2τxy/(σx−σy)
yields

tan(2β ) =− 1

tan(2α)
=

σx−σy

2τxy
=

2tanβ
1− tan2β

tanβ =
dy
dx

not
= y′

⎫⎪⎬
⎪⎭=⇒

−σx−σy

2τxy
=

2y′

1− (y′)2
=⇒ (y′)2− 4τxy

σx−σy
y′ −1 = 0.

(7.49)

Solving the second-order equation in (7.49) for y′ provides the differential equa-
tion of the maximum shear stress lines.

Differential
equation of the

max. shear stress
or slip lines

y′ =− 2τxy

σx−σy
±
√(

2τxy

σx−σy

)2

+1︸ ︷︷ ︸
ϕ (x,y)

(7.50)

If the function ϕ (x,y) in (7.50) is known, this differential equation can be in-
tegrated and the algebraic equation of the two families of orthogonal curves
(corresponding to the double sign in (7.50)) is obtained.
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Figure 7.16: Maximum shear stress or slip lines.
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PROBLEMS

Problem 7.1 – Justify whether the following statements are true or false.

a) If a plane stress state has a singular point, all the isoclines cross this
point.

b) If a plane stress state is uniform, all the slip lines are parallel to each
other.

Solution

a) A singular point is defined as:

{
σ1 = σ2

τ = 0

The stress state is
represented by a point.

Therefore, all directions are principal stress directions and, given an angle θ
which can take any value, the principal stress direction will form an angle θ
with the x-axis. Then, an isocline of angle θ will cross said point and, since this
holds true for any value of θ , all the isoclines will cross this point. Therefore,
the statement is true.

b) A uniform stress state implies that the Mohr’s circle is equal in all points of
the medium, therefore, the planes of maximum shear stress will be the same in
all points. Then, the maximum shear stress lines (or slip lines) will be parallel to
each other. In conclusion, the statement is true.
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364 CHAPTER 7. PLANE LINEAR ELASTICITY

Problem 7.2 – A rectangular plate is subjected to the following plane stress
states.

1) σx = 0 ; σy = b > 0 ; τxy = 0

2) σx = 0 ; σy = 0 ; τxy = my , m > 0

Plot for each state the isostatics and the slip lines, and indicate the singular
points.

Solution

1) The Mohr’s circle for the stress state σx = 0 ; σy = b > 0 ; τxy = 0 is:

Then, the isostatics are:
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And the slip lines are:

There do not exist singular points for this stress state.

2) The Mohr’s circle for the stress state σx = 0 ; σy = 0 ; τxy = my , m > 0 is:
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Then, the isostatics and singular points are:

And the slip lines are:
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EXERCISES

7.1 – A rectangular plate is subjected to the following plane strain state:

σx = σy

τxy = ax

σy = b

(a > 0 , b > 0)

Plot the isostatics and the slip lines, and indicate the singular points.

7.2 – Plot the isostatics in the transversal section of the cylindrical shell shown
below. Assume a field of the form:

⎧⎪⎪⎨
⎪⎪⎩

ur = Ar+
B
r

; A > 0 , B > 0

uθ = 0

uz = 0
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Ch.8. Plasticity 

8.1 Introduction 



 A material with plastic behavior is characterized by: 
 A nonlinear stress-strain relationship.
 The existence of permanent (or plastic) strain during a

loading/unloading cycle.
 Lack of unicity in the stress-strain relationship.

 Plasticity is seen in most materials, after an initial elastic state. 

Introduction 
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 PRINCIPAL STRESSES 
 Regardless of the state of stress, it is always possible to choose a special

set of axes (principal axes of stress or principal stress directions) so
that the shear stress components vanish when the stress components are
referred to this system.

 The three planes perpendicular to the principle axes are the principal
planes.

 The normal stress components in the principal planes are the principal
stresses.  

Previous Notions 

[ ]
1

2

3

0 0
0 0
0 0

σ
σ

σ

 
 =  
  

σ
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 PRINCIPAL STRESSES 
 The Cauchy stress tensor is a symmetric 2nd order tensor so it will diagonalize

in an orthonormal basis and its eigenvalues are real numbers.
 Computing the eigenvalues    and the corresponding eigenvectors    :

 

Previous Notions 

λ v

[ ]λ λ⋅ = − ⋅ =v v v 0σ σ 1

[ ]
11 12 13

12 22 23

13 23 33

det 0
not
=

σ λ σ σ
λ λ σ σ λ σ

σ σ σ λ

−
− − = − =

−
σ σ1 1

1 1

2 2

3 3

λ σ
λ σ
λ σ

≡
≡
≡

3 2
1 2 3 0I I Iλ λ λ− − − = characteristic 

equation 

INVARIANTS 

8 



 STRESS INVARIANTS 
 Principal stresses are invariants of the stress state.

 They are invariant w.r.t. rotation of the coordinate axes to which the
stresses are referred.

 The principal stresses are combined to form the stress invariants I :

 These invariants are combined, in turn, to obtain the invariants J:

Previous Notions 

( )1 1 2 3iiI Tr σ σ σ σ= = = + +σ

( ) ( )2
2 1 1 2 1 3 2 3

1 :
2

I I σ σ σ σ σ σ= − = − + +σ σ

( )3 detI = σ

1 1 iiJ I σ= =

( ) ( )2
2 1 2

1 1 12 :
2 2 2ij jiJ I I σ σ= + = = σ σ

( ) ( )3
3 1 1 2 3

1 1 13 3
3 3 3 ij jk kiJ I I I I Tr σ σ σ= + + = ⋅ ⋅ =σ σ σ

REMARK   
The J invariants can be 
expressed the unified form: 

( ) { }1 1,2,3i
iJ Tr i

i
= ∈σ

REMARK   
The I invariants are obtained 
from the characteristic equation 
of the eigenvalue problem. 

9 
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 SPHERICAL AND DEVIATORIC PARTS OF THE STRESS TENSOR 
Given the Cauchy stress tensor     and its principal stresses, the following is 
defined: 
 Mean stress

 Mean pressure

 A spherical or hydrostatic
   state of stress: 

Previous Notions 

σ

( ) ( )1 2 3
1 1 1
3 3 3m iiTrσ σ σ σ σ= = = + +σ

( )1 2 3
1
3mp σ σ σ σ= − = − + +

1 2 3σ σ σ= =
0 0

0 0
0 0

σ
σ σ

σ

 
 ≡ = 
  

σ 1

REMARK   
In a hydrostatic state of stress, the 
stress tensor is isotropic and, thus, 
its components are the same in 
any Cartesian coordinate system. 
As a consequence, any direction 
is a principal direction and the 
stress state (traction vector) is the 
same in any plane. 
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 SPHERICAL AND DEVIATORIC PARTS OF THE STRESS TENSOR 
The Cauchy stress tensor     can be split into: 

 The spherical stress tensor:
 Also named mean hydrostatic stress tensor or volumetric stress tensor or

mean normal stress tensor.
 Is an isotropic tensor and defines a hydrostatic state of stress.
 Tends to change the volume of the stressed body

 
 

 The stress deviatoric tensor:
 Is an indicator of how far from a hydrostatic state of stress the state is.
 Tends to distort  the volume of the stressed body

Previous Notions 

σ sph ′+σ = σ σ

( )1 1:
3 3sph m iiTrσ σ= = =σ σ1 1 1

dev mσ′ = =σ σ σ − 1

11 



 STRESS INVARIANTS OF THE STRESS DEVIATORIC TENSOR 
 The stress invariants of the stress deviatoric tensor:

 

 

 These correspond exactly with the invariants J of the same stress
deviator tensor: 

Previous Notions 

1 1 0J I′ ′= =

2
2 1

1
2

J I′ ′= ( ) ( )2 2
12 :
2

I I′ ′ ′ ′+ = = σ σ

3
3 1

1
3

J I′ ′= 1 23I I′ ′+( ) ( ) ( )3 3
1 13
3 3 ij jk kiI I Tr σ σ σ′ ′ ′ ′ ′ ′ ′ ′+ = = ⋅ ⋅ =σ σ σ

( )1 0I Tr′ ′= =σ
2

2 1
1 :
2

I I′ ′ ′= −σ σ( )
( ) ( )2 2 2

3 11 22 33 12 23 13 12 33 23 11 13 22
1det 2
3 ij jk kiI σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= = + − − − =σ
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 EFFECTIVE STRESS 
 The effective stress or  equivalent uniaxial stress     is the scalar:

 It is an invariant value which measures the “intensity” of a 3D stress state
in a terms of an (equivalent) 1D tensile stress state.

 It should be “consistent”: when applied to a real 1D tensile stress, should
return the intensity of this stress.

Previous Notions 

σ

'
2

3 33
2 2ij ijJσ ′ ′= = σ σ = σ σ´: ´

13 



Example 

Calculate the value of the equivalent uniaxial stress for an uniaxial state of 
stress defined by: 

xσ xσ
  

 x 

 y 

 z 

uσuσ

E, ν

0 0
0 0 0
0 0 0

uσ 
 ≡  
  

σ
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Example - Solution 

Mean stress: 

 

Spherical and deviatoric parts 

of the stress tensor: 

 

1 (
3 3

u
m Tr σσ = ) =σ 0 0

30 0
0 0 0 0

3
0 0

0 0
3

u

m
u

sph m

m
u

σ

σ
σσ

σ σ

 
 

   
   ≡ =   
    

 
  

σ

2 0 0
30 0

10 0 0 0
3

0 0 10 0
3

u

u m

sph m u

m

u

σ
σ σ

σ σ
σ

σ

 
 

−   
   ′ = − ≡ − = −   
 −   

 −
  

σ σ σ

23 3 4 1 1 3 2( )
2 2 9 9 9 2 3ij ij u uσ σ σ′ ′= σ σ = + + = uσ σ=

0 0
0 0 0
0 0 0

uσ 
 ≡  
  

σ
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Ch.8. Plasticity 

8.2 Principal Stress Space 



 The principal stress space or Haigh–Westergaard stress space is 
the space defined by a system of Cartesian axes where the three 
spatial axes represent the three principal stresses for a body 
subject to stress: 

Principal Stress Space 

1 2 3σ σ σ≥ ≥

17 
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 Any of the planes perpendicular to the hydrostatic stress axis is a 
octahedral plane. 
 Its unit normal is                   . 

Octahedral plane 

1 2 3σ σ σ≥ ≥

1
1 1
3

1

 
 =  
  

n
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 Consider the principal stress space: 
 The normal octahedral stress is defined as:

Normal and Shear Octahedral Stresses 

[ ]

( )

1 2 3

1 2 3

1/ 3

3 , , 1/ 3

1/ 3
3 3 

3

noct

m

OA OPσ σ σ σ

σ σ σ σ

 
  = = ⋅ = = 
 
  

= + + =

1

3oct m
Iσ σ= =
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 Consider the principal stress space: 
 The shear or tangential octahedral

stress is defined as:

 Where the        is calculated from: 

Normal and Shear Octahedral Stresses 

3 oct APτ =

( )
( )

2 2 22 2 2 2
1 2 3

2 '
1 2 3 2

3
1 2
3

oct AP OP OA

J

τ σ σ σ

σ σ σ

= = − = + + −

− + + =

AP

[ ]1 2
2

2
3oct Jτ ′=

( )

( ) ( ) ( )

1/2
22 2 2

1 2 3 1 2 3

1/22 2 2

1 2 2 3 1 3

1 1
33

1
3 3

oct

oct

τ σ σ σ σ σ σ

τ σ σ σ σ σ σ

 = + + − + +  

 = − + − + −  

Alternative forms of      :octτ
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 In a pure spherical stress state: 

 In a pure deviator stress state: 

Normal and Shear Octahedral Stresses 

1 3
3m esfσ σ σ= → σ = → = =σ σ σ1 1

esf′ = − = 0σ σ σ 2 0J ′ =

0octτ =

0octσ =′=σ σ ( ) ( ) 0m Tr Trσ ′= = =σ σ

A pure spherical stress state is 
located on the hydrostatic stress axis. 

A pure deviator stress state is located on the octahedral 
plane containing the origin of the principal stress space  

21 



 Any point in space is unambiguously defined by the three 
invariants: 
 The first stress invariant      characterizes the distance from the origin to

the octahedral plane containing the point. 

 The second deviator stress invariant      characterizes the radius of the
cylinder containing the point and with the hydrostatic stress axis as axis.

Stress Invariants 

1I

 The third deviator stress invariant   
characterizes the position of the point on 
the circle obtained from the intersection 
of the  octahedral plane and the 
cylinder. It defines an angle            . 

2J ′

3J ′

( )3Jθ ′

22 

https://youtu.be/cq0G0EAfhZk?t=00m00s


 The projection of the principal stress space on the octahedral 
plane results in the division of the plane into six “sectors”: 
 These are characterized by the different principal stress orders.

Projection on the Octahedral Plane 

FEASIBLE 
WORK SPACE 

Election of a criterion, 
e.g.: 1 2 3σ σ σ≥ ≥

23 

https://youtu.be/cq0G0EAfhZk?t=02m19s
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Ch.8. Plasticity 

8.4 Phenomenological Behaviour 



Notion of Plastic Strain 

e pε ε ε= +
PLASTIC STRAIN 

eσelastic limit: 

LINEAR ELASTIC 
BEHAVIOUR 

eEσ ε=

39 

https://youtu.be/1bn226x_d-U?t=00m00s


 Also known as kinematic hardening. 

Bauschinger Effect 

41 

fσ

eσ

eσ−

e Kσ ε− +

K

e Kσ ε+

K

K

https://youtu.be/1bn226x_d-U?t=08m51s


 Considering the phenomenological behaviour observed, 
elastoplastic materials are characterized by: 

 

 Lack of unicity in the stress-strain relationship. 
 The stress value depends on the actual strain and the previous loading 

history. 
 

 A nonlinear stress-strain relationship. 
 There may be certain phases in the deformation process with 

incremental linearity. 
 

 The existence of permanent (or plastic) strain during a loading / 
unloading cycle. 
 

Elastoplastic Behaviour 

42 

https://youtu.be/1bn226x_d-U?t=15m03s


43 

Ch.8. Plasticity 

8.5 1D Incremental Plasticity Theory 



 The incremental plasticity theory is a mathematical model used 
to represent the evolution of the stress-strain curve in an 
elastoplastic material. 
 Developed for 1D but it can be generalized for 3D problems.

Introduction 

REMARK   
This theory is 
developed under 
the hypothesis of 
infinitesimal strains. 

44 

https://youtu.be/QhqZa_wP1kE?t=00m00s


 Total strain can be split into an elastic (recoverable) part,       , 
and an inelastic (unrecoverable) one,       : 

 Also, 

Additive Decomposition 
of Strain 

e

E
σε =e pε ε ε= +

e dd
E
σε =e pd d dε ε ε= +

where 

where 

elastic modulus or 
Young modulus 

eε
pε

45 

https://youtu.be/QhqZa_wP1kE?t=03m23s


 The hardening variable,      , is defined as: 

   Such that                and             . 

 Note that     is always positive and: 

    Then, for a monotonously increasing plastic strain process, both 
variables coincide: 

Hardening Variable 

( ) pd sign dα σ ε=

α

0dα ≥
0

0pε
α

=
=

REMARK 
The               function is: ( )sign •

α

( )
1

pd d sign dα α σ ε

=

= =


pd dα ε=

0pdε ≥
0 0

p p
p ppd d

ε ε
εα εε= = =∫ ∫

46 

https://youtu.be/QhqZa_wP1kE?t=05m20s


 Stress value,     , threshold for the material exhibiting plastic 
behaviour after elastic unloading + elastic loading 
 It is considered a material property.
 For                                    

        is the hardening modulus 

Yield Stress and Hardening Law 

fσ

0p
f eε α σ σ= = =

fd H dσ α′=
( )fσ σ α≤

H ′

HARDENING LAW 

47 

f e Hσ σ α′= +
( )fσ σ α=

https://youtu.be/I-u-iiuZ0IM?t=00m00s


 The yield function,              , characterizes the state of the material: 

Yield Function 

( ) ( ), fF σ α σ σ α≡ −

( ),F σ α

( ), 0F σ α <

ELASTO-PLASTIC STATE ELASTIC STATE 

( ){ }: , 0Fσ σ σ α= ∈ <E R

( ){ }0 : ,0 0eFσ σ σ σ σ= ∈ ≡ − <E R

( ){ }: , 0Fσ σ σ α∂ = ∈ =E R

( ), 0F σ α =

ELASTIC DOMAIN YIELD SURFACE 
INITIAL ELASTIC 

DOMAIN: 

Space of 
admissible 

stresses 

48 

https://youtu.be/Rd2cZm6UX0g?t=00m00s


 Any admissible stress state must belong to the space of 
admissible stresses,        (postulate): 

Space of Admissible Stresses 

Space of 
admissible 

stresses 

σE

( ){ }, 0F
σ σ σ

σ σ α

= ∂ =

= ∈ ≤

E E E

R

( ) ( ), fF σ α σ σ α≡ −

( ), ( )f fσ σ α σ α ≡ − E

REMARK 

49 

https://youtu.be/Rd2cZm6UX0g?t=04m32s


 The following situations are defined: 
 ELASTIC REGIME

 

 ELASTOPLASTIC REGIME – UNLOADING

 

 

 ELASTOPLASTIC REGIME – PLASTIC LOADING

Constitutive Equation 

σσ ∈E

( ), 0dF
σσ

σ α
∈∂

<
E

( ), 0dF
σσ

σ α
∈∂

=
E

d E dσ ε=

d E dσ ε=

epd E dσ ε=

Elastoplastic 
tangent modulus 

REMARK   
The situation 

is not possible because, by 
definition, on the yield 
surface                    . 

( , ) 0dF
σσ

σ α
∈∂

>
E

( ), 0F σ α =
50 

https://youtu.be/Rd2cZm6UX0g?t=06m13s


 Consider the elastoplastic regime in plastic loading, 

 

 Since the hardening variable is defined as: 

 

Elastoplastic Tangent Modulus 

( ) pd sign dα σ ε=

HARDENING LAW 

fd H dσ α′=1pd d
H σε σ σ= ∈∂
′

Efor 

σσ ∈∂E

( ) ( ) ( ), 0 , 0fF dFσ α σ σ α σ α≡ − = =

( )


( )
( )

, 0f

sign H

dF d d

σ

σ
σ α σ σ α α

σ
= = ′

∂
′= − =

∂ 

( )1d sign d
H

α σ σ=
′

51 

https://youtu.be/nKVFDQpTCrs?t=00m00s


Elastoplastic Tangent Modulus 

1

1

1 1( )

1
1 1

e

p

e p

epE

d d
E

d d
H

d d d d
E H

EHd d d
E H

E H

ε σ

ε σ

ε ε ε σ

σ ε ε

=

=
′

= + = +
′
′

= =
′++

′


strain

strain

Additive strain decomposition :

Elastic

Plastic

ep EHE
E H

′
=

′+
ELASTOPLASTIC 

TANGENT MODULUS 
epd E dσ ε=

52 



 Following the constitutive equation defined 

Uniaxial Stress-Strain Curve 

ELASTIC 
REGIME 

ELASTOPLASTIC 
REGIME 

d E dσ ε=

epd E dσ ε=

REMARK   
Plastic strain is generated only 
during the plastic loading process. 

53 

https://youtu.be/nKVFDQpTCrs?t=05m09s


 The value of the hardening modulus,    , determines the following 
situations: 

Role of the Hardening Modulus 

H ′

ep EHE
E H

′
=

′+

Linear elasticity 

Perfect plasticity 

Plasticity with 
strain hardening 

0H ′ >

Plasticity with 
strain softening 

0H ′ <

55 

https://youtu.be/nKVFDQpTCrs?t=10m00s


 In real materials, the stress-strain curve shows a combination of 
the three types of hardening modulus. 

Plasticity in Real Materials 

0H ′ >
0H ′ <

0H ′ =

56 

https://youtu.be/nKVFDQpTCrs?t=15m20s
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Ch.8. Plasticity 

8.6 3D Incremental Theory 



 The 1D incremental plasticity theory can be generalized to a 
multiaxial stress state in 3D. 

 The same concepts are used: 
 Additive decomposition of strain
 Hardening variable
 Yield function

Plus, additional ones are added: 
 Loading - unloading conditions
 Consistency conditions

Introduction 

58 

https://youtu.be/nbXJ9t7x1xg?t=00m00s


 Total strain can be split into an elastic (recoverable) part,       , 
and an inelastic (unrecoverable) one,       : 

 Also, 

Additive Decomposition 
 of Strain 

1 :e −=ε σCe p= +ε ε ε

1 :ed d−=ε σCe pd d d= +ε ε ε

where 

where 

eε
pε

constitutive elastic 
(constant) tensor 

59 

1

e p

e
D

E

ε ε ε
σε

 = +
→ 

=

https://youtu.be/nbXJ9t7x1xg?t=00m42s


 The hardening variable,                       , is a scalar: 

   Where      is known as the plastic multiplier. 

 The flow rule is defined as: 

   Where               is the plastic potential function 

Hardening Variable 

dα λ=

( ), pfα = σ ε

λ

( ),p G
d

α
λ
∂

=
∂
σ

ε
σ

[ )0,α ∈ ∞

( ),G σ α

with 

60 



( )1 p

d
D d sign

α
ε λ σ

=
→ =

https://youtu.be/nbXJ9t7x1xg?t=02m25s


 The yield function,              , is a scalar defined as: 

Yield Function 

( ) ( ) ( ), fF α φ σ α≡ −σ σ

( ),F ασ

( ), 0F α <σ

ELASTOPLASTIC STATE ELASTIC STATE 

( ){ }: , 0Fσ α= <σ σE

( ){ }0 : ,0 0Fσ = <σ σE

( ){ }: , 0Fσ α∂ = =σ σE

( ), 0F α =σ

ELASTIC DOMAIN YIELD SURFACE 

INITIAL ELASTIC 
DOMAIN: σ σ σ= ∂E E E

Space of 
admissible 

stresses 

Equivalent 
uniaxial stress 

Yield stress 

61 

( ) ( )1 , fD F σ α σ σ α→ ≡ −

https://youtu.be/nbXJ9t7x1xg?t=05m44s


 Loading/unloading conditions (also known as Karush-Kuhn-
Tucker conditions): 

 Consistency conditions: 

Loading-Unloading Conditions and 
Consistency Condition 

( ) ( )0 ; , 0 ; , 0F Fλ α λ α≥ ≤ =σ σ

( ) ( )For , 0 , 0F dFα λ α= → =σ σ

( )

( )

( )

,
0; 0 0;

,
0;

0; 0
,

0;

0; 0

p

p

p

G
F dF d

G
d

F dF
G

d

F dF

α
λ λ

σ α
λ λ

σ α
λ λ

∂
= < = = =

∂
∂

= = = ∂= = 
∂ > = ≠ ∂

= >

0

0

0

σ
ε

σ

ε
σ

ε
σ

ELASTOPLASTIC  
ELASTIC UNLOADING 

ELASTOPLASTIC 
NEUTRAL  LOADING 

IMPOSSIBLE 
62 

ELASTOPLASTIC 
LOADING 

https://youtu.be/nbXJ9t7x1xg?t=10m21s


 The following situations are defined: 
 ELASTIC REGIME

 ELASTOPLASTIC REGIME – ELASTIC UNLOADING 

 ELASTOPLASTIC REGIME – PLASTIC LOADING

Constitutive Equation 

σ∈σ E

( ), 0dF
σ

α
∈∂

<
σ

σ
E

( ), 0dF
σ

α
∈∂

=
σ

σ
E

:d d=σ εC

:d d=σ εC

:epd d=σ εC
ELASTOPLASTIC 

CONSTITUTIVE TENSOR 

( )( 0 and , 0)F dF α= <σ

( 0)F <

( )( 0 and , 0)F dF α= =σ

63 26/04/2017 MMC - ETSECCPB - UPC 

https://youtu.be/LQp4X1CBIW8?t=00m00s


 The elastoplastic constitutive tensor is written as: 

Elastoplastic Constitutive Tensor 

( )
: :

: :

ep

G F

F GH
α

∂ ∂
⊗

∂ ∂= −
∂ ∂′ +
∂ ∂

C C
C C

C
σ σσ,

σ σ

{ }, , , , , , , 1, 2,3
ijpq rskl

pq rsep
ijkl ijkl

pqrs
pq rs

G F

i j k l p q r sF GH

σ σ

σ σ

∂ ∂
∂ ∂

= − ∈
∂ ∂′ +
∂ ∂

C C
C C

C

REMARK   
When the plastic potential function 
and the yield function coincide, it is 
said that there is associated flow: 

( ) ( ), ,G Fα α=σ σ

64 

https://youtu.be/LQp4X1CBIW8?t=02m51s
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Ch.8. Plasticity 

8.7 Failure Criteria: Yield Surfaces 



 The initial yield surface,        , is the external boundary of the initial 
elastic domain      for the virgin material 
 The state of stress inside the yield surface is elastic for the virgin material.
 When in a deformation process, the stress state reaches the yield surface, the

virgin material looses elasticity for the first time: this is considered as a failure
criterion for design. Subsequent stages in the deformation process are not
considered.

Introduction 

0
σ∂E

0
σE

66 26/04/2017 MMC - ETSECCPB - UPC 

https://youtu.be/Ln2jUD2TRso?t=03m07s


 The yield surface is usually expressed in terms of the following 
invariants to make it independent of the reference system (in the 
principal stress space): 

 Where:

 The elastoplastic behavior will be isotropic.

Yield  (Failure) Criteria 

( ) ( )1 2 3, , 0eF I J J σ
φ( )

′ ′≡ − =


σ

σ F

( )1 1 2 3iiI Tr σ σ σ σ= = = + +σ

2
2 1

1
2

J I′ ′= ( ) ( )2 2
12 :
2

I I′ ′ ′ ′+ = = σ σ

3
3 1

1
3

J I′ ′= 1 23I I′ ′+( ) ( ) ( )3 3
1 13
3 3 ij jk kiI I Tr σ σ σ′ ′ ′ ′ ′ ′ ′ ′+ = = ⋅ ⋅ =σ σ σ

with 1 2 3σ σ σ≥ ≥

REMARK   
Due to the adopted principal stress 
criteria, the definition of yield 
surface only affects the first sector 
of the principal stress space. 

67 

https://youtu.be/Ln2jUD2TRso?t=05m01s


 The yield surface is defined as: 

 Where                          is the effective stress. 

(often termed the Von-Mises stress)

 The  shear octahedral stress is, by definition,                        . 
Thus, the effective stress is rewritten: 

 And the yield surface is given by: 

Von Mises Criterion 

( ) ( ) 0eF σ σ≡ − =σ 

( ) 23Jσ ′=σ

[ ]1 2
2

2
3oct Jτ ′=

[ ]1 2
2

3
2 octJ τ′ = ( ) 3 33

2 2oct octσ τ τ= =σ

3( ) 0
2 oct eF τ σ≡ − =σ

REMARK   
The Von Mises criterion 
depends solely on the 
second deviator stress 
invariant. 

68 

( ) 0eF σ≡ φ( ) − =σ σ

https://youtu.be/Ln2jUD2TRso?t=06m14s


 The octahedral stresses characterizes the radius of the cylinder 
containing the point and with the hydrostatic stress axis as axis. 

Von Mises Criterion 

2 23
3 3oct e oct eτ σ τ σ= → =

REMARK   
The Von Mises Criterion is adequate for metals, where 
hydrostatic stress states have an elastic behavior and 
failure is typically due to deviatoric stress components. 

( ) ( )2 eF J σ′≡ −σ F

69 

3( ) 0
2 oct eF τ σ≡ − =σ



Example 

Consider a beam under a composed flexure state such that for a beam section 
the stress state takes the form, 

Obtain the expression for Von Mises criterion. 

xσ xσ[ ]
0

0 0
0 0 0

x xy

xy

σ τ
τ
 
 =  
  

σ

70 

https://youtu.be/Ln2jUD2TRso?t=17m03s


Example - Solution 

The mean stress is: 

The deviator part of the stress tensor is: 

The second deviator stress invariant is given by, 

( )1
3 3

x
m Tr σσ = =σ

2
3

1
esf 3

1
3

0 0
0 0

0 0 0 0

x m xy x xy

xy m xy x

m x

σ σ τ σ τ
τ σ τ σ

σ σ

 − 
  ′ = − ≡ − = −  
  − −   

σ σ σ

2 2 2 2 2 2 2
2

1 1 4 1 1 1:
2 2 9 9 9 3x x x xy xy x xyJ σ σ σ τ τ σ τ ′ ′ ′= = + + + + = + 

 
σ σ

71 

https://youtu.be/Ln2jUD2TRso?t=18m09s


Example - Solution 

The uniaxial effective stress is: 

Finally, the Von Mises yield surface is given by the expression: 

(Criterion in design codes for metal beams) 

( ) 2 2
23 3x xyJσ σ τ′= = +σ

2( ) 3 0eF J σ′≡ − =σ
2 23x xy e

co

σ τ σ+ =


(comparison stress)


72 



 Also known as the maximum shear stress criterion, it establishes 
that the elastic domain ends when: 

 It can be written univocally in terms of invariants      and      : 

Tresca Criterion 

1 3
max 2 2

eσ σ στ −
= = ( ) ( )1 3 0eF σ σ σ≡ − − =σ

( ) ( )1 3 2 3( ) ,e eF J Jσ σ σ σ′ ′≡ − − ≡ −σ F
2J ′ 3J ′

Plane parallel to axis  2σ

73 

( ) 0eF σ≡ φ( ) − =σ σ

https://youtu.be/Ynx8KOCH5eE?t=00m00s


Tresca Criterion 

REMARK   
The Tresca yield surface is appropriate for metals, which have an elastic behavior under 
hydrostatic stress states and basically have the same traction/compression behavior. 

( ) ( )2 3, 0eF J J σ′ ′≡ − =σ F

74 

( ) ( )1 3 0eF σ σ σ≡ − − =σ



Example 

Obtain the expression of the Tresca criterion for an uniaxial state of stress 
defined by: 

xσ xσ
  

 x 

 y 

 z 

uσuσ

E, G
0 0

0 0 0
0 0 0

uσ 
 ≡  
  

σ

76 

https://youtu.be/Ynx8KOCH5eE?t=05m48s


Example - Solution 

Consider: 

The Tresca criterion is expressed as: 

0uσ ≥ ( )


1 3( ) e u e u e

u

F
σ

σ σ σ σ σ σ σ= − − = − = −σ1

3 0
uσ σ

σ
=
=

0uσ < ( )


1 3( ) e u e u e

u

F
σ

σ σ σ σ σ σ σ= − − = − − = −σ
1

3

0

u

σ
σ σ

=
=

( ) 0eF σ σ≡ − =σ u eσ σ=
Note that it coincides with 
the Von Mises criterion for an 
uniaxial state of stress. 

77 

0 0
0 0 0
0 0 0

uσ 
 ≡  
  

σ

https://youtu.be/Ynx8KOCH5eE?t=06m01s


Example 

Consider a beam under a composed flexure state such that for a beam section 
the stress state takes the form, 

Obtain the expression for Tresca yield surface. 

xσ xσ[ ]
0

0 0
0 0 0

x xy

xy

σ τ
τ
 
 =  
  

σ

78 



Example - Solution 

The principal stresses are: 

Taking the definition of the Tresca yield surface, 

2 2 2 2
1 3

1 1 1 1,
2 4 2 4x x xy x x xyσ σ σ τ σ σ σ τ= + + = − +

( ) ( )1 3 0eF σ σ σ≡ − − =σ

2 2 2 2
1 3

1 1 1 1
2 4 2 4e x x xy x x xyσ σ σ σ σ τ σ σ τ

   
= − = + + − − +      

   
2 24x xy e

co

σ τ σ+ =



(comparison stress)

79 



 It is a generalization of the Tresca criterion, by including the 
influence of the first stress invariant. 

 In the Mohr circle’s plane, the Mohr-Coulomb yield function takes 
the form, 

Mohr-Coulomb Criterion 

tancτ σ φ= −
internal friction angle cohesion 

REMARK   
The yield line cuts the 
normal stress axis at a 
positive value, limiting the 
materials tensile strength. 

80 

https://youtu.be/Ynx8KOCH5eE?t=08m45s


 Consider the stress state for which the yield point is reached: 

Mohr-Coulomb Criterion 

1 3

cos

sin
2

A

A

R

R

τ φ
σ σσ φ

=
+

= +

( ) ( )

1 3 1 3 1 3

1 3 1 3

tg 0 cos sin tg 0
2 2 2

sin 2 cos 0

A A c c

c

σ σ σ σ σ στ σ φ φ φ φ

σ σ σ σ φ φ

− + − + − = + + − =  
− + + − =

( ) ( ) ( )1 3 1 3 sin 2 cos 0F cσ σ σ σ φ φ≡ − + + − =σ

REMARK 
For        and             , 
the Tresca criterion is 
recovered. 

0 / 2ecφ σ= =

81 



Mohr-Coulomb Criterion 

REMARK   
The Mohr-Coulomb yield surface is appropriate for frictional cohesive 
materials, such as concrete, soils or rocks which have considerably 
different tensile and compressive values for the uniaxial elastic limit. 

( ) ( )1 2 3, , 0F I J J′ ′≡ =σ F

82 



 It is a generalization of the Von Mises criterion, by including the 
influence of the first stress invariant. 

 The yield surface is given by the expression: 

 Where:
 
 

 It can be rewritten as: 

Drucker-Prager Criterion 

( ) [ ]1/2
23 0mF Jασ β′≡ + − =σ

( ) ( )
1 2 3 12sin 6  cos; ;

3 33 3 sin 3 3 sin m
Ic σ σ σφ φα β σ

φ φ
+ +

= = = =
− −

( ) [ ] ( )1/2
1 2 1 2

33 ,
2oct octF I J I Jα β ασ τ β′ ′ ′≡ + − = + − = σ

REMARK 
For        and             , 
the Von Mises criterion 
is recovered. 

0 / 2ecφ σ= =

83 

https://youtu.be/Ynx8KOCH5eE?t=16m33s


  

Drucker-Prager Criterion 

REMARK   
The Drucker-Prager yield surface, like the Mohr-Coulomb one, is appropriate for 
frictional cohesive materials, such as concrete, soils or rocks which have 
considerably different tensile and compressive values for the uniaxial elastic limit. 

( ) ( )1 2,F I J ′≡σ F

84 
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Chapter 8
Plasticity

8.1 Introduction
The elastoplastic models (constitutive equations) are used in continuum mechan-
ics to represent the mechanical behavior of materials whose behavior, once cer-
tain limits in the values of the stresses (or strains) are exceeded, is no longer rep-
resentable by means of simpler models such as the elastic ones. In this chapter,
these models will be studied considering, in all cases, that strains are infinitesi-
mal.

Broadly speaking, plasticity introduces two important modifications with re-
spect to the lineal elasticity seen in chapters 6 and 7:

1) The loss of linearity: stresses cease to be proportional to strains.

2) The concept of permanent or plastic strain: a portion of the strain generated
during the loading process is not recovered during the unloading process.

8.2 Previous Notions
The concepts in this section are a review of those already studied in Sec-
tions 4.4.4 to 4.4.7 of Chapter 4.

8.2.1 Stress Invariants
Consider the Cauchy stress tensor σσσ and its matrix of components in a base
associated with the Cartesian axes {x,y,z} (see Figure 8.1),

[σσσ ]xyz =

⎡
⎢⎣ σx τxy τxz

τxy σy τyz

τxz τyz σz

⎤
⎥⎦ . (8.1)
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370 CHAPTER 8. PLASTICITY

diagonalization

Figure 8.1: Diagonalization of the stress tensor.

Since σσσ is a symmetrical second-order tensor, it will diagonalize in an orthonor-
mal base and all its eigenvalues will be real numbers. Then, consider a system
of Cartesian axes {x′,y′,z′} associated with a base in which σσσ diagonalizes. Its
matrix of components in this base is

[σσσ ]x′y′z′ =

⎡
⎢⎣σ1 0 0

0 σ2 0

0 0 σ3

⎤
⎥⎦ , (8.2)

where σ1≥σ2≥σ3 , denoted as principal stresses, are the eigenvectors of σσσ and
the directions associated with the axes {x′,y′,z′} are named principal directions
(see Figure 8.1).

To obtain the stresses and the principal directions of σσσ , the corresponding
eigenvalue and eigenvector problem must be solved:

Find λ and v such that σσσ ·v = λv =⇒ (σσσ −λ1) ·v = 0 , (8.3)

where λ corresponds to the eigenvalues and v to the eigenvectors. The necessary
and sufficient condition for (8.3) to have a solution is

det(σσσ −λ1) =
∣∣σσσ −λ1

∣∣= 0 , (8.4)

which, in component form, results in∣∣∣∣∣∣∣
σx−λ τxy τxz

τxy σy−λ τyz

τxz τyz σz−λ

∣∣∣∣∣∣∣= 0 . (8.5)

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems

doi:10.13140/RG.2.2.25821.20961
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The algebraic development of (8.5), named characteristic equation, corre-
sponds to a third-degree polynomial equation in λ , that can be written as

λ 3− I1λ 2− I2λ − I3 = 0 , (8.6)

where the coefficients I1 (σi j), I2 (σi j) and I3 (σi j) are certain functions of the
components σi j of the tensor σσσ expressed in the coordinate system {x,y,z}. Yet,
the solutions to (8.6), which will be a function of its coefficients (I1, I2, I3), are
the principal stresses that, on the other hand, are independent of the system of
axes chosen to express σσσ . Consequently, said coefficients must be invariant with
respect to any change of base. Therefore, the coefficients I1, I2 and I3 are denoted
as I stress invariants or fundamental stress invariants and their expression (re-
sulting from the computation of (8.5)) is

I stress
invariants

⎧⎪⎪⎨
⎪⎪⎩

I1 = Tr(σσσ) = σii = σ1 +σ2 +σ3

I2 =
1

2

(
σσσ : σσσ − I2

1

)
=−(σ1σ2 +σ1σ3 +σ2σ3)

I3 = det(σσσ) = σ1 σ2 σ3

(8.7)

Obviously, any scalar function of the stress invariants will also be an invariant
and, thus, new invariants can be defined based on the I stress invariants given
in (8.7). In particular, the so-called J stress invariants are defined as

J stress
invariants

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

J1 = I1 = σii = Tr(σσσ)

J2 =
1

2

(
I2
1 +2I2

)
=

1

2
σi jσ ji =

=
1

2
(σσσ : σσσ) =

1

2
Tr(σσσ ·σσσ)

J3 =
1

3

(
I3
1 +3I1I2 +3I3

)
=

1

3
σi jσ jkσki =

=
1

3
Tr(σσσ ·σσσ ·σσσ)

(8.8)
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Remark 8.1. Note that

I1 = 0 =⇒ Ji = Ii i ∈ {1,2,3} .

Also, the invariants Ji , i ∈ {1,2,3} can be expressed in a unified
and compact form by means of

Ji =
1

i
Tr
(
σσσ i
)

i ∈ {1,2,3} .

8.2.2 Spherical and Deviatoric Components of the Stress Tensor
Given the stress tensor σσσ , the mean stress σm is defined as

σm =
I1

3
=

1

3
Tr(σσσ) =

1

3
σii =

1

3
(σ1 +σ2 +σ3) (8.9)

and the mean pressure p̄ as

p̄ =−σm . (8.10)

The Cauchy stress tensor can be decomposed into a spherical part (or com-
ponent), σσσ sph, and a deviatoric one, σσσ ′,

σσσ = σσσ sph +σσσ ′ , (8.11)

where the spherical part of the stress tensor is defined as

σσσ sph :
de f
=

1

3
Tr(σσσ)1 = σm1

σσσ sph
not≡

⎡
⎢⎣σm 0 0

0 σm 0

0 0 σm

⎤
⎥⎦ (8.12)

and, from (8.11) and (8.12), the deviatoric part is given by

σσσ ′ = σσσ −σσσ sph
not≡

⎡
⎢⎣σx−σm τxy τxz

τxy σy−σm τyz

τxz τyz σz−σm

⎤
⎥⎦ . (8.13)
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Finally, the I and J invariants of the deviatoric tensor σσσ ′, named I′ and J′ invari-
ants, respectively, are derived from (8.7), (8.8), (8.9) and (8.13).

J′ stress
invariants

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

J′1 = I′1 = 0

J′2 = I′2 =
1

2
(σσσ ′ : σσσ ′) =

1

2
σ ′i j σ ′ji

J′3 = I′3 =
1

3

(
σ ′i j σ ′jk σ ′ki

)
(8.14)

Remark 8.2. It is easily proven that the principal directions of σσσ co-
incide with those of σσσ ′, that is, that both tensors diagonalize in the
same base. In effect, working in the base associated with the princi-
pal directions of σσσ , i.e., the base in which σσσ diagonalizes, and, given
that σσσ sph is a hydrostatic tensor and, thus, is diagonal in any base,
then σσσ ′ also diagonalizes in the same base (see Figure 8.2).

Figure 8.2: Diagonalization of the spherical and deviatoric parts of the stress tensor.
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Remark 8.3. The effective stress or equivalent uniaxial stress σ̄ is the
scalar

σ̄ =
√

3J′2 =

√
3

2
σ ′i j σ ′ji =

√
3

2
σσσ ′ : σσσ ′ .

The name of equivalent uniaxial stress is justified because its value
for an uniaxial stress state coincides with said uniaxial stress (see
Example 8.1).

Example 8.1 – Compute the value of the equivalent uniaxial stress (or effec-
tive stress) σ̄ for an uniaxial stress state defined by

σσσ not≡

⎡
⎢⎣σu 0 0

0 0 0

0 0 0

⎤
⎥⎦ .

Solution

The mean stress is

σm =
1

3
Tr(σσσ) =

σu

3
.

Then, the spherical component of the stress tensor is

σσσ sph
not≡

⎡
⎢⎣σm 0 0

0 σm 0

0 0 σm

⎤
⎥⎦=

⎡
⎢⎢⎢⎢⎣

σu

3
0 0

0
σu

3
0

0 0
σu

3

⎤
⎥⎥⎥⎥⎦

and the deviatoric component results in

σσσ ′ = σσσ −σσσ sph
not≡

⎡
⎢⎣σu−σm 0 0

0 −σm 0

0 0 −σm

⎤
⎥⎦=

⎡
⎢⎢⎢⎢⎣

2

3
σu 0 0

0 −1

3
σu 0

0 0 −1

3
σu

⎤
⎥⎥⎥⎥⎦ .
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Finally, the equivalent uniaxial stress (or effective stress) is obtained,

σ̄ =

√
3

2
σ ′i jσ ′ji =

√
3

2
σ2

u

(
4

9
+

1

9
+

1

9

)
=

√
3

2

2

3
|σu|= |σu| =⇒

σ̄ = |σu| .

8.3 Principal Stress Space
Consider a system of Cartesian axes in R

3 {x≡ σ1, y≡ σ2, z≡ σ3} such that
each stress state, characterized by the values of the three principal stresses
σ1 ≥ σ2 ≥ σ3, corresponds to a point in this space, which is known as the prin-
cipal stress space1(see Figure 8.3).

Definition 8.1. The hydrostatic stress axis is the locus of points in
the principal stress space that verify the condition σ1 = σ2 = σ3 (see
Figure 8.3). The points located on the hydrostatic stress axis repre-
sent hydrostatic states of stress (see Chapter 4, Section 4.4.5).

hydrostatic stress axis
(σ1 = σ2 = σ3)

= bisector of the 1st octant

Figure 8.3: The principal stress space.

1 The principal stress space is also known as the Haigh-Westergaard stress space.
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376 CHAPTER 8. PLASTICITY

hydrostatic stress axis
(σ1 = σ2 = σ3)

Figure 8.4: The hydrostatic stress axis and the octahedral plane.

Definition 8.2. The octahedral plane Π is any of the planes that
are perpendicular to the hydrostatic stress axis (see Figure 8.4). The
equation of an octahedral plane is

σ1 +σ2 +σ3 = const.
and the unit normal vector of said plane is

n not≡ 1√
3
[1, 1, 1]T .

8.3.1 Normal and Shear Octahedral Stresses
Consider P is a point in the principal stress space with coordinates (σ1,σ2,σ3).

The position vector of this point is defined as OP not≡= [σ1,σ2,σ3]
T (see Fig-

ure 8.5). Now, the octahedral plane Π containing point P is considered. The
intersection of the hydrostatic stress axis with said plane defines point A.

Definition 8.3. Based on Figure 8.5, the normal octahedral stress is
defined as ∣∣OA

∣∣=√3σoct

and the shear or tangential octahedral stress is∣∣AP
∣∣=√3τoct .

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems

doi:10.13140/RG.2.2.25821.20961



Con
tin

uum
M

ech
an

ics
for

Engin
eer

s

Theo
ry

an
d Pro

blem
s

©
X. O

liv
er

an
d C. A

ge
let

de Sar
ac

ibar

Principal Stress Space 377

Figure 8.5: Definitions of the normal and shear octahedral stresses.

Remark 8.4. The normal octahedral stress σoct informs of the dis-
tance between the origin O of the principal stress space and the oc-
tahedral plane that contains point P. The locus of points in the prin-
cipal stress space with the same value of σoct is the octahedral plane

placed at a distance
√

3σoct of the origin.
The shear octahedral stress τoct informs of the distance between
point P and the hydrostatic stress axis. It is, thus, a measure of the
distance that separates the stress state characterized by point P from
a hydrostatic stress state. The locus of points in the principal stress
space with the same value of τoct is a cylinder whose axis is the hy-

drostatic stress axis and whose radius is
√

3τoct .

The distance
∣∣OA

∣∣ can be computed as the projection of the vector OP on the
unit normal vector of the octahedral plane, n,

∣∣OA
∣∣= OP ·n not≡ [

σ1, σ2, σ3

]⎡⎢⎣1/
√

3

1/
√

3

1/
√

3

⎤
⎥⎦=

√
3

3
(σ1 +σ2 +σ3) =

√
3σm

∣∣OA
∣∣=√3σoct

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
⇒

(8.15)
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σoct = σm =
I1

3
(8.16)

where the definition (8.9) of mean stress σm has been taken into account.
The distance

∣∣AP
∣∣ can be obtained solving for the right triangle OAP in Fig-

ure 8.5,∣∣AP
∣∣2 = OP2−OA2

= σ2
1 +σ2

2 +σ2
3 −

1

3
(σ1 +σ2 +σ3)

2 . (8.17)

By means of several algebraic operations, this distance can be expressed in terms
of the second invariant of the deviatoric stress tensor in (8.14), J′2, as∣∣AP

∣∣2 = 2J′2 =⇒ ∣∣AP
∣∣=√2(J′2)

1/2∣∣AP
∣∣=√3τoct

⎫⎬
⎭=⇒ (8.18)

τoct =

√
2

3
(J′2)

1/2 (8.19)

Alternative expressions of τoct in terms of the value of J′2 in (8.14) are

τoct =
1√
3

(
σ2

1 +σ2
2 +σ2

3 −
1

3
(σ1 +σ2 +σ3)

2

)1/2

and

τoct =
1

3
√

3

(
(σ1−σ2)

2 +(σ2−σ3)
2 +(σ1−σ3)

2
)1/2

.

(8.20)

Remark 8.5. In a pure spherical stress state of σσσ ,

σσσ =σσσ sph =σm1 ⇔ σσσ ′=σσσ−σσσ sph = 0 ⇔ J′2 = 0 ⇔ τoct = 0 .

A spherical stress state is characterized by τoct = 0 and, thus, is lo-
cated on the hydrostatic stress axis (see Figure 8.5).

In a pure deviatoric stress state of σσσ ,

σσσ = σσσ ′ ⇔ σm = Tr(σσσ) = Tr
(
σσσ ′
)
= 0 ⇔ σoct = 0 .

A deviatoric stress state is characterized by σoct = 0 and, therefore, is
located on the octahedral plane containing the origin of the principal
stress space.
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Remark 8.6. A point P of the principal stress space is univocally
characterized by the three invariants I1 ≡ J1, J′2 and J′3 (see Fig-
ure 8.6):

− The first stress invariant I1 characterizes the distance (=
√

3σoct)
from the origin to the octahedral plane Π containing this point
through the relation σoct = I1/3. Thus, it places point P in a cer-
tain octahedral plane.

− The second deviatoric stress invariant J′2 characterizes the dis-

tance (=
√

3τoct) from the hydrostatic stress axis to the point.
Thus, it places point P on a certain circle in the octahedral
plane with center in the hydrostatic stress axis and radius√

3τoct =
√

2 (J′2)
1/2

.

− The third deviatoric stress invariant J′3 characterizes the position
of the point on this circle by means of an angle θ (J′3).

hydrostatic stress axis

Figure 8.6: Univocal definition of a point by means of the invariants I1, J′2 and J′3.
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Remark 8.7. Figure 8.7 shows the projection of the principal stress
space on an octahedral plane Π . The division of the stress space
into six sectors can be observed in this projection. Each sector is
characterized by a different ordering of the principal stresses and the
sectors are separated by the projections on the plane of the bisectors
σ2 = σ3, σ1 = σ3 and σ1 = σ2.
Selecting the criterion σ1 ≥ σ2 ≥ σ3 automatically reduces the fea-
sible work domain to the sector marked in gray in the figure. The
intersection of any surface of the type f (σ1,σ2,σ3) = 0 with the
plane Π is reduced to a curve in said sector.
This curve can be automatically extended to the rest of sectors, that
is, the curve obtained with the same function f (σ1,σ2,σ3) = 0 but
considering the different orderings of the principal stresses can be
easily plotted, by considering the symmetry conditions with respect
to the bisector planes. The resulting curve presnts, thus, three axes
of symmetry with respect to each of the axis in Figure 8.7.

Figure 8.7: Projection on an octahedral plane.
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8.4 Rheological Models
Rheological models are idealizations of mechanical models, constructed as a
combination of simple elements, whose behavior is easily intuitable, and that al-
low perceiving more complex mechanical behaviors. Here, as a step previous to
the analysis of elastoplastic models, frictional rheological models will be used to
introduce the concept of irrecoverable or permanent strain and its consequences.

8.4.1 Elastic Element (Spring Element)
The elastic rheological model is defined by a spring with constant E (see Fig-
ure 8.8). The model establishes a proportionality between stress and strain, both
in loading and unloading, being the constant E the proportionality factor (see
Figure 8.8).

Figure 8.8: Stress-strain relation in an elastic model.

8.4.2 Frictional Element
Consider a solid block placed on a rough surface (see Figure 8.9) and subjected
to a vertical compressive load N and a horizontal load F (positive rightward and
negative leftward). δ is the horizontal displacement of the block. The Coulomb
friction model2 establishes that the modulus of the reaction force R exerted by
the contact surface on the block cannot exceed a certain limit value Fu = μ N,
where μ ≥ 0 is the friction coefficient between the block and the surface. Con-
sequently, while the load F is below said limit value, the block does not move.
When the limit value Fu = μ N is reached, the block starts moving in a quasi-
static state (without any acceleration). To maintain the quasi-static regime, this
limit value must no be exceeded. These concepts can be mathematically ex-
pressed as

2 The Coulomb friction model is also known as dry friction model.
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|F |< μ N ⇐⇒ δ = 0 there is no motion ,

|F |= μ N ⇐⇒ δ 
= 0 there is motion ,

|F |> μ N impossible .

(8.21)

The behavior of the Coulomb friction model, in terms of the force-displacement
relation F−δ , is graphically represented in Figure 8.9, both for positive values
of the load F (rightward motion) and negative ones (leftward motion).

By analogy with the mechanical friction model, the frictional rheological
model in Figure 8.10 is defined, where σ is the stress (analogous to the load
F in the Coulomb model) that acts on the device and ε is the strain suffered by
this device (analogous to the displacement δ ). This rheological model includes
a frictional device characterized by a limit value σe (analogous to the role of μ N
in the Coulomb model) whose value cannot be exceeded.

Figure 8.11 shows the stress-strain curve corresponding to the frictional rhe-
ological model for a loading-unloading-reloading cycle, which can be split into
the following sections.

Figure 8.9: Coulomb’s law of friction.

|σ |< σe → Δε = 0

|σ |= σe → Δε 
= 0

|σ |> σe → impossible

Figure 8.10: Frictional rheological model.
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Section 0− 1: The (tensile) stress σ in-
creases until the threshold value σ = σe
is reached. There is no strain.

Section 1 − 2: Once the threshold
σ = σe has been reached, stress can-
not continue increasing although it can
keep its value constant. Then, the fric-
tional element flows, generating a strain
ε that grows indefinitely while the stress
is maintained (loading process).

Section 2− 3: At point 2, the tendency
of the stress is inverted, stress starts de-
creasing (Δσ < 0) and unloading be-
gins (σ < σe). Further strain increase is
automatically halted (Δε = 0). This sit-
uation is maintained until stress is can-
celed (σ = 0) at point 3. Note that, if

Figure 8.11: Stress-strain curve

for a loading-unloading-reloading

cycle in a frictional rheological

model.

the process was to be halted at this point, the initial state of null stress would be
recovered but not the initial state of null strain. Instead, a permanent or residual
strain would be observed (ε 
= 0). This reveals that, in this model, the trajec-
tory of the stress-strain curve is different in the loading and unloading regimes
and that the deformation process is (from a thermodynamic point of view) irre-
versible in character.

Section 3− 4: Beyond point 3, the sign of the stress is inverted and stress be-
comes compressive. However, since |σ |< σe, no changes in strain are observed
(Δε = 0).

Section 4−5: At point 4, the criterion |σ |= σe is satisfied and the model enters a
loading regime again. The element flows at a constant stress value σ =−σe, gen-
erating negative strain (Δε < 0), which progressively reduces the accumulated
strain. Finally, at point 5, the initial strain state is recovered, but not the original
stress state. Beyond this point, if unloading was imposed, there would be a cor-
responding decrease in stress until the cycle was closed at point 0. Conversely,
the loading regime could continue, generating a permanent negative strain.

8.4.3 Elastic-Frictional Model
The basic rheological elements, elastic and frictional, can be combined to pro-
duce a more complex model, named elastic-frictional model, by placing an elas-
tic element, characterized by the parameter E, in series with a frictional ele-
ment, characterized by the parameter σe (denoted as elastic limit), as shown in
Figure 8.12. Consider σ is the stress that acts on the model and ε is the to-
tal strain of this model. Since the basic elements are placed in series, the same
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stress will act on both of them. On the other hand, the total strain can be decom-
posed into the sum of the strain experienced by the elastic element (εe) plus the

strain experienced by the frictional device
(
ε f
)
. The same logic can be applied

at incremental level.

σ = σ e = σ f

ε = εe + ε f =
σ
E
+ ε f

Δε = Δεe +Δε f

⎫⎬
⎭ Additive decomposition

of strain

(8.22)

Frictional element
Elastic element

Figure 8.12: Elastic-frictional element.

Taking into account the stress-strain behavior of each basic element that com-
poses the rheological model, the combined model will satisfy:

• |σ |< σe =⇒ Δε f = 0 =⇒ Δε = Δεe =⇒
{

Δε = Δεe

Δσ = EΔε

The frictional element does not deform for stresses |σ | < σe, therefore all
strains are absorbed by the elastic element.

• |σ |= σe =⇒ Δε f 
= 0 =⇒ ε =
σ
E
+ ε f =⇒

{
|σ |= σe

Δε = Δε f =⇒ Δεe = 0 =⇒ Δσ = 0

All strain increments are absorbed by the frictional element with a null in-
crement of stress.
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• |σ |> σe

This is incompatible with the characteristics of the frictional element.

Figure 8.13 shows the stress-strain curve for a loading-unloading-reloading
cycle of the elastic-frictional model, which can be decomposed into the follow-
ing sections.

Section 0−1:
|σ |< σe =⇒ Δε f = 0 =⇒ Δε = Δεe

This section corresponds to the elastic loading phase. At the end of the loading,
at point 1, the strain is ε = εe = σe/E. The value of σe at the end of this elastic
section justifies its denomination as elastic limit.

Section 1−2:

|σ |= σe =⇒ Δε f 
= 0 =⇒
{

ε =
σe

E
+ ε f

Δε = Δε f > 0

This section corresponds to the frictional loading during which no deformation
is generated in the elastic element (no elastic strain is generated) and all incre-
ments of strain are absorbed by the frictional element.

Section 2−3:
|σ |< σe =⇒ Δε f = 0 =⇒ Δε = Δεe

This section corresponds to the elastic unloading. At the end of the unloading,
at point 3, the initial state of null stress is recovered (σ = 0). Consequently, the
elastic strain at this point is εe = σ/E = 0 and, thus, the residual or irrecoverable

strain is ε = ε f 
= 0. That is, the strain generated by the frictional element during
the frictional loading section 1− 2 is not recovered during this phase of stress
relaxation to zero. This allows qualifying the frictional component of strain ε f

as an irrecoverable or irreversible strain.

Section 3−4:
|σ |< σe =⇒ Δε f = 0 =⇒ Δε = Δεe

This section corresponds to the elastic reloading phase, similar to section 0−1
but with a compressive stress (σ < 0). The frictional component of strain is not
modified during the reloading and the final value, at point 4, of the elastic strain
is εe =−σe/E.

Section 4−5:

|σ |= σe =⇒ Δε f 
= 0 =⇒
⎧⎨
⎩ ε =−σe

E
+ ε f

Δε = Δε f < 0
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This section corresponds to the
frictional reloading during which
negative frictional strain is gen-
erated

(
Δε f < 0

)
. Therefore,

the total value of the frictional
strain decreases until it becomes
zero at point 5 (characterized by
ε = εe =−σe/E and ε f = 0). An
additional elastic unloading at this
point would result in recovering the
initial state 0.

Figure 8.13: Stress-strain curve for

a loading-unloading-reloading cycle in

an elastic-frictional rheological model.

8.4.4 Frictional Model with Hardening
Consider the rheological model in Figure 8.14 composed of an elastic element
(characterized by the parameter H ′, which will be denoted as hardening mod-
ulus) and a frictional element (characterized by the elastic limit σe) placed in
parallel. The parallel arrangement results in both rheological elements sharing
the same strain, while the total stress in the model is the sum of the stress in the
frictional element (σ (1)) plus the stress in the elastic element (σ (2)).

{
σ = σ (1) +σ (2)

Δσ = Δσ (1) +Δσ (2)

ε = εe = ε f

(8.23)

Figure 8.14: Frictional model with hardening.
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Analyzing separately the behavior of each element results in:

a) Frictional element

∣∣∣σ (1)
∣∣∣< σe Δε f = Δε = 0∣∣∣σ (1)
∣∣∣= σe Δε f = Δε 
= 0∣∣∣σ (1)
∣∣∣> σe impossible

(8.24)

b) Elastic element {
σ (2) = H ′εe = H ′ε
Δσ (2) = H ′Δεe = H ′Δε

(8.25)

c) Combining (8.24) and (8.25) leads to∣∣∣σ (1)
∣∣∣= ∣∣∣σ −σ (2)

∣∣∣= ∣∣σ −H ′ε
∣∣ (8.26)

In agreement with (8.24) and (8.25), the following situations can be estab-
lished regarding the rheological model:

•
∣∣∣σ (1)

∣∣∣< σe ⇐⇒
∣∣σ −H ′ε

∣∣< σe =⇒
{

Δε f = Δε = 0

Δσ (2) = H ′Δεe = H ′Δε = 0

=⇒
{

Δσ = Δσ (1)

Δε = 0

All the stress is absorbed by the frictional device and strain is null.

•
∣∣∣σ (1)

∣∣∣= σe ⇐⇒
∣∣σ −H ′ε

∣∣= σe =⇒

⎧⎪⎨
⎪⎩
∣∣∣σ (1)

∣∣∣= σe∣∣∣σ (2)
∣∣∣= ∣∣∣σ −σ (1)

∣∣∣
=⇒ Δσ (2) = Δσ = H ′Δε

All stress increments are totally absorbed by the elastic element.

Figure 8.15 shows the stress-strain curve corresponding to this rheological
model for a loading-unloading-reloading cycle, which can be decomposed into
the following sections.
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Section 0−1:

∣∣∣σ (1)
∣∣∣< σe =⇒ Δε = 0 =⇒

{
Δσ (2) = EΔε = 0

Δσ (1) = Δσ

In this section all the stress is absorbed by the frictional element. At the end of
the section, at point 1, the strain is ε = 0 and the stress is σ = σe. This section
is characterized by the condition∣∣σ −H ′ε

∣∣< σe .

Section 1−2:

∣∣∣σ (1)
∣∣∣= σe =⇒

{
σ = σe +σ (2)

Δσ = Δσ (2) = H ′Δε

This is a loading section in which all stress is absorbed by the elastic element.
In global terms, the model increases its capacity to resist stress (the model is
said to suffer hardening) proportionally to the increment of strain, being the
proportionality factor the hardening modulus H ′. This section is characterized
by the condition ∣∣σ −H ′ε

∣∣= σe .

Section 2−3:

∣∣∣σ (1)
∣∣∣< σe =⇒ Δε = 0 =⇒

{
Δσ (1) = Δσ
Δσ (2) = 0

In this section the stress in the frictional element decreases with a null incre-
ment of strain and keeping the stress constant in the elastic element. This state
is maintained until stress is totally inverted in the frictional element. Thus, at

point 3, the stress is σ (1) =−σ e. This section is characterized by the condition∣∣σ −H ′ε
∣∣< σe .

Section 3−4:

∣∣∣ σ (1)︸︷︷︸
−σ e

∣∣∣= σe =⇒
{

σ =−σe +σ (2)

Δσ = Δσ (2) = H ′Δε

The situation is symmetrical with respect to section 1− 2, with the elastic ele-
ment decreasing the stress it can bear, until the stress becomes null at point 3,
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Rheological Models 389

where σ (1) =−σe and σ (2) = 0. This section is characterized by the condition∣∣σ −H ′ε
∣∣= σe .

Beyond this point, relaxation of the stress in the frictional element leads to the
original state at point 0.

Figure 8.15: Stress-strain curve for a loading-unloading-reloading cycle in a frictional

rheological model with hardening.

8.4.5 Elastic-Frictional Model with Hardening
Combining now an elastic element, with elastic modulus E, in series with the
frictional model introduced in section 8.4.4, which has a hardening modulus H ′
and an elastic limit σe, the elastic-frictional model with hardening shown in
Figure 8.16 is obtained.

Applying the stress equilibrium and strain compatibility equations on the
model (see Figure 8.16) results in

{
ε = εe + ε f

Δε = Δεe +Δε f
→ Additive decomposition

of strain{
σ = σ e = σ f

Δσ = Δσ e = Δσ f

(8.27)
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Figure 8.16: Elastic-frictional model with hardening.

where σ e and σ f represent, respectively, the stresses sustained by the elastic
element and the frictional model with hardening. Combining now the behav-
ior of an elastic element (see Figure 8.8) with that of the frictional model with
hardening in Figure 8.14, yields the following situations:

• ∣∣σ −H ′ε f
∣∣< σe =⇒

{
Δε f = 0

Δσ = Δεe
=⇒ Δσ = EΔε

The frictional element with hardening does not deform and the increment of
strain Δε is completely absorbed by the elastic element. This case is denoted
as elastic process.

• ∣∣σ −H ′ε f
∣∣= σe

a) σ Δσ > 0 ⇐⇒
⎧⎨
⎩

σ > 0 and Δσ > 0

or

σ < 0 and Δσ < 0

=⇒
{

Δσ = Δσ f = H ′Δε f

Δσ = Δσ e = EΔεe

=⇒ Δε = Δεe +Δε f =
1

E
Δσ +

1

H ′Δσ =
E +H ′

EH ′ Δσ

=⇒
⎧⎨
⎩

Δσ = Ee f Δε

Ee f = E
H ′

E +H ′

The strain increment is absorbed by the two elements of the model (the
frictional one with hardening and the elastic one). The relation between
the stress increment Δσ and the strain increment Δε is given by the
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elastic-frictional tangent modulus Ee f . This case is called inelastic load-
ing process.

b) σ Δσ < 0 ⇐⇒
⎧⎨
⎩

σ > 0 and Δσ < 0

or

σ < 0 and Δσ > 0

=⇒ Δε f = 0 =⇒ Δε = Δεe =⇒ Δσ = E Δε

Every strain increment Δε is absorbed by the elastic element. This case
is named elastic unloading process.

Figure 8.17 shows the stress-strain curve corresponding to the model for a
loading-unloading-reloading cycle, in which the following sections can be dif-
ferentiated.

Section 0−1 and section 2−3:∣∣σ −H ′ε f
∣∣< σe =⇒ Δσ = EΔε

Correspond to elastic processes.

Section 1−2 and section 3−4:{∣∣σ −H ′ε f
∣∣= σe

σ Δσ > 0
=⇒ Δσ = Ee f Δε

Correspond to inelastic loading processes.

Point 2: {∣∣σ −H ′ε f
∣∣= σe

σ Δσ < 0
=⇒ Δσ = EΔε

Corresponds to an elastic unloading process.

Note that if H ′ = 0, then Ee f = 0, and the elastic-frictional model in Fig-
ure 8.13 is recovered.
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Elastic loading

Elastic

Figure 8.17: Stress-strain hardening curve for a loading-unloading-reloading cycle in an

elastic-frictional model with hardening.

8.5 Elastoplastic Phenomenological Behavior
Consider a steel bar of length � and cross-section A subjected to a tensile force F
at its extremes. The stress in the bar will be σ = F/A (see Figure 8.18) and the
corresponding strain can be estimated as ε = δ/�, where δ is the lengthening
of the bar. If the bar is subjected to several loading and unloading cycles, the
response typically obtained, in terms of stress-strain curve σ −ε , is as indicated
in Figure 8.19.

Observation of the first cycle reveals that, as long as the stress does not ex-
ceed the value σe (denoted as elastic limit) in point 1, the behavior is linear
elastic, characterized by the elastic modulus E (σ = Eε), and there do not ex-
ist irrecoverable strains (in a possible posterior unloading, the strain produced
during loading would be recovered).

For stress values above σe, the behavior ceases to be elastic and part of the
strain is no longer recovered during an ensuing unloading to null stress (point 3).
There appears, thus, a remaining strain named plastic strain, ε p. However, dur-
ing the unloading section 2− 3 the behavior is again, in an approximate form,
incrementally elastic (Δσ = E Δε). The same occurs with the posterior reload-
ing 3− 2, which produces an incrementally elastic behavior, until the stress
reaches, in point 2, the maximum value it will have achieved during the loading

Figure 8.18: Uniaxial tensile loading test.
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first unloading
second unloading

Figure 8.19: Response to loading-unloading-reloading cycles in an uniaxial tensile load-

ing test.

process. From this point on, the behavior is no longer incrementally elastic (as
if the material remembered the maximum stress to which it has been previously
subjected). A posterior loading-unloading-reloading cycle 2−4−5−4 exposes
again that, during section 2−4, additional plastic strain is generated, which ap-
pears in the form of permanent strain in point 5, and, also, additional elastic
strain εe is produced, understood as the part of the strain that can be recovered
during the unloading section 4−5.

8.5.1 Bauschinger Effect
Consider a sample of virgin material (a material that has not suffered previous
states of inelastic strain) subjected to an uniaxial tensile test and another sample
of the same virgin material subjected to an uniaxial compressive test. In certain
materials, the responses obtained, in terms of the stress-strain curve σ − ε in
Figure 8.20, for both tests are symmetrical with respect to the origin. That is, in
the tensile test the response is elastic up to a value of σ =σe (tensile elastic limit)
and in the compressive response the answer is also elastic up to a value of σ =
−σe (compressive elastic limit), being the rest of both curves (for an assumed
regime of monotonous loading) also symmetrical. In this case, the stress-strain
curve of the virgin material is said to be symmetrical in tension and compression.

Suppose now that a specimen that has been previously subjected to a his-
tory of plastic strains3, for example a tensile loading-unloading cycle such as
the 0− 1− 2− 3 cycle shown in Figure 8.19, undergoes now a compressive
test. Consider also that σy > σe is the maximum stress the material has been

3 This procedure is known as cold hardening and its purpose is to obtain an apparent elastic
limit that is superior to that of the virgin material σy > σe.
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subjected to during the loading process. An hypothetical symmetrical behavior
would result in the material having now an elastic behavior in the stress range
[−σy,σy]. However, in certain cases, the elastic behavior in compression ends
much earlier (see Figure 8.20). This is the effect known as Bauschinger effect
or kinematic hardening. Note that the stress-strain curve of the elastic-frictional
model in Figure 8.17 exhibits this type of hardening.

curve of the virgin material

curve of the stretched material

curve without the Bauschinger effect

Figure 8.20: Bauschinger effect or kinematic hardening.

Remark 8.8. In view of the phenomenological behavior observed in
Figure 8.19 and in Figure 8.20, the elastoplastic behavior is charac-
terized by the following facts:

1) Unlike in the elastic case, there does not exist unicity in the
stress-strain relation. A same value of strain can correspond to
infinite values of stress and vice-versa. The stress value depends
not only on the strain, but also on the loading history.

2) There does not exist a linear relation between stress and strain.
At most, this linearity may be incremental in certain sections of
the deformation process.

3) Irrecoverable or irreversible strains are produced in a loading-
unloading cycle.
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8.6 Incremental Theory of Plasticity in 1 Dimension

The elastoplastic behavior analyzed in sec-
tion 8.5 can be modeled using mathemati-
cal models of certain complexity4. One of
the most popular approximations is the so-
called incremental theory of plasticity. In a
one-dimensional case, the theory seeks to
approximate a stress-strain behavior such
as the one observed in Figure 8.19 by
means of piece-wise approximations using
elastic and inelastic regions such as the
ones shown in Figure 8.21. The generaliza-
tion to several dimensions requires the in-
troduction of more abstract concepts.

elastoplastic region

elastic region

Figure 8.21: Uniaxial stress-strain

curve for an elastoplastic model.

8.6.1 Additive Decomposition of Strain. Hardening Variable
The total strain ε is decomposed into the sum of an elastic (or recoverable)
strain εe, governed by Hooke’s law, and a plastic (or irrecoverable) strain ε p,

Additive decomposition
of strain

⎧⎪⎨
⎪⎩

ε = εe + ε p

εe =
σ
E

=⇒

⎧⎪⎨
⎪⎩

dε = dεe +dε p

dεe =
dσ
E

(8.28)

where E is the elastic modulus. In addition, the hardening variable α (σ ,ε p) is

defined by means of the evolution equation as follows5.

Hardening
variable α

⎧⎪⎨
⎪⎩

dα = sign(σ)dε p

dα ≥ 0

α
∣∣
ε p=0

= 0

(8.29)

4 Up to a certain point, these models may be inspired, albeit with certain limitations, in the
elastic-frictional rheological models described in section 8.4.
5 Here, the sign operator is used, which is defined as x ≥ 0 ⇐⇒ sign(x) = +1 and
x < 0 ⇐⇒ sign(x) =−1.

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems

doi:10.13140/RG.2.2.25821.20961



Con
tin

uum
M

ech
an

ics
for

Engin
eer

s

Theo
ry

an
d Pro

blem
s

©
X. O

liv
er

an
d C. A

ge
let

de Sar
ac

ibar

396 CHAPTER 8. PLASTICITY

Remark 8.9. Note that the hardening variable α is always positive, in
agreement with its definition in (8.29), and, considering the modules
of the expression dα = sign(σ)dε p, results in

dα = |dα|= |sign(σ)|︸ ︷︷ ︸
= 1

|dε p| =⇒ dα = |dε p| .

Then, for a process with monotonously increasing plastic strains,
both variables coincide,

dε p ≥ 0 =⇒ α =

ε p∫
0

|dε p|=
ε p∫

0

dε p = ε p .

However, if the process does not involve a monotonous increase, the
plastic strain may decrease and its value no longer coincides with
that of the hardening variable α .

8.6.2 Elastic Domain. Yield Function. Yield Surface
The elastic domain in the stress space is defined as the interior of the domain
enclosed by the surface F (σ ,α) = 0,

Elastic domain: Eσ := {σ ∈ R | F (σ ,α)< 0} (8.30)

where the function F (σ ,α) : R×R
+→ R is denoted as yield function.

The initial elastic domain E
0
σ is defined as the elastic domain corresponding

to a null plastic strain (ε p = α = 0),

Initial elastic domain: E
0
σ := {σ ∈ R | F (σ ,0)< 0} . (8.31)

An additional requirement of the initial elastic domain is that it must contain the
null stress state,

0 ∈ E
0
σ =⇒ F (0,0)< 0 , (8.32)

and this is achieved by defining a yield function of the type
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Incremental Theory of Plasticity in 1 Dimension 397

Yield function: F (σ ,α)≡ |σ |−σy (α) (8.33)

where σy (α) > 0 is known as the yield stress. The initial value (for α = 0)
of the yield stress is the elastic limit σe (see Figure 8.22) and the function
σy (α) : R+→ R

+ is named hardening law.

hardening
parameter

admissible
stress space

Figure 8.22: Hardening law and admissible stress space.

The yield surface is defined as the boundary of the elastic domain.

Yield surface: ∂Eσ :=
{

σ ∈ R | F (σ ,α)≡ |σ |−σy (α) = 0
}

(8.34)

The elastic domain Eσ together with its boundary ∂Eσ determine the admissible
stress space (domain) Ēσ

Admissible stress space:

Ēσ = Eσ
⋃

∂Eσ =
{

σ ∈ R | F (σ ,α)≡ |σ |−σy (α)≤ 0
} (8.35)

and it is postulated that any feasible (admissible) stress state must belong to
the admissible stress space Ēσ . Considering the definitions of elastic domain
in (8.30), yield surface in (8.34) and admissible stress space in (8.35), the fol-
lowing is established.
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F (σ ,α)< 0 ⇐⇒ |σ |< σy (α) ⇐⇒
{

σ in the elastic domain

(σ ∈ Eσ )

F (σ ,α) = 0 ⇐⇒ |σ |= σy (α) ⇐⇒
{

σ on the yield surface

(σ ∈ ∂Eσ )

F (σ ,α)> 0 ⇐⇒ |σ |> σy (α) ⇐⇒ non-admissible stress state

(8.36)

Remark 8.10. Note how, in (8.35), the admissible stress space de-
pends on the hardening variable α . The admissible domain evolves
with the yield function σy (α) such that (see Figure 8.22)

Ēσ ≡ [−σy (α) , σy (α)] .

8.6.3 Constitutive Equation
To characterize the response of the material, the following situations are defined:

• Elastic regime

σ ∈ Eσ =⇒ dσ = Edε (8.37)

• Elastoplastic regime in unloading

σ ∈ ∂Eσ

dF (σ ,α)< 0

}
=⇒ dσ = Edε (8.38)

• Elastoplastic regime in plastic loading

σ ∈ ∂Eσ

dF (σ ,α) = 0

}
=⇒ dσ = Eepdε (8.39)

where Eep is denoted as elastoplastic tangent modulus.
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Remark 8.11. The situation σ ∈ ∂Eσ and dF (σ ,α) > 0 cannot oc-
cur since, if σ ∈ ∂Eσ , from (8.34) results

F (σ ,α)≡ |σ |−σy (α) = 0 .

If, in addition, dF (σ ,α)> 0 then,

F (σ +dσ ,α +dα) = F (σ ,α)︸ ︷︷ ︸
= 0

+dF (σ ,α)︸ ︷︷ ︸
> 0

> 0

and, in agreement with (8.36), the stress state σ +dσ is not admis-
sible.

8.6.4 Hardening Law. Hardening Parameter
The hardening law provides the evolution of the yield stress σy (α) in terms of
the hardening variable α (see Figure 8.22). Even though the aforementioned
hardening law may be of a more general nature, it is common (and often suffi-
cient) to consider a linear hardening law of the type

σy = σe +H ′α =⇒ dσy (α) = H ′dα , (8.40)

where H ′ is known as the hardening parameter.

8.6.5 Elastoplastic Tangent Modulus
The value of the elastoplastic tangent modulus Eep introduced in (8.39) is calcu-
lated in the following manner. Consider an elastoplastic regime in plastic load-
ing. Then, from (8.39)6,

σ ∈ ∂Eσ =⇒ F (σ ,α)≡ |σ |−σy (α) = 0

dF (σ ,α) = 0

}
=⇒

d |σ |−dσy (α) = 0 =⇒ sign(σ)dσ −H ′dα = 0 ,

(8.41)

where (8.40) has been taken into account. Introducing the first expression of
(8.29) in (8.41) yields

sign(σ)dσ −H ′ sign(σ)dε p = 0 =⇒ dε p =
1

H ′ dσ . (8.42)

6 The property d |x|/dx = sign(x) is used here.
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400 CHAPTER 8. PLASTICITY

Consider now the additive decomposition of strain defined in (8.28), which
together with (8.42) results in

dε = dεe +dε p

dεe =
1

E
dσ

dε p =
1

H ′ dσ

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=⇒ dε =
1

E
dσ +

1

H ′ dσ =

(
1

E
+

1

H ′

)
dσ =⇒

dσ =
1

1

E
+

1

H ′

dε =⇒
⎧⎨
⎩

dσ = Eep dε

Eep = E
H ′

E +H ′
.

(8.43)

8.6.6 Uniaxial Stress-Strain Curve
The constitutive equation defined by expressions (8.37) to (8.39) allows obtain-
ing the corresponding stress-strain curve for an uniaxial process of loading-
unloading-reloading (see Figure 8.23) in which the following sections are ob-
served.

Section 0−1:

|σ |< σe =⇒ σ ∈ Eσ =⇒ Elastic regime

From (8.37), dσ = Edε and the behavior is linear elastic, defining an elastic
region in the stress-strain curve.

Section 1−2−4:

F (σ ,α)≡ |σ |−σy (α) = 0 =⇒ σ ∈ ∂Eσ

dF (σ ,α) = 0

}
=⇒ Elastoplastic regime

in plastic loading

From (8.39), dσ = Eepdε , defining an elastoplastic region.

Section 2−3−2:

F (σ ,α)≡ |σ |−σy (α)< 0 =⇒ σ ∈ ∂Eσ =⇒ Elastic regime

From (8.37), dσ = Edε and the behavior is linear elastic, defining an elastic
region in the stress-strain curve.

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems

doi:10.13140/RG.2.2.25821.20961



Con
tin

uum
M

ech
an

ics
for

Engin
eer

s

Theo
ry

an
d Pro

blem
s

©
X. O

liv
er

an
d C. A

ge
let

de Sar
ac

ibar

Incremental Theory of Plasticity in 1 Dimension 401

Figure 8.23: Uniaxial stress-strain curve for a loading-unloading-reloading cycle con-

sidering the incremental theory of plasticity.

Remark 8.12. In point 2 of Figure 8.23 the following two processes
are distinguished:

F (σ ,α)≡ |σ |−σy (α) = 0 =⇒ σ ∈ ∂Eσ

dF (σ ,α)< 0

}
Elastic unloading
in section 2−3

F (σ ,α)≡ |σ |−σy (α) = 0 =⇒ σ ∈ ∂Eσ

dF (σ ,α) = 0

}
Plastic loading in

section 2−4

Remark 8.13. Note that plastic strain is only generated during the
plastic loading process in the elastoplastic region (see Figure 8.24).
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402 CHAPTER 8. PLASTICITY

Elastoplastic
region

Elastic region

Figure 8.24: Generation of plastic strain in the elastoplastic region.

Remark 8.14. Note the similarity between the stress-strain curve in
Figure 8.23 and the one obtained with the elastic-frictional rheologi-
cal model with hardening in section 8.4.5 (Figure 8.17). The friction
strain in said model is equivalent to the plastic strain in the incre-
mental theory of plasticity.

Remark 8.15. The hardening parameter H ′ plays a fundamental role
in the definition of the slope Eep of the elastoplastic region. Follow-
ing (8.43),

Eep = E
H ′

E +H ′

and, depending on the value of H ′, different situations arise (see Fig-
ure 8.25):

− H ′> 0 =⇒ Eep > 0 → Plasticity with strain hardening. The limit
case H ′ = ∞ ⇒ Eep = E recovers the linear elastic behavior.

− H ′ = 0 =⇒ Eep = 0 → Perfect plasticity.

− H ′ < 0 =⇒ Eep < 0 → Plasticity with strain softening7. The
limit case corresponds to H ′ =−E ⇒ Eep =−∞.

7 Plasticity with strain softening presents a specific problematic regarding the uniqueness of
the solution to the elastoplastic problem, which is beyond the scope of this text.
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Figure 8.25: Role of the hardening parameter H ′ in the definition of the slope Eep.

8.7 Plasticity in 3 Dimensions
The incremental theory of plasticity developed in one dimension in section 8.6
can be generalized to a multiaxial stress state (three dimensions) using the same
ingredients, that is:

1) Additive decomposition of strain

Additive
decomposition

of strain

{
εεε = εεεe + εεε p

εεεe =CCC
−1 : σσσ

=⇒
{

dεεε = dεεεe +dεεε p

dεεεe =CCC
−1 : dσσσ

(8.44)

where CCC−1 is now the (constant) constitutive elastic tensor defined in chapter 6.

2) Hardening variable α and flow rule (evolution equations)

Flow rule

⎧⎪⎨
⎪⎩

dε p = λ
∂G(σσσ ,α)

∂σσσ
dα = λ α ∈ [0,∞)

(8.45)

where λ is the plastic multiplier and G(σσσ ,α) is the plastic potential function.
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404 CHAPTER 8. PLASTICITY

3) Yield function. Elastic domain and yield surface

Yield function

{
F (σσσ ,α)≡ φ (σσσ)−σy (α)

σy (α) = σe +H ′α (hardening law)

Elastic domain Eσ := {σσσ | F (σσσ ,α)< 0}
Initial

elastic domain
E

0
σ := {σσσ | F (σσσ ,0)< 0}

Yield surface ∂Eσ := {σσσ | F (σσσ ,α) = 0}
Admissible
stress state

Ēσ = Eσ
⋃

∂Eσ = {σσσ | F (σσσ ,α)≤ 0}

(8.46)

where φ (σσσ) ≥ 0 is denoted as the equivalent uniaxial stress, σe is the elastic
limit obtained in an uniaxial test of the material (it is a material property) and
σy (α) is the yield stress. The hardening parameter H ′ plays the same role as
in the uniaxial case and determines the expansion or contraction of the elastic
domain Eσ , in the stress space, as α grows. Consequently,

H ′ > 0 =⇒ Expansion
of Eσ with α → Plasticity with hardening

H ′ < 0 =⇒ Contraction
of Eσ with α → Plasticity with softening

H ′ = 0 =⇒
Constant

elastic domain(
Eσ = E

0
σ
) → Perfect plasticity

(8.47)

4) Loading-unloading conditions (Karush-Kuhn-Tucker conditions) and con-
sistency condition

Loading-unloading
conditions

→ λ ≥ 0 ; F (σσσ ,α)≤ 0 ; λF (σσσ ,α) = 0

Consistency
condition

→ If F (σσσ ,α) = 0 ⇒ λF (σσσ ,α) = 0

(8.48)

The loading-unloading conditions and the consistency condition are additional
ingredients, with respect to the unidimensional case, which allow obtaining, af-
ter certain algebraic manipulation, the plastic multiplier λ introduced in (8.45).
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8.7.1 Constitutive Equation
Similarly to the uniaxial case, the following situations are differentiated in rela-
tion to the constitutive equation:

• Elastic regime

σσσ ∈ Eσ =⇒ dσσσ =CCC : dεεε (8.49)

• Elastoplastic regime in unloading

σσσ ∈ ∂Eσ

dF (σσσ ,α)< 0

}
=⇒ dσσσ =CCC : dεεε (8.50)

• Elastoplastic regime in plastic loading

σσσ ∈ ∂Eσ

dF (σσσ ,α) = 0

}
=⇒ dσσσ =CCC

ep : dεεε (8.51)

where CCCep is known as the elastoplastic constitutive tensor which, after certain
algebraic operations considering (8.44) to (8.48), is defined as

CCC
ep (σσσ ,α) =CCC−

CCC :
∂G
∂σσσ

⊗ ∂F
∂σσσ

:CCC

H ′+
∂F
∂σσσ

:CCC :
∂G
∂σσσ

C
ep
i jkl = Ci jkl−

Ci jpq
∂G

∂σpq

∂F
∂σrs

Crskl

H ′+
∂F

∂σpq
Cpqrs

∂G
∂σrs

i, j,k, l ∈ {1,2,3}

(8.52)

8.8 Yield Surfaces. Failure Criteria
A fundamental ingredient in the theory of plasticity is the existence of an initial
elastic domain E

0
σ (see Figure 8.26) which can be written as

E
0
σ := {σσσ | F (σσσ)≡ φ (σσσ)−σe < 0} (8.53)
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406 CHAPTER 8. PLASTICITY

and determines a domain in the stress space delimited by the initial yield sur-
face ∂E0

σ ,

∂E0
σ := {σσσ | F (σσσ)≡ φ (σσσ)−σe = 0} . (8.54)

Given that the initial elastic domain contains the origin of the stress space
(σσσ = 0), every loading process in any point of the medium will include an elas-

tic regime (as long as the trajectory of the stresses remains inside E
0
σ , see Fig-

ure 8.26) that will end at the instant in which said trajectory reaches the yield
surface ∂E0

σ . The initial yield surface plays then the role of indicating the in-
stant of failure (understood as the end of the elastic behavior) independently
of the possible post-failure (plastic) behavior that initiates beyond this instant.
Thus, the importance of the initial yield surface and the interest in formulat-
ing the mathematical equations that adequately determine this surface for the
different materials of interest in engineering.

With the aim of defining the yield surface independently of the reference
system (isotropic material)8, even if formulated in the principal stress space, its
mathematical equation is typically defined in terms of the stress invariants,

F (σσσ)≡ F (
I1, J′2, J′3

)
, (8.55)

and, since the criterion σ1 ≥ σ2 ≥ σ3 is adopted, its definition only affects the
first sector of the principal stress space and can be automatically extended, due
to symmetry conditions (see Remark 8.7), to the rest of sectors in Figure 8.7.

∂E0
σ := {σσσ | φ (σσσ)−σe = 0}

E
0
σ := {σσσ | φ (σσσ)−σe < 0}

Figure 8.26: Initial elastic domain and initial yield surface.

8 An isotropic elastoplastic behavior is characterized by the fact that the yield surface, under-
stood as an additional ingredient of the constitutive equation, is independent of the reference
system.
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Yield Surfaces. Failure Criteria 407

8.8.1 Von Mises Criterion
In the von Mises criterion the yield surface is defined as

Von Mises criterion: F (σσσ)≡ σ̄ (σσσ)−σe =
√

3J′2−σe = 0 (8.56)

where σ̄ (σσσ) =
√

3J′2 is the effective stress (see Remark 8.3). An alternative

expression is obtained taking (8.19) and (8.20) and replacing them in (8.56),
which produces

F (σσσ)≡ 1√
2

(
(σ1−σ2)

2 +(σ2−σ3)
2 +(σ1−σ3)

2
)1/2−σe = 0 . (8.57)

The graphical representation of the von Mises yield surface is shown in Fig-
ure 8.27.

R =

√
2

3
σe

R =

√
2

3
σe

Figure 8.27: Von Mises criterion in the principal stress space.

Remark 8.16. Equation (8.56) highlights the dependency of the von
Mises yield surface solely on the second stress invariant J′2. Conse-
quently, all the points of the surface are characterized by the same
value of J′2, which defines a cylinder whose axis is the hydrostatic
stress axis.
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408 CHAPTER 8. PLASTICITY

Remark 8.17. The von Mises criterion is adequate as a failure crite-
rion in metals, in which, typically, hydrostatic stress states (both in
tensile and compressive loading) have an elastic behavior and failure
is due to the presence of deviatoric stress components.

Example 8.2 – Compute the expression of the von Mises criterion for an
uniaxial tensile loading case.

Solution

An uniaxial tensile loading case is characterized by the stress state

σσσ not≡

⎡
⎢⎣σu 0 0

0 0 0

0 0 0

⎤
⎥⎦ .

The effective stress is known to be σ̄ = |σu| (see Example 8.1) and, replacing
in the expression of the von Mises criterion (8.56), yields

F (σσσ)≡ σ̄ (σσσ)−σe = |σu|−σe .

Thus, the initial elastic domain is characterized in the same way as in unidi-
mensional plasticity seen in Section 8.6.2, by the condition

F (σσσ)< 0 =⇒ |σu|< σe .

Example 8.3 – Compute the expression of the von Mises criterion for a stress
state representative of a beam under composed flexure.

Solution

The stress state for a beam under composed flexure is
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σσσ not≡

⎡
⎢⎣ σx τxy 0

τxy 0 0

0 0 0

⎤
⎥⎦ =⇒ σm =

1

3
σx =⇒

σσσ ′ = σσσ − 1

3
σx1 not≡

⎡
⎢⎢⎢⎢⎣

2

3
σx τxy 0

τxy −1

3
σx 0

0 0 −1

3
σx

⎤
⎥⎥⎥⎥⎦ .

Then, the second stress invariant J′2 is computed as

J′2 =
1

2
σσσ ′ : σσσ ′ =

1

2

(
4

9
σ2

x +
1

9
σ2

x +
1

9
σ2

x + τ2
xy + τ2

xy

)
=

1

3
σ2

x + τ2
xy .

And the effective stress is obtained for the von Mises criterion,

σ̄ =
√

3J′2 =
√

σ2
x +3τ2

xy =⇒ F (σσσ)< 0 =⇒ σ̄ < σe =⇒

σco =
√

σ2
x +3τ2

xy < σe .

The comparison stress, σco =
√

σ2
xx +3τ2

xy , which can be regarded as a scalar

for comparison with the uniaxial elastic limit σe, is commonly used in the
design standards of metallic structures.
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410 CHAPTER 8. PLASTICITY

8.8.2 Tresca Criterion or Maximum Shear Stress Criterion
The Tresca criterion, also known as the maximum shear stress criterion, states
that the elastic domain ends, for a certain point in the medium, when the maxi-
mum shear stress acting on any of the planes containing this point, τmax, reaches
half the value of the uniaxial elastic limit σe,

τmax =
σ1−σ3

2
=

σe

2
. (8.58)

Figure 8.28 illustrates the failure situation in terms of Mohr’s circle in three
dimensions. In a loading process in which this circle increases starting from
the origin, the elastic behavior ends when the circle with radius τmax becomes
tangent to the straight line τ = τmax = σe/2.

It follows from (8.58) that the Tresca criterion can be written as

Tresca criterion: F (σσσ)≡ (σ1−σ3)−σe = 0 (8.59)

Remark 8.18. It can be verified that the Tresca criterion is written in
an unequivocal form as a function of J

′
2 and J

′
3 and does not depend

on the first stress invariant I1.

Tresca criterion: F (σσσ)≡ (σ1−σ3)−σe ≡ F
(

J
′
2, J

′
3

)

Figure 8.28: Representation of the Tresca criterion using Mohr’s circle in three dimen-

sions.
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hydrostatic stress axis

von Mises

Tresca

Figure 8.29: Tresca criterion in the principal stress space.

Figure 8.29 shows the yield surface corresponding to the Tresca criterion in
the principal stress space, which results in an hexahedral prism whose axis is the
hydrostatic stress axis.

Remark 8.19. Since the Tresca criterion does not depend on the first
stress invariant (and, therefore, on the stress σoct , see (8.16)), the cor-
responding yield surface does not depend on the distance from the
origin to the octahedral plane containing the point (see Remark 8.4).
Thus, if a point in the stress space, characterized by its stress invari-
ants (I1, J′2, J′3), is on said yield surface, all the points in the stress
space with the same values of J′2 and J′3 will also be on this surface.
This circumstance qualifies the yield surface as a prismatic surface
whose axis is the hydrostatic stress axis.
On the other hand, the dependency on the two invariants J′2 and J′3,
prevents (unlike in the case of the von Mises criterion) the surface
from being cylindrical. In short, the symmetry conditions establish
that the surface of the Tresca criterion be an hexagonal prism in-
scribed in the von Mises cylinder (see Figure 8.29).

Remark 8.20. The Tresca criterion is used to model the behavior of
metals, in a similar manner to the case of the von Mises criterion
(see Remark 8.17).
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Example 8.4 – Compute the expression of the Tresca criterion for an uniaxial
tensile loading case.

Solution

An uniaxial tensile load case is characterized by the stress state

σσσ not≡

⎡
⎢⎣σu 0 0

0 0 0

0 0 0

⎤
⎥⎦ .

For the case σu ≥ 0 ,

σ1 = σu

σ3 = 0

}
=⇒ F (σ1, σ2, σ3) = (σ1−σ3)−σe = σu−σe = |σu|−σe .

For the case σu < 0,

σ1 = 0

σ3 = σu

}
=⇒ F (σ1, σ2, σ3) = (σ1−σ3)−σe =−σu−σe = |σu|−σe .

And the initial elastic domain is then characterized in the same way as in the
one-dimensional plasticity seen in Section 8.6.2, by the condition

F (σσσ)< 0 =⇒ |σu|< σe .

8.8.3 Mohr-Coulomb Criterion
The Mohr-Coulomb criterion can be viewed as generalization of the Tresca cri-
terion, in which the maximum shear stress sustained depends on the own stress
state of the point (see Figure 8.30). The yield line, in the space of Mohr’s circle,
is a straight line characterized by the cohesion c and the internal friction angle φ ,
both of which are considered to be material properties,

τ = c−σ tanφ . (8.60)

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems

doi:10.13140/RG.2.2.25821.20961



Con
tin

uum
M

ech
an

ics
for

Engin
eer

s

Theo
ry

an
d Pro

blem
s

©
X. O

liv
er

an
d C. A

ge
let

de Sar
ac

ibar

Yield Surfaces. Failure Criteria 413

Figure 8.30: Representation of the Mohr-Coulomb criterion using Mohr’s circle in three

dimensions.

The end of the elastic behavior (failure) in an increasing load process takes
place when the first point in the Mohr’s circle (corresponding to a certain plane)
reaches the aforementioned yield line.

The shear stress in this plane, τ , becomes smaller as the normal stress σ in the
plane increases. It therefore becomes obvious that the behavior of the model un-
der tensile loading is considerably different to the behavior under compressive
loading. As can be observed in Figure 8.30, the yield line crosses the normal
stress axis in the positive side of these stresses, limiting thus the material’s ca-
pacity to withstand tensile loads.

To obtain the mathematical expression of the yield surface, consider a stress
state for which plasticization initiates. In such case, the corresponding Mohr’s
circle is defined by the major and minor principal stresses and is tangent to the
yield line at point A (see Figure 8.31), verifying

R =
σ1−σ3

2
=⇒

⎧⎪⎪⎨
⎪⎪⎩

τA = Rcosφ =
σ1−σ3

2
cosφ

σA =
σ1 +σ3

2
+Rsinφ =

σ1 +σ3

2
+

σ1−σ3

2
sinφ

(8.61)
and, replacing (8.61) in (8.60), results in

τA = c−σA tanφ =⇒ τA +σA tanφ − c = 0 =⇒
σ1−σ3

2
cosφ +

(
σ1 +σ3

2
+

σ1−σ3

2
sinφ

)
tanφ − c = 0 =⇒

(σ1−σ3)+(σ1 +σ3)sinφ −2ccosφ = 0 .

(8.62)
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Figure 8.31: Deduction of the expression for the Mohr-Coulomb criterion using Mohr’s

circle.

Mohr-Coulomb criterion:

F (σσσ)≡ (σ1−σ3)+(σ1 +σ3)sinφ −2ccosφ = 0
(8.63)

Remark 8.21. The equation

F (σσσ)≡ (σ1−σ3)+(σ1 +σ3)sinφ −2ccosφ = 0 ,

which is linear in σ1 and σ3, defines a plane in the principal stress
space that is restricted to the sector σ1 ≥ σ2 ≥ σ3. Extension, taking
into account symmetry conditions, to the other five sectors (see Re-
mark 8.7) defines six planes that constitute a pyramid of indefinite
length whose axis is the hydrostatic stress axis (see Figure 8.32). The
distance from the origin of the principal stress space to the vertex of

the pyramid is d =
√

3ccotφ .

Remark 8.22. The particularization φ = 0 and c = σe/2 reduces
the Mohr-Coulomb criterion to the Tresca criterion (see (8.59) and
(8.63)).
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√
3ccotφ

Figure 8.32: Mohr-Coulomb criterion in the principal stress space.

Remark 8.23. In soil mechanics, the sign criterion of the normal
stresses is the opposite to the one used in continuum mechanics
(σ ≡−σ , see Chapter 4) and, thus, σ1 ≡−σ3 and σ3 ≡−σ1. Then,
the Mohr-Coulomb criterion in (8.63) becomes

F (σσσ)≡ (σ1−σ3)− (σ1 +σ3)sinφ −2ccosφ .

The corresponding graphical representations are shown in Fig-
ures 8.33 and 8.34.

Figure 8.33: Representation of the Mohr-Coulomb criterion using Mohr’s circle in three

dimensions and soil mechanics sign criterion.
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Figure 8.34: Mohr-Coulomb criterion in the principal stress space, using soil mechanics

sign criterion.

Remark 8.24. Following certain algebraic operations, the Mohr-
Coulomb criterion can be written in terms of the three stress invari-
ants.

Mohr-Coulomb criterion: F (σσσ)≡ F
(

I1, J
′
2, J

′
3

)

Remark 8.25. The Mohr-Coulomb criterion is especially adequate
for cohesive-frictional materials (concrete, rocks and soils), which
are known to exhibit considerably different uniaxial elastic limits
under tensile and compressive loadings.

8.8.4 Drucker-Prager Criterion
The yield surface defined by the Drucker-Prager criterion is given by

Drucker-Prager criterion: F (σσσ)≡ 3ασm +
(

J
′
2

)1/2−β = 0 (8.64)

where
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α =
2sinφ√

3(3− sinφ)
, β =

6ccosφ√
3(3− sinφ)

and σm =
σ1 +σ2 +σ3

3
=

I1

3
, (8.65)

being c and φ the cohesion and the internal friction angle, respectively, which are
considered to be material properties. Considering (8.16) and (8.18), the criterion
can be rewritten as

F (σσσ)≡ αI1+
(

J
′
2

)1/2−β = 3ασoct +

√
3

2
τoct−β =F

(
I1, J

′
2

)
= 0 . (8.66)

Remark 8.26. The independence on the third stress invariant J
′
3 es-

tablishes that, if a certain point in the stress space belongs to the
yield surface, all the other points with the same value of the stress

invariants I1 and J
′
2 also belong to this surface, independently of the

value of the third stress invariant J
′
3. Given that the constant values of

these invariants correspond to points of the octahedral plane placed
at a same distance from the hydrostatic stress axis (see Figure 8.6),
it can be concluded that the yield surface is a surface of revolution
around this axis.
In addition, because the relation between σoct and τoct in (8.66)
is lineal, the surface is a conical surface whose axis is the hydro-
static stress axis (see Figure 8.5 and Figure 8.35). The distance from
the origin of the principal stress space to the vertex of the cone is

d =
√

3ccotφ . It can be verified that the Drucker-Prager surface has
the Mohr-Coulomb surface with the same values of cohesion, c, and
internal friction angle, φ , semi-inscribed in it.

Drucker-
Prager

Mohr-
Coulomb

√
3ccotφ

Figure 8.35: Drucker-Prager criterion in the principal stress space.
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418 CHAPTER 8. PLASTICITY

Remark 8.27. The position of the vertex of the Drucker-Prager cone
in the positive side of the hydrostatic stress axis establishes a lim-
itation in the elastic behavior range for hydrostatic stress states in
tensile loading (while there is no limitation in the elastic limit for
the hydrostatic compression case). This situation, which also occurs
in the Mohr-Coulomb criterion, is typically observed in cohesive-
frictional materials (concrete, rocks and soils), for which these two
criteria are especially adequate.

Remark 8.28. In soil mechanics, where the sign criterion for the nor-
mal stresses is inverted, the yield surface for the Drucker-Prager cri-
terion is as indicated in Figure 8.36.

Remark 8.29. The particularization φ = 0 and c = σe/2 reduces
the Drucker-Prager criterion to the von Mises criterion (see (8.56),
(8.64) and (8.65)).

Drucker-
Prager

Mohr-
Coulomb

Figure 8.36: Drucker-Prager criterion in the principal stress space, using soil mechanics

sign criterion.
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PROBLEMS

Problem 8.1 – Justify the shape the yield surface will have in the principal
stress space for each of the following cases:

a) f
(
I2
1

)
= 0

b) f (J′2) = 0

c) aI2
1 +bτ2

oct = c with a, b and c strictly positive

Solution

a) In this case, there is a condition on the mean stress since

I1 = σ1 +σ2 +σ3 = 3σm .

Then, the yield surface is an octahedral plane whose distance to the origin is
imposed by the first stress invariant. However, because this invariant is squared,
there are two octahedral planes, one in each direction of the hydrostatic stress
axis.

hydrostatic stress axis

√
3σm

√
3σm

b) Here, the distance between a given stress state and an hydrostatic stress
state is imposed. So, the yield surface is a cylinder with circular section in the
octahedral planes,

J′2 =
3

2
τ2

oct =⇒ distance =
√

3τoct .
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420 CHAPTER 8. PLASTICITY

hydrostatic stress axis

√
3τoct

c) The representation of a plane defined by a given point of the yield surface
and the hydrostatic stress axis is:

= hydrostatic stress axis

Point

Then, the relations

d = x =
√

3σoct =

√
3

3
I1

R = y =
√

3τoct

⎫⎬
⎭ =⇒

⎧⎨
⎩

I1 =
√

3x

τoct =
R√
3

are deduced and replacing these values in the given expression of the yield sur-
face results in

aI2
1 +bτ2

oct = c =⇒ 3ax2 +
by2

3
= c =⇒

⎛
⎜⎜⎝ x√

c
3a

⎞
⎟⎟⎠

2

+

⎛
⎜⎜⎝ y√

3c
b

⎞
⎟⎟⎠

2

= 1 .

This is the mathematical description of an ellipse in the x− y plane previously
defined. In addition, since the third stress invariant does not intervene in the
definition of the yield surface, the hydrostatic stress axis is an axis of radial
symmetry and, thus, the rotation of the ellipse about the x-axis (≡ hydrostatic
stress axis) defines the final surface.
In conclusion, if the axes considered are the axes x (≡ hydrostatic stress axis), y
and z, the yield surface is defined by
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⎛
⎜⎜⎝ x√

c
3a

⎞
⎟⎟⎠

2

+

⎛
⎜⎜⎝ y√

3c
b

⎞
⎟⎟⎠

2

+

⎛
⎜⎜⎝ z√

3c
b

⎞
⎟⎟⎠

2

= 1 .

hydrostatic stress axis

Problem 8.2 – Graphically determine, indicating the most significant values,
the cohesion and internal friction angle of an elastoplastic material that follows
the Mohr-Coulomb yield criterion using the following information:

1) In an uniaxial tensile stress state (σ1 = σ , σ2 = σ3 = 0), the material
plasticizes at σ = σA.

2) In a triaxial isotensile test of the same material (σ1 = σ2 = σ3 = σ), it
plasticizes at σ = σB.

Solution

In the uniaxial tensile stress state, the Mohr’s circle will cross the origin and the
value σ = σA in the horizontal axis. However, for the triaxial isotensile stress
state, the Mohr’s circle will degenerate to a point in this axis, σ = σB. Thus, the
following graph is plotted
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422 CHAPTER 8. PLASTICITY

which allows establishing the relations

tanφ =
c

σB
and sinφ =

σA/2

σB−σA/2
.

Finally, the cohesion and internal friction angle are

φ = arcsin
σA/2

σB−σA/2
and c = σB tanφ .

Problem 8.3 – The following properties of a certain material have been exper-
imentally determined:

1) In a hydrostatic compressive regime, the material never plasticizes.

2) In a hydrostatic tensile regime, the virgin material plasticizes for a value of
the mean stress σm = σ∗.

3) In an uniaxial tensile regime, the virgin material plasticizes for a tensile
stress value σu .

4) In other cases, plasticization occurs when the norm of the deviatoric
stresses varies linearly with the mean stress,∣∣σσσ ′∣∣=√σσσ ′ : σσσ ′ = aσm +b .

Plot the yield surface, indicating the most significant values, and calculate the
values a and b in terms of σ∗ and σu.

Solution
Property 1) and 2) indicate that the
yield surface is closed in the tensile
part of the hydrostatic stress axis but
open in the compressive part. In addi-
tion, property 3) indicates that the oc-
tahedral plane that contains the origin
will have the shape shown in the figure
to the right. Since property 4) indicates
that the deviatoric stresses vary linearly
with the mean stress (as is the case for
the Drucker-Prager criterion), then the
yield surface is necessarily a right cir-
cular cone whose axis is the hydrostatic
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stress axis and whose vertex is in the tensile part of this axis:

√
3σm =

√
3σ∗

hydrostatic
stress axis

To calculate the values of a and b, the yield criterion |σσσ ′|=√σσσ ′ : σσσ ′ = aσm+b
is applied on the vertex of the cone, which corresponds with the hydrostatic
tensile case and, thus, has no deviatoric stresses,

|σσσ ′|= 0 =⇒ aσm

∣∣∣
σm=σ∗

+b = 0 =⇒ aσ∗+b = 0 . [1]

The procedure is repeated for the uniaxial tensile case, whose deviatoric stresses
are now

σσσ not≡

⎡
⎢⎣σu 0 0

0 0 0

0 0 0

⎤
⎥⎦ and σσσ sph =

1

3
σu1 =⇒ σσσ ′ not≡ σu

3

⎡
⎢⎣ 2 0 0

0 −1 0

0 0 −1

⎤
⎥⎦ .

Then, applying the yield criterion |σσσ ′|= aσm +b produces

|σσσ ′|=
√

2

3
σu =⇒

√
2

3
σu = a

(
1

3
σu

)
+b . [2]

Equations [1] and [2] allow determining the desired values of a and b as

a =

√
2

3
σu

σu

3
−σ∗

and b =−

√
2

3
σuσ∗

σu

3
−σ∗

.
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424 CHAPTER 8. PLASTICITY

Problem 8.4 – The metallic component PQRS has a thickness “e” and is com-
posed of two different materials, (1) and (2), considered to be perfect elasto-
plastic materials. The component is subjected to a pure shear test by means of
the machine shown in Figure A, such that the uniform stress and strain states
produced are

εx = εy = εz = 0 , γxz = γyz = 0 , γxy = γ =
δ
h

,

σx = σy = σz = 0 , τxz = τyz = 0 and τxy = τ 
= 0 .

When a component exclusively composed of one of the materials is tested sep-
arately, a τ− γ curve of the type shown in Figure B is obtained for both mate-
rials. Determine:

a) The elastic limit that will be obtained in separate uniaxial tensile tests of
each material, assuming they follow the von Mises criterion.

When the component composed of the two materials is tested, the P− δ curve
shown in Figure C is obtained. Determine:

b) The values of the elastic load and displacement, Pe and δe.
c) The values of the plastic load and displacement, Pp and δp.
d) The coordinates P−δ of points C and D in Figure C.

rigid frame

Figure A

HYPOTHESES:

Material (1)
G = G and τe = τ∗

Material (2)
G = G and τe = 2τ∗

Figure B Figure C
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Solution

a) In an uniaxial state of stress, plasticization according to the von Mises crite-
rion is known to begin when (see Example 8.2)

σ̄ = σe ,

where σ̄ is the effective stress and σe is the elastic limit. In addition, the follow-
ing relations seen in this chapter, are known to hold.

σ̄ = (3J′2)
1
2 J′2 =

1

2
Tr
(
σσσ ′2

)
σσσ ′ = σσσ −σσσ sph σσσ sph = σm1 σm =

1

3
Tr(σσσ)

For this problem in particular,

σσσ not≡

⎡
⎢⎣ 0 τ 0

τ 0 0

0 0 0

⎤
⎥⎦ ,

so σm = 0 and, therefore, σσσ sph = 0, leading to σσσ ′ = σσσ . Then,

(
σσσ ′
)2 not≡

⎡
⎢⎣ τ2 0 0

0 τ2 0

0 0 0

⎤
⎥⎦ =⇒ J′2 = τ2 =⇒ σ̄σσ =

√
3τ .

Considering that material (1) plasticizes when τe = τ∗ and material (2), when
τe = 2τ∗, then

Material 1 =⇒ σe =
√

3τ∗ ,

Material 2 =⇒ σe = 2
√

3τ∗ .

b) The elastic load Pe and the elastic displacement δe determine the end of the
elastic regime in the component. The statement of the problem indicates that
when the materials are tested separately, the τ−γ curve in Figure B is obtained,
where τe = τ∗ in material (1) and τe = 2τ∗ in material (2). It is also known that G
is the same in both materials, that is, they have the same slope in their respective
τ− γ curves.
Now, to determine the combined behavior of these materials in the metallic
component, one can assume that the behavior will be elastic in this component
as long as both materials are in their corresponding elastic domain. Therefore,

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems

doi:10.13140/RG.2.2.25821.20961



Con
tin

uum
M

ech
an

ics
for

Engin
eer

s

Theo
ry

an
d Pro

blem
s

©
X. O

liv
er

an
d C. A

ge
let

de Sar
ac

ibar

426 CHAPTER 8. PLASTICITY

since the elastic interval of material (1) is smaller, then this material will define
the elastic domain of the whole component (up to point A in Figure C).

To obtain the value of the elastic force, equilibrium of forces is imposed for the
force Pe and the stresses each material has at point A. Note that equilibrium is im-
posed on forces, therefore, stresses must be multiplied by the surface on which
they act, considering the magnitude perpendicular to the plane of the paper as
the unit value.

Pe =
h
2

τA
1 +

h
2

τA
2 =

h
2

τ∗+
h
2

τ∗ =⇒ Pe = hτ∗

The elastic displacement is obtained imposing kinematic compatibility of the
two materials,

δe = γ A
1 h = γ A

2 h =⇒ δe =
τ∗

G
h .

c) To obtain the plastic values Pp and δp one must take into account that, at
point A, material (1) begins to plasticize, while material (2) initiates plasticiza-
tion at point B. Therefore, the behavior of the complete component will be per-
fectly plastic starting at point B, but elastoplastic between points A and B. To
determine the coordinates of point B, the same procedure as before is used. Plot-
ting the τ− γ curves of each separate material up to point B results now in
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and, imposing the equilibrium and compatibility equations, yields the values of
Pp and δp.

Pp =
h
2

τ B
1 +

h
2

τ B
2 =

h
2

τ∗+
h
2

2τ∗

δp = γ B
1 h = γ B

2 h =
2τ∗

G
h

⎫⎪⎪⎬
⎪⎪⎭ =⇒

Pp =
3

2
τ∗h and

δp = 2
τ∗h
G

= 2δe .

d) The coordinates of points A and B have already been obtained. The statement
of the problem gives the value of point B′, which corresponds to a deformation
of 3δe when the plastic load Pp is maintained constant (perfectly plastic regime).
Consider first the material (1). Unloading takes place starting at B′ and, accord-
ing to the information given, this material plasticizes when it reaches a value
of −τ∗. The slope of the curve is still the value of the material parameter G
since this is independent of the material being under loading or unloading con-
ditions. Thus, to determine point C it is enough to draw a straight line that crosses
point B′ and is parallel to OA, until the value −τ∗ is reached.
The same occurs in the case of material (2), with the difference that when the
line parallel to OA is drawn to cross point B′, this line must be extended to the
value −2τ∗ (which corresponds to point D).

Then, the load and displacement values at point B′ are

δB′ = 3δA =
3τ∗h

G
= 3δe and PB′ = PB =

3

2
τ∗h .
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To obtain the load and displacement values at point C, the equilibrium and com-
patibility equations are imposed. Taking into account the τ and γ values obtained
at point C in the curves above yields

PC =
h
2

τ C
1 +

h
2

τ C
2 =

h
2
(−τ∗)+

h
2
(0) =−τ∗h

2

δC = γ C
1 h =

(
τ∗

G

)
h

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ =⇒

PC =−τ∗h
2

and

δC =
τ∗h
G

= δe .

Repeating the procedure for point D results in

PD =
h
2

τ D
1 +

h
2

τ D
2 =

h
2
(−τ∗)+

h
2
(−2τ∗) =−3τ∗h

2

δD = γ D
2 h =

(
−τ∗

G

)
h

⎫⎪⎪⎪⎬
⎪⎪⎪⎭⇒

PD =−3τ∗h
2

and

δD =−τ∗h
G

=−δe .

Problem 8.5 – Consider the solid cylinder shown in Figure A, which is fully
fixed at its base and has a torsional moment M applied on its top end. The
cylinder is composed of two materials, (1) and (2), which have an elastoplas-
tic tangent stress-strain behavior, as shown in Figure B. Assume the following
displacement field in cylindrical coordinates (Coulomb torque),

u(r,θ ,z) not≡ [ur , uθ , uz]
T =

[
0 ,

θ
h

rz , 0

]T

,

where φ is the rotation of the section at the free end of the cylinder. Assuming
infinitesimal strains, determine:

a) The strain and stress tensors, εεε and σσσ , in cylindrical coordinates and elas-
tic regime. Plot, indicating the most significant values, the σrr − r and
τθz− r curves for a cross-section of the cylinder at height z. Schematically
represent the stress distribution of τθz in this cross-section.

b) The value of φ = φe (see Figure C) for which plasticization begins in at least
one point of the cylinder, indicating where it begins and the corresponding
value of the moment M = Me.

NOTE: M =
∫

S
r τθz dS

c) The minimum value of φ = φ1 for which material (1) has totally plasticized
and the corresponding value of M = M1 (see Figure C). Schematically rep-
resent the stress distribution in a cross-section at this instant.
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d) The minimum value of φ = φ2 for which material (2) has totally plasticized
and the corresponding value of M = M2 (see Figure C). Schematically rep-
resent the stress distribution in a cross-section at this instant.

e) The asymptotic value of M = Mp (= plastic moment) corresponding to the
plasticization of the complete cross-section. Schematically represent the
stress distribution in a cross-section at this instant.

Figure A
Figure C

Figure B

HYPOTHESES:
Material (1): G = G and τe = τ∗.
Material (2): G = G and τe = 2τ∗.

Solution

a) The infinitesimal strain tensor is calculated directly from the given displace-
ment field, both in cylindrical coordinates,

εεε not≡

⎡
⎢⎢⎢⎣

0 0 0

0 0
φr
2h

0
φr
2h

0

⎤
⎥⎥⎥⎦ .
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430 CHAPTER 8. PLASTICITY

To compute the stress tensor, the constitutive equation of an isotropic elastic
material is used. Note that the two materials composing the cylinder have the
same parameter G, then

σσσ = λ Tr(εεε)1+2μεεε and

Tr(εεε) = 0

μ = G

}
=⇒ σσσ = 2Gεεε .

The stress tensor results in

σσσ not≡

⎡
⎢⎢⎢⎣

0 0 0

0 0
Gφr

h
0

Gφr
h

0

⎤
⎥⎥⎥⎦ .

Plotting the σrr and τθz components of the stress tensor in terms of the radius r
yields:

The stresses are linear and do not depend on the z-coordinate of the cross-section
considered. Thus, the distribution of stresses in any cross-section (z = const.) of
the cylinder is:
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b) Given the stress distribution τ = (Gφr/h)≤ φ ≤ φe , the moment acting on
the cylinder is

M =
∫
S

r τ (r)dS =

2π∫
0

R∫
0

r
(

Gφr
h

)
r dr dθ = 2π

R∫
0

Gφr3

h
dr =

πGR4

2h
φ . [1]

This is the relation between the moment and the rotation angle (M−φ) at the
free end of the cylinder when the two materials behave elastically.
Material (1) starts to plasticize first at τe = τ∗, since material (2) plasticizes at a
higher stress, τe = 2τ∗. In addition, the external surface of the cylinder (r = R)
suffers larger stresses, and this surface is composed of material (1). Therefore,
plasticization will initiate when

τ
∣∣∣
r=R; φ=φe

= τ∗ =⇒ GφeR
h

= τ∗ =⇒ φe =
τ∗h
GR

is satisfied. This is the value of the rotation angle at the free end of the cylinder
required for plasticization to initiate in the exterior material points of the cylinder
(material (1)). The corresponding moment is obtained by replacing φe in [1],

Me = M (φe) =
πGR4

2h
φe =⇒ Me =

πτ∗R3

2
.

c) If the material were elastic, the slope of the stresses τ would increase with φ
(remaining, though, linear with r), but since the material is now elastoplastic,
stresses cannot exceed the value τe , which corresponds to the onset of plasticity.
Then, the limit value is obtained for τe = τ∗ when φ = φ1 for (R/2) ≤ r ≤ R.
That is, material (1) has a perfectly plastic distribution of stresses while material
(2) remains elastic.
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432 CHAPTER 8. PLASTICITY

The following condition is imposed to compute this rotation φ1.

τ
∣∣∣
r=R/2; φ=φ1

= τ∗ =⇒ Gφ1R
2h

= τ∗ =⇒ φ1 =
2τ∗h
GR

.

This is the minimum value of the rotation angle at the free end of the cylinder
required for material (1) to be completely plasticized.
In order to compute the corresponding moment, relation [1] between M and
φ is no longer valid here because material (1) behaves elastoplastically while
material (2) behaves completely elastically. The moment acting on the cylinder
is now

M1 =

2π∫
0

R∫
R/2

rτ∗ r dr dθ +

2π∫
0

R/2∫
0

r
(

Gφ1r
h

)
r dr dθ =

= 2πτ∗
R∫

R/2

r2 dr+2πG
φ1

h

R/2∫
0

r3 dr =⇒ M1 =
31

48
πτ∗R3 .

d) Material (2) starts plasticizing for τe = 2τ∗, which does not correspond with
the end of plasticization in material (1) at τe = τ∗. Then, the stress distribution
for φ = φ2 (onset of plasticization in material (2)) is

The following condition is imposed to obtain the value of the rotation angle.

τ
∣∣∣
r=R/2; φ=φ2

= 2τ∗ =⇒ Gφ2R
2h

= 2τ∗ =⇒ φ2 =
4τ∗h
GR

.
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The corresponding moment is

M2 =

2π∫
0

R∫
R/2

r τ∗ r dr dθ +

2π∫
0

R/2∫
0

r
(

Gφ2r
h

)
r dr dθ =⇒ M2 =

17

24
πτ∗R3 .

e) The asymptotic value of M (Mp) corresponds to the total plasticization of the
cylinder. The stress distribution in this case is:

Through integration, the corresponding moment is obtained,

Mp =

2π∫
0

R∫
R/2

r τ∗ r dr dθ +

2π∫
0

R/2∫
0

r 2τ∗ r dr dθ =⇒ Mp =
3

4
πτ∗R3 .
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434 CHAPTER 8. PLASTICITY

EXERCISES

8.1 – Formulate in terms of the stress invariants I1, J′2 and J′3 the equation of
the yield surface that, in the principal stress space, is a spheroid (ellipsoid of
revolution) with semi-axes a and b.

Intersection with octahedral
plane at (0,0,0)

8.2 – An elastoplastic material is subjected to a pure shear test (I) and an uni-
axial tensile test (II). Plasticization occurs, respectively, at τ = a and σ = b.
Determine the values of the cohesion and internal friction angle assuming a
Mohr-Coulomb yield criterion.

8.3 – A component ABCD of a perfectly elastoplastic material is tested in the
machine illustrated in Figure A. The action-response curve (P−δ ) obtained is
shown in Figure B. An uniaxial stress-strain state is assumed such that

εx =
δ
hL

y and εy = εz = γxy = γxz = γyz = 0 ,

σx 
= 0 and σy = σz = τxy = τxz = τyz = 0 .
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Determine the following values, indicated in the curve of Figure B:

a) The elastic load Pe and the corresponding displacement δe.
b) The ultimate plastic loads for tensile and compressive loadings, Pp and

Pq, respectively.
c) The values of P and δ at points (1) and (2).

Infinitely rigid
material

Figure A

Figure B

Additional hypotheses:

1) Young’s modulus, E, and Poisson’s coefficient, ν .
2) Elastic limit, σe.
3) Thickness of the component, b.
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436 CHAPTER 8. PLASTICITY

8.4 – The truss structure OA, OB and OC is composed of concrete, which is
assumed to behave as a perfectly elastoplastic material with a tensile elastic
limit σe and a compressive elastic limit 10σe. An increasing vertical load P is
applied at point O, starting at P= 0, until a vertical displacement δ = 20σe L/E
is reached at this point. Then, the load is decreased back to P = 0 .

a) Draw the P− δ diagram of the process, indicating the most significant
values and the state of plasticization of the bars at each instant.

b) Calculate the displacement value at point O at the end of the process.

8.5 – Consider a solid sphere with radius R1 encased inside a spherical shell
with interior radius R1 and exterior radius R2. The sphere and the shell are
composed of the same material and are initially in contact without exerting any
pressure on each other. At a certain moment, the interior sphere is heated up to
a temperature increment Δθ .

Determine:

a) The value of the exterior pressure required
on the shell for said shell to keep a constant
value (infinitesimal strain hypothesis).

b) The displacement, strain and stress fields in
both the sphere and the shell under these
conditions.

c) The minimum value of Δθ for which plas-
ticization initiates in some point, assuming
the aforementioned conditions and consid-
ering a von Mises criterion.

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems

doi:10.13140/RG.2.2.25821.20961



Con
tin

uum
M

ech
an

ics
for

Engin
eer

s

Theo
ry

an
d Pro

blem
s

©
X. O

liv
er

an
d C. A

ge
let

de Sar
ac

ibar

Problems and Exercises 437

Additional hypotheses:

1) Material properties:
− Young’s modulus, E, and Poisson’s coefficient, ν = 0.
− Thermal constant, α .
− Yield stress, σy.
− Radii, R1 = 1 and R2 = 3.

2) The body forces are negligible.
3) The displacement and stress fields of a spherical shell with interior radius Ri

and exterior radius Re subjected to an interior pressure Pi and an exterior
pressure Pe are, for ν = 0:

u =

⎡
⎢⎣ur (r)

0

0

⎤
⎥⎦ ur =Cr+

C1

r2
; C =

PiR3
i −PeR3

e

E
(
R3

e−R3
i

) ; C1 =
Pi−Pe

2E
R3

i R3
e

R3
e−R3

i

σσσ =

⎡
⎢⎣σrr 0 0

0 σθθ 0

0 0 σφφ

⎤
⎥⎦ σrr = E

(
C− 2C1

r3

)
; σθθ = σφφ = E

(
C+

C1

r3

)

8.6 – Consider a solid sphere with radius R1 and composed of material (1), en-
cased inside a spherical shell with interior radius R1, exterior radius R2 and
composed of material (2). The sphere and the shell are initially in contact with-
out exerting any pressure on each other. An exterior pressure P is applied simul-
taneously with a temperature increment Δθ .

a) Determine the possible values of Δθ and P (positive or negative) for which
the contact (without exerting any pressure) between the sphere and the shell
is maintained. Plot the corresponding P−Δθ curve.

b) Obtain the stress state of the shell and the sphere for these values.
c) Under these conditions, compute, for each value of the pressure P, the value

of Δθ ∗ for which plasticization initiates at some point of the sphere or the
shell, according to the von Mises and Mohr-Coulomb criteria. Plot the cor-
responding P−Δθ ∗ curves (interaction graphs).

Additional hypotheses:

1) Material properties:
− Young’s moduli, E(1) =E(2) =E, and Poisson’s coefficients, ν(1) = ν(2) = 0.
− Thermal constants, α(1) = 2α and α(2) = α .
− Yield stresses, σ (1)

y = σ (2)
y = σy.
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438 CHAPTER 8. PLASTICITY

− Cohesion values, C(1) = C(2) = C, and internal friction angles, φ (1) =
φ (2) = 30◦.

− Radii, R1 = 1 and R2 = 2.
2) The displacement and stress fields of a spherical shell with interior radius Ri

and exterior radius Re subjected to an interior pressure Pi and an exterior
pressure Pe are, for ν = 0:

u =

⎡
⎢⎣ur (r)

0

0

⎤
⎥⎦ ur =Cr+

C1

r2
; C =

PiR3
i −PeR3

e

E
(
R3

e−R3
i

) ; C1 =
Pi−Pe

2E
R3

i R3
e

R3
e−R3

i

σσσ =

⎡
⎢⎣σrr 0 0

0 σθθ 0

0 0 σφφ

⎤
⎥⎦ σrr = E

(
C− 2C1

r3

)
; σθθ = σφφ = E

(
C+

C1

r3

)

8.7 – A cylinder of radius R and height h is subjected to an exterior load P and
a uniform temperature increment Δθ .

a) Determine the displacement, strain and
tensor fields in terms of the integration
constants.

b) Determine the integration constants and
the corresponding displacement, strain
and tensor fields.

c) Given p = p∗ > 0, determine the corre-
sponding value of Δθ ∗ such that there
are no horizontal displacements.

d) Under the conditions described in c),
determine the value of p∗ for which the
cylinder begins to plasticize according
to the Mohr-Coulomb criterion.

Additional hypotheses:

1) Material properties:
− Cohesion value, C, and internal friction angle, φ = 30◦.
− Thermal constant, β .
− Lamé parameters, λ = μ .

2) The body forces are negligible.
3) The friction between the cylinder and the ground can be neglected.
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Multimedia Course on Continuum Mechanics 



Overview 

 Introduction 
 Fluid Mechanics

 What is a Fluid?

 Pressure and Pascal´s Law 

 Constitutive Equations in Fluids 
 Fluid Models

 Newtonian Fluids 
 Constitutive Equations of Newtonian Fluids

 Relationship between Thermodynamic and Mean Pressures

 Components of the Constitutive Equation 

 Stress, Dissipative and Recoverable Power 
 Dissipative and Recoverable Powers

 Thermodynamic Considerations

 Limitations in the Viscosity Values
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Ch.9. Constitutive Equations in Fluids 

9.1 Introduction 



Fluids can be classified into: 

 Ideal (inviscid) fluids: 
 Also named perfect fluid.
 Only resists normal, compressive stresses (pressure).
 No resistance is encountered as the fluid moves.

What is a fluid? 

 Real (viscous) fluids: 
 Viscous in nature and can be subjected to low

levels of shear stress.
 Certain amount of resistance is always offered

by these fluids as they move.

5 

https://youtu.be/G4pLA6SCmy0?t=00m00s


6 

Ch.9. Constitutive Equations in Fluids 

9.2 Pressure and Pascal’s Law 



Pascal´s Law 

 Pascal’s Law: 
In a confined fluid at rest, pressure acts equally in all 
directions at a given point.  

7 

https://youtu.be/GY1e-bVTqQU?t=00m00s


 In fluid at rest: 
 there are no shear stresses
 only normal forces due to pressure are present.

  The stress in a fluid at rest is isotropic and must be of the form: 

 Where      is the hydrostatic pressure. 

Consequences of Pascal´s Law 

{ }
0

0 , 1, 2,3ij ij

p
p i jσ δ

= −

= − ∈

σ 1

0p

8 



 Hydrostatic pressure,     : normal compressive stress exerted on a 
fluid in equilibrium. 

 Mean pressure,    : minus the mean stress. 

 Thermodynamic pressure,    : Pressure variable used in the 
constitutive equations . It is related to density and temperature 
through the kinetic equation of state. 

Pressure Concepts 

0p

p

p

( )1
3mp Tr= −= −σ σ

( ), p, 0F ρ θ =
REMARK 
In a fluid at rest, 

0p p p= =

REMARK 
           is an invariant,
thus,  so are      and     .

( )Tr σ
pmσ

9 

https://youtu.be/GY1e-bVTqQU?t=02m22s


 Barotropic fluid: pressure depends only on density. 

 

 

 

 Incompressible fluid: particular case of a barotropic fluid in 
which density is constant. 

Pressure Concepts 

( ) ( ), p 0F p fρ ρ= =

( ) ( ), p, 0 .F F k k constρ θ ρ ρ ρ≡ = − = = =

10 



11 

Ch.9. Constitutive Equations in Fluids 

9.3 Constitutive Equations 



 Governing equations of the thermo-mechanical problem: 

 19 scalar unknowns:    ,    ,    ,    ,    ,    ,    . 

Conservation of Mass.
Continuity Equation. 1 eqn. 

Reminder – Governing Eqns. 

0ρ ρ+ ∇⋅ =v

Linear Momentum Balance. 
 Cauchy’s Motion Equation. 3 eqns. ρ ρ∇⋅ + =b vσ

Angular Momentum Balance. Symmetry 
of Cauchy Stress Tensor. 3 eqns. T=σ σ

Energy Balance. First Law of 
Thermodynamics.  1 eqn. :u rρ ρ= + −∇⋅d q σ

Second Law of 
Thermodynamics. 

2 restrictions 
( ) 0u sρ θ− − + ≥: d  σ

2

1 0θ
ρθ

− ⋅ ≥q ∇

8 PDE +  
2 restrictions 

ρ v σ u q θ s

Clausius-Planck 
Inequality. 
Heat flux 
Inequality. 

12 
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 Constitutive equations of the thermo-mechanical problem: 

 

 The mechanical and thermal problem can be uncoupled if the temperature
distribution is known a priori or does not intervene in the constitutive eqns. and
if the constitutive eqns. involved do not introduce new thermodynamic variables.

Thermo-Mechanical 
Constitutive Equations. 6 eqns. 

Reminder – Constitutive Eqns. 

Thermal Constitutive Equation. Fourier’s 
Law of Conduction. 3 eqns. 

State Equations. (1+p) eqns. 

(19+p) PDE + 
(19+p) unknowns 

( ), ,θ= vσ σ ζ

( ), ,s s θ= v ζ 1 eqn. 

( ) Kθ θ= = − ∇q q

( ) { }, , 0 1,2,...,iF i pρ θ = ∈ζ

( ), , ,u f ρ θ= v ζ
Kinetic 

Caloric 

Entropy  
Constitutive Equation. 

set of new thermodynamic 
variables:                          .{ }1 2, ,..., p=ζ ζ ζ ζ

13 



 Constitutive equations 
 Together with the remaining governing equations, they are used to

solve the thermo/mechanical  problem.

 In fluid mechanics, these are grouped into: 
 

Constitutive Equations 

( )
( )
, ,

f , , , 1, 2,3ij ij ij

p

p i j

ρ θ

σ δ ρ θ

= − +


= − + ∈

f d

d

σ 1

 
( )g ,u ρ θ=

, 1, 2,3i
i

q k i j
x

θ
θ

= − ⋅


∂ = − ∈ ∂

q ∇

 

k
( ), ,s s ρ θ= d

Thermo-mechanical constitutive equations 

Entropy constitutive equation 

Fourier’s Law 

Caloric equation of state 

Kinetic equation of state 

( ), p, 0F ρ θ =

REMARK 
( ) s= ∇d v v

14 
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 General form of the thermo-mechanical constitutive equations: 

  Depending on the nature of               , fluids are classified into : 
1. Perfect fluid:

2. Newtonian fluid: f  is a linear function of the strain rate

3. Stokesian fluid: f  is a non-linear function of its arguments

Viscous Fluid Models 

( )
( ) { }
, ,

f , , , 1, 2,3ij ij ij

p

p i j

ρ θ

σ δ ρ θ

= − +

= − + ∈

f d

d

σ 1

( ), ,ρ θf d
( ), , 0 pρ θ = ⇒ = −f d σ 1

15 
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Ch.9. Constitutive Equations in Fluids 

9.4. Newtonian Fluids 



Constitutive Equations of Newtonian 
Fluids 

 Mechanic constitutive equations: 

where     is the 4th-order constant (viscous) constitutive tensor. 

 Assuming: 
 an isotropic medium
 the stress tensor is symmetrical

 Substitution of     into the constitutive equation gives: 

( )
{ }

2
2 , 1,2,3ij ij ll ij ij

p Tr
p d d i j

λ µ
σ δ λ δ µ
= − + +
= − + + ∈

d dσ 1 1

C

{ }, 1, 2,3ij ij ijkl kl

p
p d i jσ δ

= − +
= − + ∈

: dCσ
C

1

C

( )
{ }

2

, , , 1, 2,3
ijkl ij kl ik jl il jk

i j k l

λ µ

λδ δ µ δ δ δ δ

= ⊗ +

= + +

∈

C

C

1 1 I

REMARK 
    and    are not necessarily constant. 
Both are a function of     and   . 
λ µ

ρ θ

17 
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Relationship between Thermodynamic 
and Mean Pressures 

  Taking the mechanic constitutive equation, 

  Setting i=j, summing over the repeated index, and noting that 
          , we obtain 3iiδ =



( )


3 ( )
3 3 2 3ii ll

p Tr
p d pσ λ µ

−

= − + + = −
d

( ) ( )2( )
3

p p Tr p Trλ µ κ= + + = +d d

1( )
3 iip σ= −

{ }2 , 1, 2,3ij ij ll ij ijp d d i jσ δ λ δ µ= − + + ∈

2
3

κ λ µ= +

bulk viscosity  

18 

κ

https://youtu.be/WfswbOKGHok?t=05m38s


Relationship between Thermodynamic  
and Mean Pressures 

  Considering the continuity  equation,  
 
 

  And the relationship 

10d d
dt dt
ρ ρρ

ρ
+ ∇⋅ = ∇ ⋅ = −v v

dp p p
dt

κ ρκ
ρ

= + ∇⋅ = −v

( )p p Trκ= + d
( ) vd ⋅=

∂
∂

== ∇
i

i
ii x

dTr
v
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REMARK   
For a fluid at rest, 

For an incompressible fluid, 

For a fluid with ,           
 
 
 

00 p p p= = =v

0d p p
dt
ρ
= =



0κ =
Stokes'

condition

2
3

p pλ µ= − =
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Ch.9. Constitutive Equations in Fluids 

9.5 Components of the 
Constitutive Equations 



Components of the Constitutive 
Equation 
 Given the Cauchy stress tensor, the following may be defined: 

 SPHERICAL PART – mean pressure

 DEVIATORIC PART

( )p p p Trκ κ= − ∇ ⋅ = −v d

( ) 2p Trλ µ= − + +d dσ 1 1 sph ′= +σ σ σ
p= − 1

( ) 2p Tr pλ µ ′− + + = − +d d σ1 1 1 ( ) ( ) 2p p Trλ µ′ − + +d dσ = 1 1

2
3

κ λ µ= +( ) ( )2( ) 2
3

Tr Trλ µ λ µ′ − + + +d d dσ = 1 1

( )1( )
3

Trµ µ′ ′− =

= ′

d d d

d


σ = 2 21

( )p p Trκ= − d

deviatoric part of the rate of 
strain tensor 
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https://youtu.be/s8vzDtjTFYY?t=00m00s


Components of the Constitutive 
Equation 

 Given the Cauchy stress tensor, the following may be defined: 
 SPHERICAL PART – mean pressure 

 
 
 

 DEVIATORIC PART – deviator stress tensor 

 
 
 The stress tensor is then 

( )v dp p p Trκ κ= − ∇⋅ = −

2 dµ′ ′=σ

( )1
3

Tr p′ ′= + = − +σ σ σ σ1 1

3p= −

κ−

( )Tr d

p

p

ijd ′

ijσ ′

2µ

from the definition 
of mean pressure 
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REMARK   
Note that     is not a 
function of d,  while   
               . 

κ

( )dµ µ=
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Ch.9. Constitutive Equations in Fluids 

9.6 Stress, Dissipative and 
Recoverable Powers 



 Mechanical Energy Balance: 

Reminder – Stress Power 

( ) 21 v  
2

t

e V V
V V V

dP t dV dS dV dV
dt

ρ ρ
∂

≡

= ⋅ + ⋅ = +∫ ∫ ∫ ∫b v t v : dσ

external mechanical power 
entering the medium 

stress power kinetic energy 

( ) ( )e
dP t t P
dt σ= +K

REMARK 
The stress power is the mechanical power entering the system which is not spent 
in changing the kinetic energy. It can be interpreted as the work per unit of time 
done by the stress in the deformation process of the medium. 
A rigid solid will have zero stress power. 

24 

https://youtu.be/zOHYGQMyWV4?t=01m31s


Dissipative and Recoverable Powers 

 Stress Power   
V

dV= ∫ : dσ
1 ( )
3

Tr ′= +d d 1 d

p ′= − +1σ σ

( ) ( )

( ) ( )

( )

1: :
3

1 1: : : :
3 3

:

p Tr

pTr p Tr

pTr

 ′ ′= − + + = 
 

′ ′ ′ ′= − + − + =

′ ′= − +

d d d

d d d d

d d

σ σ

σ σ

σ

1 1

1 1 1 1
3= ( ) 0Tr ′= =d

( ) 0Tr ′= =σ

( )p p Trκ= − d
2µ′ ′= dσ ( ) ( )2: 2 :pTr Trκ µ ′ ′= − + +d d d d dσ

RECOVERABLE STRESS 
POWER,       . WR

DISSIPATIVE STRESS  
POWER,         .  2WD
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https://youtu.be/zOHYGQMyWV4?t=02m54s


Dissipative and Recoverable Parts of 
the Cauchy Stress Tensor 

 Associated to the concepts of recoverable and dissipative 
powers, the Cauchy stress tensor is split into: 

 And the recoverable and dissipative powers are rewritten as: 

( ) 2p Trλ µ= − + +d dσ 1 1

RECOVERABLE 
PART,       . Rσ

DISSIPATIVE 
PART,       .Dσ

( )
( )22  :

R R

D D

W pTr p

W Trκ µ

= − = − =

′ ′= + =

d : d : d

d d d : d

σ

2 σ

1

REMARK   
For an incompressible fluid, 
 ( )W 0R pTr= − =d
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https://youtu.be/zOHYGQMyWV4?t=06m30s


Thermodynamic considerations 

 Specific recoverable stress power is an exact differential, 

   Then, the recoverable stress work per unit mass in a closed cycle is 
zero: 

 This justifies the denomination

“recoverable stress power”.

1 1W : dR R
dG
dtρ ρ

= = → (exact differential)σ

1 1W   0
B A B A B A

R R B A A
A A A

dt dt dG G G
ρ ρ

≡ ≡ ≡

≡= = = − =∫ ∫ ∫: dσ

28 

https://youtu.be/zOHYGQMyWV4?t=12m24s


Thermodynamic Considerations 

 According to the 2nd Law of Thermodynamics, the dissipative 
power is necessarily non-negative, 
 
 

    In a closed cycle, the work done by the dissipative stress per unit      
    mass will, in general, be different to zero: 
 
 
 
 
 This justifies the denomination “dissipative power”. 

 

( )22W 0 2W  : 0 0D D Trκ µ ′ ′≥ = + = =d d d d2

1 0
B B

D
A

dt
ρ

≡

>∫ : dσ

2W 0D >

29 



Limitations in the Viscosity Values 

 The thermodynamic restriction, 

   introduces limitations in the values of the viscosity parameters 
           and     : 

1. For a purely spherical deformation rate tensor:
 
 
 

2. For a purely deviatoric deformation rate tensor:
 

( )22W  : 0D Trκ µ ′ ′= + ≥d d d2

,κ λ µ

2 0
3

κ λ µ= + ≥

2 2 : 2 0D ij ijW d dµ µ′ ′ ′ ′= = ≥d d 0≥µ

( )22 0dDW Trκ= ≥
0′ =d

( ) 0Tr ≠d

0′ ≠d
( ) 0Tr =d

0>
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https://youtu.be/zOHYGQMyWV4?t=14m14s
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Chapter 9
Constitutive Equations in Fluids

9.1 Concept of Pressure
Several concepts of pressure are used in continuum mechanics (hydrostatic pres-
sure, mean pressure and thermodynamic pressure) which, in general, do not co-
incide.

9.1.1 Hydrostatic Pressure

Definition 9.1. Pascal’s law
In a confined fluid at rest, the stress state on any plane containing a
given point is the same and is characterized by a compressive normal
stress.

In accordance with Pascal’s law, the stress state of a fluid at rest is characterized
by a stress tensor of the type

σσσ =−p0 1
σi j =−p0 δi j i, j ∈ {1,2,3} , (9.1)

where p0 is denoted as hydrostatic pressure (see Figure 9.1).

Definition 9.2. The hydrostatic pressure is the compressive normal
stress, constant on any plane, that acts on a fluid at rest.

439
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440 CHAPTER 9. CONSTITUTIVE EQUATIONS IN FLUIDS

Figure 9.1: Stress state of a fluid at rest.

Figure 9.2: Mohr’s circle of the stress tensor of a fluid at rest.

Remark 9.1. The stress tensor of a fluid at rest is a spherical tensor
and its representation in the Mohr’s plane is a point (see Figure 9.2).
Consequently, any direction is a principal stress direction and the
stress state is constituted by the state defined in Section 4.8 of Chap-
ter 4 as hydrostatic stress state.

9.1.2 Mean Pressure

Definition 9.3. The mean stress σm is defined as

σm =
1

3
Tr(σσσ) =

1

3
σii .

The mean pressure p̄ is defined as minus the mean stress,

p̄
de f
= mean pressure =−σm =−1

3
Tr(σσσ) =−1

3
σii .

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems

doi:10.13140/RG.2.2.25821.20961
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Concept of Pressure 441

Remark 9.2. In a fluid at rest, the mean pressure p̄ coincides with the
hydrostatic pressure p0,

σσσ =−p01 =⇒ σm =
1

3
(−3p0) =−p0 =⇒ p̄ = p0 .

Generally, in a fluid in motion the mean pressure and the hydrostatic
pressure do not coincide.

Remark 9.3. The trace of the Cauchy stress tensor is a stress invari-
ant. Consequently, the mean stress and the mean pressure are also
stress invariants and, therefore, their values do not depend on the
Cartesian coordinate system used.

9.1.3 Thermodynamic Pressure. Kinetic Equation of State
A new thermodynamic pressure variable, named thermodynamic pressure and
denoted as p, intervenes in the constitutive equations of fluids or gases.

Definition 9.4. The thermodynamic pressure is the pressure variable
that intervenes in the constitutive equations of fluids and gases, and
is related to the density ρ and the absolute temperature θ by means
of the kinetic equation of state, F (p,ρ,θ) = 0.

Example 9.1

The ideal gas law is a typical example of kinetic equation of state:

F (p,ρ,θ)≡ p−ρRθ = 0 =⇒ p = ρRθ ,

where p is the thermodynamic pressure and R is the universal gas constant.

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems

doi:10.13140/RG.2.2.25821.20961
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442 CHAPTER 9. CONSTITUTIVE EQUATIONS IN FLUIDS

Remark 9.4. In a fluid at rest, the hydrostatic pressure p0, the mean
pressure p̄ and the thermodynamic pressure p coincide.

Fluid at rest : p0 = p̄ = p

Generally, in a fluid in motion the hydrostatic pressure, the mean
pressure and the thermodynamic pressure do not coincide.

Remark 9.5. A barotropic fluid is defined by a kinetic equation of
state in which the temperature does not intervene.

Barotropic fluid : F (p,ρ) = 0 =⇒ p = f (ρ) =⇒ ρ = g(p)

Remark 9.6. An incompressible fluid is a particular case of
barotropic fluid in which density is constant (ρ (x, t) = k = const.).
In this case, the kinetic equation of state can be written as

F (p,ρ,θ)≡ ρ − k = 0

and does not depend on the pressure or the temperature.

9.2 Constitutive Equations in Fluid Mechanics
Here, the set of equations, generically named constitutive equations, that must
be added to the balance equations to formulate a problem in fluid mechanics
(see Section 5.13 in Chapter 5) is considered. These equations can be grouped
as follows:

a) Thermo-mechanical constitutive equation

This equation expresses the Cauchy stress tensor in terms of the other ther-
modynamic variables, typically the thermodynamic pressure p, the strain
rate tensor d (which can be considered an implicit function of the velocity,
d(v) = ∇Sv), the density ρ and the absolute temperature θ .

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems

doi:10.13140/RG.2.2.25821.20961
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Constitutive Equation in Viscous Fluids 443

Thermo-mechanical
constitutive equation:

σσσ =−p1+ f(d,ρ,θ) 6 equations (9.2)

b) Entropy constitutive equation

An algebraic equation that provides the specific entropy s in terms of the
strain rate tensor, the density and the absolute temperature.

Entropy
constitutive equation:

s = s(d,ρ,θ) 1 equation (9.3)

c) Thermodynamic constitutive equations or equations of state

These are typically the caloric equation of state, which defines the specific
internal energy u, and the kinetic equation of state, which provides an equa-
tion for the thermodynamic pressure.

Caloric equation of
state:

u = g(ρ,θ)
Kinetic equation of

state:
F (ρ, p,θ) = 0

2 equations (9.4)

d) Thermal constitutive equations

The most common one is Fourier’s law, which defines the heat flux by con-
duction q as

Fourier’s
law:

⎧⎨
⎩

q =−k ·∇θ

qi = ki j
∂θ
∂x j

i ∈ {1,2,3} 3 equations (9.5)

where k is the (symmetrical second-order) tensor of thermal conductivity,
which is a property of the fluid. For the isotropic case, the thermal conductiv-
ity tensor is a spherical tensor k = k 1 and depends on the scalar parameter k,
which is the thermal conductivity of the fluid.

9.3 Constitutive Equation in Viscous Fluids
The general form of the thermo-mechanical constitutive equation (see (9.2)) for
a viscous fluid is

σσσ =−p 1+ f(d,ρ,θ)
σi j =−p δi j + fi j (d,ρ,θ) i, j ∈ {1,2,3} , (9.6)

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems

doi:10.13140/RG.2.2.25821.20961
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444 CHAPTER 9. CONSTITUTIVE EQUATIONS IN FLUIDS

where f is a symmetrical tensor function. According to the character of the func-
tion f, the following models of fluids are defined:

a) Stokesian or Stokes fluid: the function f is a non-linear function of its argu-
ments.

b) Newtonian fluid: the function f is a linear function of its arguments.

c) Perfect fluid: the function f is null. In this case, the mechanical constitutive
equation is σσσ =−p1.

In the rest of this chapter, only the cases of Newtonian and perfect fluids will
be considered.

Remark 9.7. The perfect fluid hypothesis is frequently used in hy-
draulic engineering, where the fluid under consideration is water.

9.4 Constitutive Equation in Newtonian Fluids
The mechanical constitutive equation1 for a Newtonian fluid is

σσσ =−p 1+CCC : d
σi j =−p δi j +Ci jkl dkl i, j ∈ {1,2,3} , (9.7)

where CCC is a constant fourth-order (viscosity) constitutive tensor. A linear de-
pendency of the stress tensor σσσ on the strain rate tensor d is obtained as a result
of (9.7). For an isotropic Newtonian fluid, the constitutive tensorCCC is an isotropic
fourth-order tensor.{

CCC= λ1⊗1+2μI
Ci jkl = λδi jδkl +μ

(
δikδ jl +δilδ jk

)
i, j,k, l ∈ {1,2,3} (9.8)

Replacing (9.8) in the mechanical constitutive equation (9.7) yields

σσσ =−p 1+(λ1⊗1+2μI) : d =−p 1+λ Tr(d)1+2μ d , (9.9)

which corresponds to the constitutive equation of an isotropic Newtonian fluid.

1 Note that the thermal dependencies of the constitutive equation are not considered here and,
thus, the name mechanical constitutive equations.

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems
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Constitutive Equation in Newtonian Fluids 445

Constit. eqn. of
an isotropic

Newtonian fluid

{
σσσ =−p 1+λ Tr(d)1+2μ d
σi j =−p δi j +λ dll δi j +2μ di j i, j ∈ {1,2,3}

(9.10)

Remark 9.8. Note the parallelism that can be established between the
constitutive equation of a Newtonian fluid and that of a linear elastic
solid (see Chapter 6):

Newtonian fluid Linear elastic solid{
σσσ =−p 1+CCC : d
σi j =−p δi j +Ci jkl dkl

{
σσσ =CCC : εεε
σi j = Ci jkl εkl

Remark 9.9. The parameters λ and μ physically correspond to the
viscosities, which are understood as material properties. In the most
general case, they may not be constant and can depend on other ther-
modynamic variables,

λ = λ (ρ,θ) and μ = μ (ρ,θ) .

A typical example is the dependency of the viscosity on the temper-

ature in the form μ (θ) = μ0 e−α(θ−θ0), which establishes that the
fluid’s viscosity decreases as temperature increases (see Figure 9.3).

Figure 9.3: Possible dependency of the viscosity μ on the absolute temperature θ .

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems
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446 CHAPTER 9. CONSTITUTIVE EQUATIONS IN FLUIDS

9.4.1 Relation between the Thermodynamic and Mean Pressures
In general, the thermodynamic pressure p and the mean pressure p̄ in a New-
tonian fluid in motion will be different but are related to each other. From the
(mechanical) constitutive equation of a Newtonian fluid (9.10),

σσσ =−p 1+λ Tr(d)1+2μ d =⇒

Tr(σσσ)︸ ︷︷ ︸
−3 p̄

=−p Tr(1)+λ Tr(d)Tr(1)+2μ Tr(d) =−3p+(3λ +2μ)Tr(d) =⇒

p = p̄+
(

λ +
2

3
μ
)

︸ ︷︷ ︸
K

Tr(d) = p̄+K Tr(d)

(9.11)
where K is denoted as bulk viscosity.

Bulk viscosity : K= λ +
2

3
μ (9.12)

Using the mass continuity equation (5.24), results in

dρ
dt

+ρ∇ ·v = 0 =⇒ ∇ ·v =− 1

ρ
dρ
dt

(9.13)

Then, considering the relation

Tr(d) = dii =
∂vi

∂xi
= ∇ ·v (9.14)

and replacing in (9.11), yields

p = p̄+K∇ ·v = p̄− K

ρ
dρ
dt

(9.15)

which relates the mean and thermodynamic pressures.

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems
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Constitutive Equation in Newtonian Fluids 447

Remark 9.10. In accordance with (9.15), the thermodynamic pres-
sure and the mean pressure in a Newtonian fluid will coincide in the
following cases:

• Fluid at rest: v = 0 =⇒ p = p̄ = p0

• Incompressible fluid:
dρ
dt

= 0 =⇒ p = p̄

• Fluid with null bulk viscosity K (Stokes’ condition2):

K= 0 =⇒ λ =−2

3
μ =⇒ p = p̄

9.4.2 Constitutive Equation in Spherical and Deviatoric Components
Spherical part

From (9.15), the following relation is deduced.

p̄ = p−K ∇ ·v = p−K Tr(d) (9.16)

Deviatoric part
Using the decomposition of the stress tensor σσσ and the strain rate tensor d

in its spherical and deviator components, and replacing in the constitutive equa-
tion (9.10), results in

σσσ =
1

3
Tr(σσσ)︸ ︷︷ ︸
−3 p̄

1+σσσ ′ =−p̄1+σσσ ′ =−p1+λ Tr(d)1+2μ d =⇒

σσσ ′ = ( p̄− p)︸ ︷︷ ︸
−K Tr(d)

1+λ Tr(d)1+2μd =
(
λ − K︸︷︷︸

λ +
2

3
μ

)
Tr(d)1+2μd =⇒

σσσ ′ =−2

3
μ Tr(d)1+2μd = 2μ

(
d− 1

3
Tr(d)1

)
︸ ︷︷ ︸

d′

=⇒

(9.17)

2 Stokes’ condition is assumed in certain cases because the results it provides match the
experimental observations.

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems
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448 CHAPTER 9. CONSTITUTIVE EQUATIONS IN FLUIDS

σσσ ′ = 2μd′ (9.18)

where (9.16) and (9.12) have been taken into account.

9.4.3 Stress Power, Recoverable Power and Dissipative Power
Using again the decomposition of the stress and strain rate tensors in their spher-
ical and deviatoric components yields

σσσ =−p̄1+σσσ ′ and d =
1

3
Tr(d)1+d′ , (9.19)

and replacing in the expression of the stress power density (stress power per unit
of volume) σσσ : d, results in3

σσσ : d = (−p̄1+σσσ ′) :

(
1

3
Tr(d)1+d′

)
=

=−1

3
p̄ Tr(d)1 : 1︸︷︷︸

3

+σσσ ′ : d′ − p̄ 1 : d′︸︷︷︸
Tr

(
d′)= 0

+
1

3
Tr(d) σσσ ′ : 1︸ ︷︷ ︸

Tr
(
σσσ ′)= 0

=

=−p̄ Tr(d)+σσσ ′ : d′ .

(9.20)

Replacing (9.16) and (9.17) in (9.20) produces

σσσ : d =−
(

p−K Tr(d)
)

Tr(d)+2μ d′ : d′ . (9.21)

σσσ : d = −p Tr(d)︸ ︷︷ ︸
recoverable power

WR

+ KTr2 (d)+2μ d′ : d′︸ ︷︷ ︸
dissipative power

2WD

=WR +2WD
(9.22)

Recoverable power density: WR =−p Tr(d)

Dissipative power density: 2WD =KTr2 (d)+2μ d′ : d′
(9.23)

3 The property that the trace of a deviator tensor is null is used here.

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems
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Constitutive Equation in Newtonian Fluids 449

Associated with the concepts of recoverable and dissipative powers, the re-
coverable and dissipative parts of the stress tensor, σσσR and σσσD, respectively, are
defined as

σσσ =− p1︸︷︷︸
σσσR

+λ Tr(d)1+2μ d︸ ︷︷ ︸
σσσD

=⇒ σσσ = σσσR +σσσD . (9.24)

Using the aforementioned notation, the recoverable, dissipative and total power
densities can be rewritten as⎧⎨

⎩WR =−p Tr(d) =−p 1 : d = σσσR : d ,

2WD =KTr2 (d)+2μ d′ : d′ = σσσD : d ,

σσσ : d = (σσσR +σσσD) : d = σσσR : d+σσσD : d =WR +2WD .

(9.25)

Remark 9.11. In an incompressible fluid, the recoverable power is
null. In effect, since the fluid is incompressible, dρ/dt = 0 , and
considering the mass continuity equation (5.24),

∇ ·v =− 1

ρ
dρ
dt

= 0 = Tr(d) =⇒ WR =−p Tr(d) = 0 .

Remark 9.12. Introducing the decomposition of the stress
power (9.25), the balance of mechanical energy (5.73) becomes

Pe =
dK
dt

+
∫
V

σσσ : d dV =
dK
dt

+
∫
V

σσσR : d dV +
∫
V

σσσD : d dV

Pe =
dK
dt

+
∫
V

WR dV +
∫
V

2WD dV ,

which indicates that the mechanical power entering the fluid Pe is
invested in modifying the kinetic energy K and creating recoverable
power and dissipative power.

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems

doi:10.13140/RG.2.2.25821.20961



Con
tin

uum
M

ech
an

ics
for

Engin
eer

s

Theo
ry

an
d Pro

blem
s

©
X. O

liv
er

an
d C. A

ge
let

de Sar
ac

ibar

450 CHAPTER 9. CONSTITUTIVE EQUATIONS IN FLUIDS

9.4.4 Thermodynamic Considerations
1) It can be proven that, under general conditions, the specific recoverable
power (recoverable power per unit of mass) is an exact differential

1

ρ
WR =

1

ρ
σσσR : d =

dG
dt

. (9.26)

In this case, the recoverable work per unit of mass performed in a closed cycle
will be null (see Figure 9.4),

B≡A∫
A

1

ρ
WR dt =

B≡A∫
A

1

ρ
σσσR : d dt =

B≡A∫
A

dG = GB≡A −GA = 0 , (9.27)

which justifies the denomination of WR as recoverable power.

Figure 9.4: Closed cycle.

2) The second law of thermodynamics allows proving that the dissipative power
2WD in (9.25) is always non-negative,

2WD ≥ 0 ; 2WD = 0 ⇐⇒ d = 0 (9.28)

and, therefore, in a closed cycle the work performed per unit of mass by the
dissipative stresses will, in general, not be null,

B∫
A

1

ρ
σσσ D : d︸ ︷︷ ︸

2WD > 0

dt > 0 . (9.29)

This justifies the denomination of 2WD as (non-recoverable) dissipative power.
The dissipative power is responsible for the dissipation (or loss of energy) phe-
nomenon in fluids.
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Constitutive Equation in Newtonian Fluids 451

Example 9.2 – Explain why an incompressible Newtonian fluid in motion
that is not provided with external power (work per unit of time) tends to
reduce its velocity to a complete stop.

Solution

The recoverable power in an incompressible fluid is null (see Remark 9.11).
In addition, the dissipative power 2WD is known to be always non-negative
(see (9.28)). Finally, applying the balance of mechanical energy (see Re-
mark 9.12) results in

0 = Pe =
dK
dt

+
∫
V

WR︸︷︷︸
= 0

dV +
∫
V

2WD dV =⇒

dK
dt

=
d
dt

∫
V

1

2
ρv2dV =−

∫
V

2 WD︸︷︷︸
> 0

dV < 0

and, therefore, the fluid looses (dissipates) kinetic energy and the velocity of
its particles decreases.

9.4.5 Limitations in the Viscosity Values
Due to thermodynamic considerations, the dissipative power 2WD in (9.25) has
been seen to always be non-negative,

2WD =KTr2 (d)+2μ d′ : d′ ≥ 0 . (9.30)

This thermodynamic restriction introduces limitations in the admissible values
of the viscosity parameters K, λ and μ of the fluid. In effect, given a certain
fluid, the aforementioned restriction must be verified for all motions (that is,
for all velocity fields v) that the fluid may possibly have. Therefore, it must be
verified for any arbitrary value of the strain rate tensor d = ∇S (v). Consider, in
particular, the following cases:

a) The strain rate tensor d is a spherical tensor.

In this case, from (9.30) results

Tr(d) 	= 0 ; d′ = 0 =⇒ 2WD =KTr2 (d)≥ 0 =⇒

K= λ +
2

3
μ ≥ 0

(9.31)

such that only the non-negative values of the bulk viscosity K are feasible.
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452 CHAPTER 9. CONSTITUTIVE EQUATIONS IN FLUIDS

b) The strain rate tensor d is a deviatoric tensor.

This type of flow is schematically represented in Figure 9.5. In this case,
from (9.30) results

Tr(d) = 0 ; d′ 	= 0 =⇒ 2WD = 2μ d′ : d′ = 2μ d′
i j : d′

i j︸ ︷︷ ︸
> 0

≥ 0 =⇒

μ ≥ 0

(9.32)

v(x,y) =

⎡
⎢⎢⎣

vx (y)

0

0

⎤
⎥⎥⎦ ; d =

⎡
⎢⎢⎢⎢⎣

0
1

2

∂vx

∂y
0

1

2

∂vx

∂y
0 0

0 0 0

⎤
⎥⎥⎥⎥⎦= d′

Figure 9.5: Flow characterized by a deviatoric strain rate tensor.
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Ch.10. Fluid Mechanics 

10.1. Governing Equations 



 Balance equations of the thermo-mechanical problem: 
Conservation of Mass.
Continuity Equation. 1 eqn. 

Reminder – Governing Eqns. 

0ρ ρ+ ∇⋅ =v

Linear Momentum Balance. 
Cauchy’s Motion Equation. 3 eqns. ρ ρ∇⋅ + =b vσ

Angular Momentum Balance. Symmetry 
of Cauchy’s Stress Tensor. 3 eqns. T=σ σ

Energy Balance.  
First Law of Thermodynamics. 1 eqn. :u rρ ρ= + −∇⋅d q σ

Second Law of 
Thermodynamics. 

2 restrictions 
( ) 0u sρ θ− − + ≥: d  σ

2

1 0θ
ρθ

− ⋅ ≥q ∇

8 PDE +  
2 restrictions 

Clausius-Planck 
Inequality. 
Heat flux 
Inequality. 

5 

https://youtu.be/14BSgnatoKE?t=00m14s


 Constitutive equations of the thermo-mechanical problem in a 
Newtonian fluid: 

 Grand total of 20 PDE with 20 unknowns: 

Thermo-Mechanical 
Constitutive Equations. 6 eqns.

Newtonian Fluids 

Thermal Constitutive Equation. Fourier’s 
Law of Conduction. 3 eqns. 

State Equations. 2 eqns. 

( ) 2p Trλ µ= − + +d dσ 1 1

( ), ,s s ρ θ= d 1 eqn. 

K θ= −q 

( ), , 0F pρ θ =

( ),u f ρ θ=
Kinetic 

Caloric 

Entropy  
Constitutive Equation. 

12 PDE 

1, 3, 9, 1, 3, 1, 1, 1v qu s pρ θ→ → → → → → → →σ

6 

https://youtu.be/14BSgnatoKE?t=01m45s


 A barotropic fluid is characterized by the 
kinetic state equation: 

 The uncoupled mechanical problem becomes: 

 11 scalar unknowns:    ,    ,    ,     . (Considering the symmetry of Cauchy
  stress tensor,     , will have 6 unknowns). 

Barotropic Fluids 

vρ σ p

( ), , 0F pρ θ = ( )pρ ρ=

Thermo-Mechanical 
Constitutive Equations. 6 eqns. ( ) 2p Trλ µ= − + +d dσ 1 1

1 eqn. Kinetic State Equation ( )pρ ρ=

Conservation of Mass. 
Continuity Equation. 1 eqn. 0ρ ρ+ ∇⋅ =v

Linear Momentum Balance.  
First Cauchy’s Motion Equation. 3 eqns. ρ ρ∇⋅ + =b vσ

σ

7 

https://youtu.be/14BSgnatoKE?t=05m25s
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Ch.10. Fluid Mechanics 

10.2. Hydrostatics. Fluids at Rest 



 Uniform velocity,                     : 

Thus, 

 Uniform  and stationary velocity,                    : 

Thus, 

 Fluid at rest,                        . A particular hydrostatic case (where the name 
comes from)

( ) ( ), t t≡ ⇒ = ⊗ = ⊗ =v x v v v v 0  

( ) 2p Trλ µ= − + +d dσ 1 1

[ ] 0vvvd =⊗+⊗== ∇∇∇
2
1S

= 0 = 0
p p p= − ⇒ =σ 1

( ), t cnt≡v x
d
dt t

∂
= = + ⋅ =

∂
v va v v 0∇

0p= −σ 1 ( ) 03Tr p= −σ HYDROSTATIC 
CASE 0p p p= =

( ), t cnt≡ =v x 0

Hydrostatic stress state vs. Hydrostatic 
problem 

HYDROSTATIC  
STRESS SATE 

9 

https://youtu.be/hKKTFI30Odk?t=00m00s


 A hydrostatic problem (                  ) is characterized by: 

 Substituting the constitutive and the continuity eqn. into the Cauchy 
eqn.: 

Hydrostatic Problem 

( ), t cnt≡v x

{ }
0 0

0 0 0 0
0

( )
0 1,2,3i

i

p
p p p p b i

x

ρ

ρ

− + =
= − ⇒ ⋅ = ⋅ − = − → ∂− + = ∈ ∂

b 0∇
σ ∇ σ ∇ ∇1 1

Thermo-Mechanical 
Constitutive Equations. 6 eqns.0p= −σ 1

Conservation of Mass. 
Continuity Equation. 1 eqn. 0ρ ρ+ ∇⋅ =v

Linear Momentum Balance. 
First Cauchy’s Motion Equation. 3 eqns.ρ ρ⋅ + =b v σ

( ) ( )
0,X Xtρ ρ=

( ) 2p Trλ µ= − + +d dσ 1 1

ρ⋅ + =b 0 σ

FUNDAMENTAL 
EQUATION OF 
HYDROSTATICS 

10 

https://youtu.be/hKKTFI30Odk?t=06m50s


 For a fluid subjected to gravity forces, 
 

    the momentum eq.  can be written as: 
 

 
 

 

 If the surface pressure is considered zero, then: 

Gravity forces. Triangular pressure 
distribution 

0
( , ) 0t

g

 
 =  
 − 

b x

( ) ( )0 0, , ,p x y z p y z≡

0 0p gz Cρ= − +

( )

( )

( )

0

0

0
0

, ,
0

,
0

0

p x y z
x

p y z
y

dp z
g

dz

∂
− =

∂
∂

− =
∂

− − =ρ

dx∫

dy∫ ( ) ( )0 0,p y z p z≡

dz∫

0 0 00  0  
z h

p g h C C g hρ ρ
=
= − + = =

( )0 0  p g h zρ= −


Triangular
pressure 

distribution

{ }
0 0

0
0 0 1,2,3i

i

p
p b i
x

ρ

ρ

− + =


∂− + = ∈ ∂

b 0∇

11 



  Any fluid applies a buoyant force (up-thrust) to an object that is 
partially or completely immersed in it. 

 The magnitude of the buoyant force is equal to
the weight of  the fluid displaced by the object.

 The resultant of the buoyant force on a floating
object acts at the center of  mass of the displaced
fluid (center of buoyancy).

Archimedes´ Principle 

12 

https://youtu.be/AjT-JvAKLlA?t=00m00s


 Consider a solid with a volume V and density ρ within a fluid in a 
hydrostatic case. Then, 
 The traction vector on the solid boundary :

 The resultant force exerted by the fluid
  on the solid : 

Archimedes´ Principle - Proof 

( )
0 0

0 0( )  
p p

p z g h zρ

= ⋅ = − ⋅ = −

= −

t n n nσ 1

0 ( )
V V

dS p z dS
∂ ∂

= = −∫ ∫R t n

13 

    only depends on the hydrostatic pressure  
distribution on the boundary of the solid 

R



  Consider the same fluid without the solid in it, and replaced by fluid . 
Then, 
 Pressures on the boundary of the “replacing” fluid are the same than in the

immersed solid case (and, therefore, the resulting force,    )

 The divergence theorem can be applied:
  (The pressure distribution is now continuous in space) 

 Finally, 

Archimedes´ Principle 
(first part proof) 









0 0 0
0

0

00
0 0

V V V

W

p dS p dV dV
gVg

V
ρ

ρ
ρ∂ −

       = − = − ≡ − =   
   −    

∫ ∫ ∫
b

b

R n ∇

ˆ ˆz zE W E W= = ⇒ =R e e
Up-thrust on the body      = weight of the 

fluid displaced by the body  

Volume of the displaced 
fluid=V 

14 

R

0 ( )
V V

dS p z dS
∂ ∂

= = −∫ ∫R t n

0 0p ρ− + =b 0∇

( )E
( )W



  Consider the moment of the up-thrust forces at the center of mass 
(center of gravity, CG) of the volume of displaced fluid: 

 Substituting the fundamental eq. of hydrostatics                , 

Archimedes´ Principle 
(second part proof) 

( )


( )

0

0 0

0

(G
E

V V

V

p
p dS p dV

p dV

∂ =
= × − = × − =

= − ×

∫ ∫

∫

M x n x

x





∇
)

Divergence 
Theorem 

( )0 0p ρ= b∇

( )0  G G
E W

V

dVρ= − × = − =∫M x b M 0
G
W= M Moment of the weight of the displaced fluid with 

respect to its center of gravity (by definition it must 
be zero) 

The up-thrust force,  E, passes through the CG  
of the volume of the displaced fluid (center of buoyancy).

15 

0 0p ρ− + =b 0∇



 The equilibrium can be: 

 Stable: the solid’s CG
is below the center of
buoyancy (CG of the
displaced fluid).

 Unstable: the solid’s CG
is above the center of
 buoyancy (CG of the 

  displaced fluid). 

Equilibrium of Floating Solids 

16 

https://youtu.be/gBjmXh6p-30?t=00m00s
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Ch.10. Fluid Mechanics 

10.3. Fluid Dynamics. 
Barotropic Perfect Fluids 



 A perfect fluid is a Newtonian fluid with null viscosity,                 : 

 Therefore,

 In a barotropic fluid temperature does not intervene in the kinetic 
state equation: 

Barotropic Perfect Fluids 

0µ λ= =

( ), , 0F pρ θ = ( )pρ ρ=

( ) 2p Trλ µ= − + +d dσ 1 1 p= −σ 1

REMARK   
Do not confuse a hydrostatic stress 
state (spherical stress tensor) with 
a hydrostatic flow regime (null or 
uniform velocity). 

hydrostatic 
stress state 

( )
p

p pTr
⋅ = −
= − = −: d : d d

 σ
σ 1

18 

https://youtu.be/h-LzrazvEuU?t=00m00s


 The mechanical problem for a barotropic perfect fluid: 

 5 scalar unknowns:    ,    ,    . 

Barotropic Perfect Fluids: Field Equations 

ρ v p

Conservation of Mass. 
Continuity Equation. 1 eqn. 0ρ ρ+ ⋅ =v 

Linear Momentum Balance. 
Euler’s Equation. 3 eqns. ρ ρ⋅ + =b v σ p ρ ρ− + =b v

1 eqn. Kinetic State Equation ( )pρ ρ=( ), , 0F pρ θ =

19 

https://youtu.be/h-LzrazvEuU?t=05m21s


 The thermal problem for a barotropic perfect fluid: 

 Once the mechanical problem is solved, the thermal problem can 
be calculated as there are 5 scalar unknowns: 

Energy Balance. 
First Law of Thermodynamics. 

1 eqn. :u rρ ρ= + − ⋅d q σ

1, 3, 1u θ→ → →q

Thermal Constitutive Equation. Fourier’s 
Law of Conduction. 

3 eqns. ( )q q Kθ θ= = − 

2u p r Kρ ρ θ= − ⋅ + +v  

1 eqn. Caloric State Equation ( ),u u ρ θ=( ), , ,u f pρ θ= v

Barotropic Perfect Fluids: Field 
Equations 

20 



 Consider a barotropic fluid with potential body forces: 

 
 

 And, consider the following lemmas: 
 Lemma 1. For a barotropic fluid there exists a function                         

which satisfies:
 

 Lemma 2. The convective term of the acceleration can be written as:

Bernoulli’s Trinomial 

( ) ( ) ( )
Body forces
 potential

0
, , , 0

T

t gz t t
x y z

g

φ φ φφ φ
 

 ∂ ∂ ∂  = → = − = − =   ∂ ∂ ∂  −  

x b x x




ˆ( , ) ( ( , ))t p t=x xP P

p ρ= P

212 v
2

 ⋅ = × +  
 

v v v∇ ω ∇

Where                     is the vorticity vector. 2 = × vω

0

1 1( )
( ) ( )

p
p dp p

p pρ ρ
≡ =∫ 



 P PProof : 

21 

https://youtu.be/Z2qQaqA-h3g?t=00m00s


 Taking the Euler equation and substituting, 
 
 
 
 
 
 
 
 

 Rearranging,  
 
 
 

Bernoulli’s Trinomial 

21
2

 v 2
t

φ ∂ − + + = + ×  ∂
v v ωP

Bernoulli’s Trinomial 
EQ. OF MOTION for a 
barotropic perfect fluid 
under potential body forces 

( )21
2

 2 v
t

φ ∂
− − = + × +

∂
v v  ωP



21
2

1

1 ;

2 v )

t

dp p
dt

p

ρ ρ
ρ

φ
ρ

∂ + ⋅
∂

− + = → − + =

= = −

⋅ = × +

v v v

vb v b

b

v v v

 

 

 

∇

∇

ω

P

22 



 The equation of motion for a steady flow becomes: 

 Considering a stream line                     parameterized in terms of 
its arc length s : 

Barotropic perfect fluid with potential forces: 
Steady state solution 

21
2

 v 2
t

φ ∂ − + + = + ×  ∂
v v ωP 21 v 2

2
φ

 
−∇ + + = × 

 
vωP

: ( )sΓ =x x

23 

https://youtu.be/vl0liBIoe74?t=00m00s


 Then, the equation of motion along the considered streamline ,     , reads: 

21
2 v 2φ − + + = ×  v ωP ( ) ( )2v v vM− ⋅ = × ⋅ω

( )( )M s= x

= 0

d ds
ds dt

=
x

( )( ) 0

M

d dMM s
ds ds

∂
∂

∇ ⋅ = = ∀ ∈Γ

x

xx x
 ( )M cnt= ∀ ∈Γx x

( )21
2 v cntφ + + = ∀ ∈Γ  x xPBeurnoulli’s trinomial 

remains constant along 
the same streamline. 

Barotropic perfect fluid with potential forces: 
Steady state solution 

24 

Γ

: ( )sΓ =x x



 Incompressible fluid: 

 Potential gravitational forces: 

( )


0 0 0
0 0

0

1 1( )
( )

p p pp cnt p dp dp
p

ρ

ρ ρ ρ
ρ ρ ρ

= = = ≡ = =∫ ∫ 



P

( ) ( )
0
0 ( ) gz
g

φ φ
 
 = − = = 
−  

b x x x

( )2 21 1
2 2

0

v vp gz cntφ
ρ
 

 + + = + + = ∀ ∈Γ     
x xP

2

0

1 v
2

defpz H cnt
g gρ

+ + = = ∀ ∈Γx BERNOULLI’S 
THEOREM 

25 

Barotropic perfect fluid with potential 
(gravitational)forces: steady state solution 



 Bernoulli’s Theorem can be interpreted as: 

 It is a statement of the conservation of mechanical energy: 

 
2

0

1 v
2

p gz cnt
ρ

+ + = ∀ ∈Γx

2

0

1 v
2

defpz H cnt
g gρ

+ + = = ∀ ∈Γx

Piezometric or 
hydraulic head, h 

elevation 

pressure 
head 

velocity 
head 

total or 
energetic 

head 
pressure 

head 

velocity 
head 

elevation 

pressure 
energy potential 

energy 
kinetic 
energy 

26 

Barotropic perfect fluid with potential 
(gravitational)forces: steady state solution 



Determine the velocity and mass flow rate of water from the circular 
hole (0.1m diameter) at the bottom of the water tank (at this instant). 
The tank is open to the atmosphere and h = 4m. Consider a steady 
state regime. 

Example 

h

27 

https://youtu.be/dzY5dlWAF-0?t=00m00s


Example - Solution 

h

2 2
1 1 2 2

1 2
0 0

v v
2 2

p pz z
g g g gρ ρ

+ + = + +



1 2

2
1 1 2 1 2

1

0

0

v 0 ( v v 0)

atmp p p
SS S
S
≈

= = ≈


≈ ≥ → = ≈



( )2 1 2v 2g z z= −
2

2
1 2

v
2

z z
g

= +

Velocity at the bottom hole of the tank: 2v 2gh=

h

28 

1  1S = cross section area at

2  2S = cross section area at

https://youtu.be/dzY5dlWAF-0?t=00m41s


 The equation of motion for an unsteady flow is: 

 This expression may be simplified for: 
 Potential (irrotational) flow
 Potential and incompressible flow

21
2

 v 2
t

φ ∂ − + + = + ×  ∂
v v ωP

REMARK   
A movement is said to be irrotational 
(or potential) if the rotational of the 
velocity field is null at any point: 

( , ) ,t t× = ∀ ∀v x 0 x∇

Barotropic perfect fluid with potential forces: 
Transient solution 

29 

https://youtu.be/mqW0TdOVaec?t=00m00s


 In an irrotational flow: 
 

 There will exist a scalar function (named velocity potential            ) which 
satisfies:

 Then, the equation of motion becomes: 

 Rearranging, 

( , ) ,t t× = ∀ ∀v x 0 x 1( , ) ( , ) ,
2

t t t= × = ∀ ∀x v x 0 xω

( ) ( ), t tχ=v x x ,
( )tχ x,

21
2

 v 2
t

φ ∂ − + + = + ×  ∂
v v ωP

( )( )t
t

χ∂
=

∂

x∇ ,

21
2 v )

t
χφ ∂ − + + =  ∂

P 

( ),M t= x

21
2 v

t
χφ

 ∂
− + + + = ∂ 

0 P ( ), ,M t t= ∀ ∀x 0 x∇

30 

Barotropic perfect fluid with potential forces 
and irrotational flow: Transient solution 



 The momentum equation can be trivially integrated: 
 
 

 Defining a modified velocity potential,            : 

 Finally, 

( ), ,M t t= ∀ ∀x 0 x ( ) ( )21
2, vM t t

t
χφ ϕ∂

= + + + =
∂

x P

( )tχ x,

( ) ( ) ( )
0

, ,
tdef

t t dχ χ ϕ τ τ= − ∫x x
( )
( )

, t

t
t t

χ χ

χ χ ϕ

= =

∂ ∂
= −

∂ ∂

v x∇ ∇

Differential equation of 
hydraulic transients ( )21 0 ,

2
t

t
χφ χ ∂

+ + + = ∀ ∀
∂

x∇P

31 

Barotropic perfect fluid with potential forces 
and irrotational flow: Transient solution 



 The mechanical problem for a potential (irrotational) flow: 

 3 scalar unknowns:    ,    ,    . Once the potential        is obtained, 
the velocity field can be easily calculated: 

ρ χp

( ) ( ), t tχ= ∇v x x,

Conservation of Mass. 
Continuity Equation. 1 eqn. ( )( ) 0tρ ρ χ+ ⋅ =x   ,

Linear Momentum Balance. 
Hydraulic Transients Equation. 1 eqn.

1 eqn. Kinetic State Equation ( )pρ ρ=( ), , 0F pρ θ =

2 0ρ ρ χ+ = 

( ) ( )21, 0 ,
2

p t
t
χρ φ χ ∂

+ + + = ∀ ∀
∂

xP

barotropic fluid 

χ

( ) ( ), t tχ=v x x ,

Barotropic perfect fluid with potential forces: 
Transient solution in irrotational flows 

32 



 In an incompressible flow: 

 Then, the term      in the equation of motion becomes: 

 And, the equation of motion is: 

( )2

0

1 ]
2

p
t
χφ χ

ρ
∂

− + + + =
∂

0 

0d
dt
ρ
= 0ρ ρ=

( ) ( ) 0 00 0

1 1,
p p pt dp dp

p ρ ρρ
= = =∫ ∫xP

P
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Incompressible perfect fluid with potential 
forces: transient solution in irrotational flows 

https://youtu.be/mqW0TdOVaec?t=08m45s


 The mechanical problem for a potential (irrotational) and 
incompressible flow: 

 2 scalar unknowns:    ,    . Once the potential        is obtained, the 
velocity field can be easily calculated: 

Fluid Mechanics Equations 

χp

Conservation of Mass. 
Continuity Equation. 1 eqn. ( )( ) 0tρ ρ χ+ ⋅ =x   ,

Linear Momentum Balance. 
Hydraulic Transients Equation. 1 eqn.( )2

0

1 0 ,
2

p t
t
χφ χ

ρ
∂

+ + + = ∀ ∀
∂

x

χ

( ) ( ), t tχ=v x x ,

2 0
not

χ χ∇ = ∆ =

34 
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Ch.10. Fluid Mechanics 
 

10.4. Newtonian Viscous Fluids 



 Governing equations of the general fluid mechanics problem: 

 17 scalar unknowns:    ,    ,    ,    ,    ,    ,    ,    . 

Governing Equations 

Conservation of Mass. 
Continuity Equation. 1 eqn. 0ρ ρ+ ⋅ =v 

Linear Momentum Balance. 
Equation of Motion. 3 eqns. ρ ρ⋅ + =b v σ

Energy Balance.  
First Law of Thermodynamics. 1 eqn. :u rρ ρ= + − ⋅d q σ

Mechanical Constitutive 
Equations. 6 eqns. ( ) 2p Trλ µ= − + +d dσ 1 1

Thermal Constitutive Equation. Fourier’s 
Law of Conduction. 3 eqns. K θ= −q 

Caloric and Kinetic State 
Equations. 2 eqns. ( ), , 0F pρ θ =( ),u u ρ θ=

( ), ,s s θ ρ= d 1 eqn. Entropy  
Constitutive Equation. 

ρ v σ u q θ s p Too large to solve 
analytically !! 
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https://youtu.be/HWwrqc17y5E?t=00m10s


 Consider the following lemmas: 
 Lemma 1.

 Lemma 2.

 Introducing the constitutive equation into the divergence of the 
stress tensor,       ,and taking into account these lemmas: 

 

Navier-Stokes Equations 

( )1 1
2 2

⋅ = ∆ + ⋅d v v  

( )α α⋅ =1 

Where             is the 
deformation rate tensor 

( , )td x

Where             is a scalar function. ( , )tα x

⋅ σ

( )


2p Trλ µ
= ⋅

= − + +

v

d dσ 1 1


( )
)

( ( ) 2 )

( ( )) (

p Tr

p Tr

λ µ

λ µ µ
⋅

⋅

⋅ = ⋅ − + + =

= − + + ∆ +
v

v v

d d

d


σ 1 1
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ρ ρ⋅ + =b v σ

https://youtu.be/HWwrqc17y5E?t=01m21s


 Then, the linear momentum balance equation is rearranged: 

 

 

 The Navier-Stokes equations are essentially the equation of motion
(Cauchy’s equation) expressed solely in terms of velocity and pressure.

Navier-Stokes Equations 

d
dt

ρ ρ⋅ + =
vb σ ( ) ( ) dp

dt
λ µ µ ρ ρ⋅ +− + + + ∆ =v v

vb  

NAVIER-STOKES 
EQUATIONS 

( ) ( )

( )
2 2v v v , {1,2,3}

v
vv b

j i i
i

i i j j j

dp
dt

dp b i j
x x x x x dt

µλ µ ρ ρ

λ µ µ ρ ρ

⋅ + ∆

− + + + =

 ∂ ∂∂− + + + + = ∈
 ∂ ∂ ∂ ∂ ∂
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 Consider the definition of stress power: 

 And the Fourier’s Law: 

 Introducing these into the energy balance equation: 
 

Energy Equation 

( ) ( )2: 2 :pTr Trκ µ ′ ′= − + +d d d d dσ

RECOVERABLE 
POWER,       .WR

DISSIPATIVE 
POWER,         .2WD

K θ= −q  ( )K θ⋅ = − ⋅q  

:u rρ ρ= + − ⋅d q σ

2( ( ) ( ) 2 : ) ( )du pTr Tr r K
dt

ρ κ µ ρ θ′ ′= − + + + + ⋅d d d d  
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:du r
dt

ρ ρ= + − ⋅d qσ

https://youtu.be/HWwrqc17y5E?t=07m09s


 Then, the energy balance equation is reduced to: 
 

 
 
 

 The energy equation is essentially the energy balance equation expressed
solely in terms of velocity and pressure.

Energy Equation 

ENERGY  EQUATION 

( ) ( )2

2i i

i i i i

 :

v v( )  ( ) , {1,2,3}

v d d d

ij ij

du p r K Tr
dt
du p r K d d i j
dt x x x x

ρ ρ θ κ µ

θρ ρ κ µ


′ ′= − ⋅ + + ⋅ + +

 ∂ ∂∂ ∂ ′ ′= − + + + + ∈
∂ ∂ ∂ ∂

2

2

  



( ) ( )2( ( ) 2 : )du pTr Tr r K
dt

ρ κ µ ρ θ
⋅

′ ′= − + + + + ⋅
v
d d d d


 

DISSIPATIVE 
POWER,         . 2WD
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 Governing equations of the general fluid mechanics problem are 
reduced to: 

 8 scalar unknowns:   ,   ,    ,    ,   ,    . 

Reduced System of Equations 

Conservation of Mass. 
Continuity Equation. 1 eqn. 0ρ ρ+ ⋅ =v 

Energy Balance.  1 eqn.( ) ( )2 :u p r K Trρ ρ θ κ µ ′ ′= − ⋅ + + ⋅ + +v d d d 2  

Caloric State Equation. 1 eqn. ( ),u u ρ θ=

Momentum Balance.  
Navier-Stokes Equations. 3 eqns.( ) ( )p µλ µ ρ ρ⋅ +− + + + =v v b v∆   

Kinetic State Equation. 1 eqn. ( ), , 0F pρ θ =

( ), ,s s θ ρ= v 1 eqn. Entropy 
Constitutive Equation. 

ρ v u θp s

41 

REMARK 
For a barotropic fluid, the mechanic and 
thermal problems are uncoupled, reducing 
the mechanical problem to 5 unknowns. 

https://youtu.be/HWwrqc17y5E?t=09m56s


 The Navier-Stokes equations can be physically interpreted as: 

Navier-Stokes Equations: Physical 
Interpretation 

( ) ( ){ } dp
dt

µλ µ ρ ρ⋅ + ∆− − − + + − =

>0

v
vv b 0



   

Forces due to 
the pressure 

gradient 
Viscous forces due 
to the contact with 
neighbour particles 

Body 
forces 

Inertial 
forces 

NOTE: All forces are 
per unit of volume. 
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https://youtu.be/HWwrqc17y5E?t=11m05s


 The energy equation can be physically interpreted as: 

 
 

2( )  ( ) :du p r K Tr
dt

ρ ρ θ κ µ ′ ′= − ⋅ + + ⋅ + +v d d d   2

Variation of 
internal energy 

( ) )
1 ( )

1 ( )

( dV
d dV

d dt dVdV

d dV
dt

d dt

p

V

p− ⋅ = −
⋅


= 




= 

⋅ v

v
v∇

∇

∇

Mechanical work of the 
thermodynamic pressure 

per unit of time: 

Variation of volume 
per unit of volume 

and per unit of 
time 

Heat generated by the 
internal sources and 
conduction per unit 

volume per unit time 

Dissipative 
power,       . 2WD

NOTE: All terms are 
per unit of volume 
and unit of time 

Energy Equation: Physical 
Interpretation 

43 



 CONTINUITY EQUATION 
 Cartesian Coordinates

 Cylindrical Coordinates

 Spherical Coordinates

Fluid Mechanics Equations 
in Curvilinear Coordinates 

( ) 0
t
ρ ρ∂
+ ⋅ =

∂
v

( ) ( ) ( )v v v 0x y zt x y z
ρ ρ ρ ρ∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂

( ) ( ) ( )1 1v v v 0r zr
t r r r zθ
ρ ρ ρ ρ

θ
∂ ∂ ∂ ∂

+ + + =
∂ ∂ ∂ ∂

( ) ( ) ( )2
2

1 1 1v v sin v 0
sin sinrr

t r r r rθ ϕ
ρ ρ ρ θ ρ

θ θ θ ϕ
∂ ∂ ∂ ∂

+ + + =
∂ ∂ ∂ ∂

44 



 NAVIER-STOKES EQUATIONS for an incompressible fluid 
with     and     constants 
 Cartesian Coordinates

   component
 

   component

 
   component

 

ρ µ

x

y

z

2 2 2

2 2 2

v v v v v v vv vx x x x x x x
x y z x

pv b
t x y z x x y z

ρ µ ρ
  ∂ ∂ ∂ ∂ ∂ ∂ ∂∂

+ + + = − + + + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

2 2 2

2 2 2

v v v v v v v
v v vy y y y y y y

x y z y
p b

t x y z y x y z
ρ µ ρ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂  ∂
+ + + = − + + + +    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

2 2 2

2 2 2

v v v v v v vv v vz z z z z z z
x y z z

p b
t x y z z x y z

ρ µ ρ
  ∂ ∂ ∂ ∂ ∂ ∂ ∂∂

+ + + = − + + + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
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( )pρ λ µ ⋅= − + + va ∇ ∇∇  ( )
;

t

µ ρ+ ∆

⋅ =

+
∂

= + ⋅∇
∂

v 0

v b
va v v ∇

Fluid Mechanics Equations 
in Curvilinear Coordinates 

NOTE: For “slow” motions left-hand-side term is zero ( )a 0ρ =

https://youtu.be/7yJNy-NenkY?t=00m00s


 NAVIER-STOKES EQUATIONS for an incompressible fluid
with     and     constants

 Cylindrical Coordinates
  component

 
 

     component
 

   component

 

 

ρ µ

r

θ

z

( )
2 2 2

2 2 2 2

v v vv v v v v v1 1 2v v vr r r r r r
r z r r

p r b
t r r r z r r r r r r z

θ θ θρ µ ρ
θ θ θ

   ∂∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ + + − + = − + + − + +    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

( )
2 2

2 2 2 2

v v v v v v v v vv1 1 1 2v v vr r
r z

p r b
t r r r z r r r r r r z
θ θ θ θ θ θ θ θ

θ θρ µ ρ
θ θ θ θ

 ∂ ∂ ∂ ∂ ∂ ∂∂∂ ∂ ∂   + + + + = − + + + + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    

2 2

2 2 2

vv v v v v v v1 1v vz z z z z z z
r z z

p r b
t r r z z r r r r z

θρ µ ρ
θ θ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂   + + + = − + + + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    
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( )pρ λ µ ⋅= − + + va ∇ ∇∇  ( )
;

t

µ ρ+ ∆

⋅ =

+
∂

= + ⋅∇
∂

v 0

v b
va v v ∇

Fluid Mechanics Equations 
in Curvilinear Coordinates 

NOTE: For “slow” motions left-hand-side term is zero ( )a 0ρ =



( )
2

2
2 2 2 2 2 2 2

v v v v v v v v vv 1v
sin sin

v v vv1 1 1 1 2 2 θv sin
sin sin sin sin

r
r

r

pcotg
t r r r r r r

cotgr b
r r r r r r r

ϕ ϕ ϕ ϕ ϕ ϕ θ ϕθ

ϕ ϕ θ
ϕ ϕ

ρ θ
θ θ ϕ θ ϕ

µ θ ρ
θ θ θ θ ϕ θ ϕ θ ϕ

∂ ∂ ∂ ∂  ∂
+ + + + + = − + ∂ ∂ ∂ ∂ ∂ 

 ∂ ∂  ∂∂∂ ∂ ∂ + + + + + +     ∂ ∂ ∂ ∂ ∂ ∂ ∂   

 NAVIER-STOKES EQUATIONS for an incompressible fluid 
with     and     constants 
 Spherical Coordinates

   component

 

     component

 
 

     component 

ρ µ

r

θ

φ

( ) ( )

2 2

2
2

2 2 2 2 2 2 2

v v vvv v v vv
sin

vv v1 1 1 2 2v sin v sin
sin sin sin sin

r r r r
r

r r
r r

p
t r r r r r

r b
r r r r r r r

ϕ θ ϕθ

ϕ
θ

ρ
θ θ ϕ

µ θ θ ρ
θ θ θ θ ϕ θ θ θ ϕ

 +∂ ∂ ∂ ∂ ∂
+ + + − = − +  ∂ ∂ ∂ ∂ ∂ 

∂ ∂ ∂∂ ∂ ∂ ∂  + + + − − +    ∂ ∂ ∂ ∂ ∂ ∂ ∂    

( )

2

2
2

2 2 2 2 2 2 2

v vv v v v v v v 1v
sin

vv v v1 1 1 1 2 2v sin
sin sin sin

r
r

r

cotg p
t r r r r r r

cotgr b
r r r r r r r

ϕ ϕθ θ θ θ θ θ

ϕθ θ
θ θ

θ
ρ

θ θ ϕ θ

θµ θ ρ
θ θ θ θ ϕ θ θ ϕ

 ∂ ∂ ∂ ∂ ∂
+ + + + − = − +  ∂ ∂ ∂ ∂ ∂ 

∂ ∂ ∂ ∂∂ ∂ ∂   + + + + − +   ∂ ∂ ∂ ∂ ∂ ∂ ∂   
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( )pρ λ µ ⋅= − + + va ∇ ∇∇  ( )
;

t

µ ρ+ ∆

⋅ =

+
∂

= + ⋅∇
∂

v 0

v b
va v v ∇

Fluid Mechanics Equations 
in Curvilinear Coordinates 



 STRESS TENSOR for Newtonian fluids 
 Cartesian Coordinates

 

2( )
3

λ µ= +K

( )v 22 · ·
3

x
x p

x
σ µ ∂ = − − + ∂ 

v v K

( ) vv ··
3
2v

2 ∇∇ K+−







−

∂

∂
µ=σ p

y
y

y

( ) vv ··
3
2v

2 ∇∇ K+−



 −

∂
∂

µ=σ p
z
z

z









∂

∂
+

∂
∂

µ=τ=τ
xy

yx
yxxy

vv









∂
∂

+
∂

∂
µ=τ=τ

yz
zy

zyyz
vv









∂
∂

+
∂
∂

µ=τ=τ
zx
xz

xzzx
vv
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( ) 2
2- ; ( )
3

p Tr

Tr

λ µ

λ µ

= − + +

= = ⋅

d d

d v

σ 1 1

K
Fluid Mechanics Equations 
in Curvilinear Coordinates 

NOTE: for incompressible fluids ( )v 0⋅ =



 STRESS TENSOR for Newtonian fluids 
 Cylindrical Coordinates

 ( )v 22 · ·
3

r
r p

r
σ µ ∂ = − − + ∂ 

v v K

( )1 v v 22 · ·
3

r p
r r

θ
θσ µ

θ
∂  = + − − +  ∂  

v v K

( )v 22 · ·
3

z
z p

z
σ µ ∂ = − − + ∂ 

v v K









θ∂

∂
+








∂
∂

µ=τ=τ θ
θθ

r
rr rrr

r
v1v









θ∂

∂
+

∂
∂

µ=τ=τ θ
θθ

z
zz rz

v1v







∂
∂

+
∂
∂

µ=τ=τ
zr
rz

rzzr
vv

( )1 1 v v· v z
rr

r r r z
θ

θ
∂ ∂ ∂

= + +
∂ ∂ ∂

v
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2( )
3

λ µ= +K

( ) 2
2- ; ( )
3

p Tr

Tr

λ µ

λ µ

= − + +

= = ⋅

d d

d v

σ 1 1

K
Fluid Mechanics Equations 
in Curvilinear Coordinates 

NOTE: for incompressible fluids ( )v 0⋅ =



 STRESS TENSOR for Newtonian fluids 
 Spherical Coordinates

 
 

( )v 22 · ·
3

r
r p

r
σ µ ∂ = − − + ∂ 

v v K

( )1 v v 22 · ·
3

r p
r r

θ
θσ µ

θ
∂  = + − − +  ∂  

v v K

( )
v1 v v 22 · ·

sin 3
r cotg p

r r r
ϕ θ

ϕ
θσ µ

θ ϕ
∂  

= + + − − +  ∂  
v v K









θ∂

∂
+








∂
∂

µ=τ=τ θ
θθ

r
rr rrr

r
v1v













φ∂
∂

θ
+








θθ∂

∂θ
µ=τ=τ θφ

φθθφ
v1v

sinrsinr
sin




















∂
∂

+
φ∂

∂
θ

µ=τ=τ φ
φφ rr

r
sinr

r
rr

vv1

( ) ( )2
2

v1 1 1· v v sin
sin sinrr

r r r r
ϕ

θ θ
θ θ θ ϕ

∂∂ ∂
= + +

∂ ∂ ∂
v
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2( )
3

λ µ= +K

( ) 2
2- ; ( )
3

p Tr

Tr

λ µ

λ µ

= − + +

= = ⋅

d d

d v

σ 1 1

K
Fluid Mechanics Equations 
in Curvilinear Coordinates 

NOTE: for incompressible fluids ( )v 0⋅ =
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Ch.10. Fluid Mechanics 

10.5. Boundary Conditions 



 Prescribed velocities 
 Velocities are known in a certain part of the control volume
boundary,      : 

 Impervious walls 
 Part of the boundary of control volume,       , which can be mobile,  is 

impervious (it cannot be penetrated by the fluid).
 The normal component of the  relative fluid/wall velocity,                , is 

considered null.

Boundary Conditions in Velocities 

( ) ( ) v, ,t t= ∀ ∈Γv x v x xvΓ

vn
Γ

*
r ≡ −v v v

( )
n

*
n vv ,t = ⋅ = ⋅ ∀ ∈Γx v n v n x

( )
n

*
v0− ⋅ = ∀ ∈Γv v n x

63 

https://youtu.be/yAu1rj4XkCI?t=00m00s


 Adherent walls 
 In a viscous fluid in contact with a wall the fluid is considered to adhere to

the wall.
 The relative fluid/wall velocity,     , is considered null.

Boundary Conditions in Velocities 

rv

( ) v,  r t = − = ∀ ∈ Γ*v x v v 0 x

v = ∀ ∈ Γ*v v x

64 



 Prescribed tractions 
 The traction vector’s value is prescribed in certain parts of the control

volume contour      :

 Sometimes, only part of the traction
 vector is prescribed, such as the 
 thermodynamic pressure. 

 For a Newtonian fluid:
 
 

Boundary Conditions in Pressures 

*( , ) ( , )t t σ= ⋅ = ∀ ∈Γt x n t x xσ

σΓ

( ) 2p Trλ µ= − + +d dσ 1 1 ( ) 2p Trλ µ= ⋅ = − + + ⋅t n n d n d nσ

*
p( , ) ( , )  p t p t= ∀ ∈ Γx x x
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https://youtu.be/yAu1rj4XkCI?t=06m58s


 Prescribed traction vector and velocities 
 Pressure and the tangential component of the velocity,      , are prescribed :

 This boundary condition is typically used in problems involving in-flow and
out-flow sections (pipes).

Mixed Boundary Conditions 

66 

tv



 The contact surface between air and fluid (generally water) is a 
free surface. 

Boundary Conditions on Free Surfaces 

67 



 HYPOTHESIS: The free surface is a material surface.  
 This implicitly establishes certain boundary conditions on the velocity field 

of the material surface      . 
 Consider the free surface: 

 
 Impose the condition for a material surface (null material derivative): 
 

Boundary Conditions on Free Surfaces 

fsΓ

( ) ( ): { | , , , , , 0}fs x y z t z x y tφ ηΓ = ≡ − =x

x y zv v v 0d
dt t t x y z
φ φ η η η φφ∂ ∂ ∂ ∂ ∂
= + ⋅ = − − − + =
∂ ∂ ∂ ∂ ∂

v 
1=

z x yv ( , ) v v fst
t x y
η η η∂ ∂ ∂

= + + ∀ ∈Γ
∂ ∂ ∂

x x

68 



 Another boundary condition typically used on free surfaces is: 
 
 
 

 This allows identifying the position of the free surface once the 
pressure field is known: 
 

 
 

Boundary Conditions on Free Surfaces 

( ), atm fsp t P= ∀ ∈Γx x

( ): { | , 0 }fs atmp t PΓ = − =x x

69 
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Ch.10. Fluid Mechanics 

10.6. Laminar and Turbulent Flows 



 Flow persists as unidirectional movement. 
 Particles flow in parallel layers which do not mix.
 A flow’s laminar character is identified by the Reynolds number:
 The governing equations of the fluid mechanics problem are valid for this

type of flow.

Laminar Flow 

def

e
V LR
ν
×

=

, Flow’s characteristic velocity 
, Domain’s characteristic length 
, Kinematic viscosity: 

V
L
ν

1000eR <

71 

https://youtu.be/WA081__jTEI?t=00m00s


 High values of the Reynolds number.   
 Highly distorted and unstable flow: 
 Stress and velocity at a given spatial point fluctuate randomly and very 

fast, along time, about a mean value. 
 Specific models (turbulence models) are used to characterize this regime. 

Turbulent Flow 

72 

NOTE: Turbulent flow is 
out of the scope of this 
course 
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Chapter 10
Fluid Mechanics

10.1 Governing Equations
A fluid is a particular case of continuous medium that is characterized by its
specific set of constitutive equations. Consequently, the fluid mechanics problem
is defined by the following equations:

a) Balance Equations

1) Mass continuity equation

dρ
dt

+ρ∇ ·v = 0 (1 equation) (10.1)

2) Balance of linear momentum

∇ ·σσσ +ρ b = ρ
dv
dt

(3 equations) (10.2)

3) Energy balance

ρ
du
dt

= σσσ : d+ρ r−∇ ·q (1 equation) (10.3)

4) Restrictions imposed by the second law of thermodynamics

Clausius-Planck
inequality

−ρ
(

du
dt
−θ

ds
dt

)
+σσσ : d≥ 0

Heat conduction
inequality

− 1

ρθ 2
q ·∇θ ≥ 0

(10.4)
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454 CHAPTER 10. FLUID MECHANICS

b) Constitutive Equations

5) Thermo-mechanical constitutive equation

σσσ =−p1+λ Tr(d)1+2μ d (6 equations) (10.5)

6) Entropy constitutive equation

s = s(d,ρ,θ) (1 equation) (10.6)

7) Law of heat conduction

q =−K ∇θ (1 equation) (10.7)

c) Thermodynamic equations of state

8) Caloric equation of state

u = u(ρ,θ) (1 equation) (10.8)

9) Kinetic equation of state

F (ρ, p,θ) = 0 (1 equation) (10.9)

The unknowns1 of these governing equations are

ρ → 1 unknown

v → 3 unknowns

σσσ → 6 unknowns

u → 1 unknown

q → 3 unknowns

θ → 1 unknown

s → 1 unknown

p → 1 unknown

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

→ 17 unknowns . (10.10)

The system is formed by a total of 17 PDEs and 17 unknowns which, in general,
should be solved together, that is, in a coupled form. However, as noted in Sec-
tion 5.13.1 of Chapter 5, under certain hypotheses or situations a reduced system

1 Note that the strain rate tensor d is not considered an unknown since it is an implicit function
of the velocity field v.

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems

doi:10.13140/RG.2.2.25821.20961
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Governing Equations 455

of equations, denoted as the mechanical problem, may be posed and solved sep-
arately for a reduced number of unknowns (mechanical variables).

Consider the case of a barotropic fluid, which is characterized by the fact that
the temperature does not intervene in the kinetic equation of state. Then,

Kinetic equation
of state

F (ρ, p) = 0 =⇒ ρ = ρ (p) , (10.11)

which establishes that the density
may be described solely by means
of the thermodynamic pressure (see
Figure 10.1). Assuming, in addition,
that the temperature does not inter-
vene in the thermo-mechanical consti-
tutive equation (10.5), the governing
equations of the (uncoupled) mechani-
cal problem in a Newtonian fluid are de-
fined as

Figure 10.1: Density depends on

the thermodynamic pressure in a

barotropic fluid.

1) Mass continuity equation

dρ
dt

+ρ∇ ·v = 0 (1 equation) (10.12)

2) Cauchy’s equation

∇ ·σσσ +ρ b = ρ
dv
dt

(3 equations) (10.13)

3) Mechanical constitutive equation

σσσ =−p1+λ Tr(d)1+2μ d (6 equations) (10.14)

4) Kinetic equation of state

ρ = ρ (p) (1 equation) (10.15)

The unknowns of the problem posed by the equations above are

ρ → 1 unknown

v → 3 unknowns

σσσ → 6 unknowns

p → 1 unknown

⎫⎪⎪⎬
⎪⎪⎭ → 11 unknowns . (10.16)
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456 CHAPTER 10. FLUID MECHANICS

A reduced system of 11 equations and 11 unknowns (mechanical problem) is
obtained, which may be solved uncoupled from the rest of the problem (thermal
problem).

10.2 Hydrostatics. Fluids at Rest
Consider the following particular cases in terms of a fluid’s velocity:

a) Uniform velocity: v(x, t)≡ v(t)
In this case, the spatial description of the velocity does not depend on the
spatial point being considered and is only a function of time. Therefore,

d = ∇Sv =
1

2
(v⊗∇+∇⊗v) = 0 . (10.17)

Then, the constitutive equation (10.14) is reduced to

σσσ =−p1+λ Tr (d)︸︷︷︸
= 0

1+2 μ d︸︷︷︸
= 0

=⇒ σσσ =−p1 , (10.18)

which indicates that the stress state is hydrostatic (see Figure 10.2). In addi-
tion, the mean pressure p̄ and the thermodynamic pressure p coincide,

Tr(σσσ) =−3 p̄ =−3p =⇒ p̄ = p . (10.19)

Figure 10.2: Mohr’s circle for a fluid with uniform velocity.

b) Uniform and stationary velocity: v(x, t)≡ const.

A fluid with uniform and stationary velocity is characterized, in addition of
(10.17), by
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a =
dv
dt

=
∂v
∂ t

+v ·∇v = 0

σσσ =−p01 =⇒ p̄ = p = p0

⎫⎪⎬
⎪⎭ hydrostatic

case
(10.20)

This is the most general case of hydrostatics, which is characterized by a null
acceleration (the velocity of each particle is constant, although not necessar-
ily null) and the three pressures (thermodynamic p, mean p̄, and hydrostatic
p0) coincide.

c) Fluid at rest: v(x, t)≡ const.= 0
A particular case of hydrostatics is that of a fluid at rest with null velocity.

10.2.1 Hydrostatic Equations
The hydrostatic problem is governed by the following equations:

1) Constitutive equation

σσσ =−p0 1
σi j =−p0 δi j i, j ∈ {1,2,3} (10.21)

where p0 is the hydrostatic pressure.

Remark 10.1. Pascal’s Principle states that, in a fluid at rest, the
pressure is the same in every direction.
This classic fluid mechanics postulate is guaranteed by the spheri-
cal structure of the stress tensor in (10.21), which ensures that all
directions are principal stress directions (see Figure 10.3).

Figure 10.3: Pascal’s Principle.
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458 CHAPTER 10. FLUID MECHANICS

2) Mass continuity equation

dρ
dt

+ρ∇ ·v = 0

v = const. ⇒ ∇ ·v = 0

⎫⎪⎬
⎪⎭⇒ dρ

dt
= 0 ⇒ ρ (X, t) = ρ0 (X) = const.

(10.22)

and the density of a same particle does not change along time.

3) Cauchy’s equation

∇ ·σσσ +ρ b = ρ
dv
dt

(10.23)

Introducing (10.21) and (10.22) in (10.23),⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∇ ·σσσ = ∇ · (−p0 1) =−∇p0

[
∇ ·σσσ] j =

∂σi j

∂xi
=

∂
∂xi

(−p0 δi j) =−∂ p0

∂x j
=−[∇p0

]
j j ∈ {1,2,3}

(10.24)

Fundamental equation
of hydrostatics

⎧⎪⎨
⎪⎩
−∇p0 +ρ0 b = 0

−∂ p0

∂xi
+ρ0 bi = 0 i ∈ {1,2,3}

(10.25)

10.2.2 Gravitational Force. Triangular Pressure Distribution
Consider the particular case, which is in fact very common, of the body forces
b(x, t) corresponding to the gravitational force (assumed constant in space and
along time, and oriented in the negative direction of the x3-axis, as shown in
Figure 10.4).

Since the acceleration is null (see (10.20)) it is a quasi-static problem and, be-
cause the actions b(x, t)≡ const. are independent of time, so are the responses,
in particular, the hydrostatic pressure. Consequently,

p0 (x, t)≡ p0 (x) = p0 (x,y,z) , (10.26)

and (10.25) can be integrated as follows
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Figure 10.4: Gravitational Force.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−∂ p0 (x,y,z)
∂x

= 0 =⇒ p0 (x,y,z)≡ p0 (y,z)

−∂ p0 (y,z)
∂y

= 0 =⇒ p0 (y,z)≡ p0 (z)

−∂ p0 (z)
∂ z

−ρ0 g = 0 =⇒ p0 =−ρ0 gz+C

(10.27)

For a case such as the one shown in Figure 10.5, in which the surface pressure
(height z = h) is considered null, the solution (10.26) results in

p0

∣∣∣
z=h

= 0 ⇒ −ρ0 gh+C = 0 ⇒ C = ρ0 gh ⇒ p0 = ρ0 g (h− z) ,

(10.28)
which corresponds to a triangular pressure distribution, as shown in Figure 10.5.

Figure 10.5: Pressure distribution on a gravity dam.
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10.2.3 Archimedes’ Principle

Definition 10.1. Archimedes’ principle:

1) The upward buoyant force experienced by a body submerged in
a fluid is equal to the weight of the fluid displaced by said body.

The classical principle is complemented with:

2) The resultant of the aforementioned buoyant force acts at the
center of gravity of the volume of the displaced fluid.

To prove Archimedes’ principle, consider the situations in Figure 10.6. On the
one hand, Figure 10.6 a) illustrates a solid with volume V and density ρ in
the interior of a fluid of density ρ0. The solid is not necessarily in equilibrium,
even though its velocity and acceleration are assumed to be small enough to
ensure a hydrostatic state in the fluid. On the other hand, Figure 10.6 b) shows
the same fluid without the solid, such that the volume occupied by said solid in
Figure 10.6 a) is occupied here by an identical volume of fluid.

Volume of
displaced fluid

Figure 10.6: a) Solid submerged in a fluid and b) volume of the displaced fluid.

a) Pressure and stress distributions in the fluid

Using the fundamental equation of hydrostatics (10.25) and considering that
the gravitational forces act in the negative direction of the z-axis, the situation
corresponding with (10.26) and (10.27) is achieved. Thus, the result (10.28) is
valid for both cases a) and b) of Figure 10.6.
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p0 (z) = ρ0 g(h− z)

σσσ =−p0 1
(10.29)

Note that the hydrostatic pressure and the stress state in the fluid are the same
for equivalent points of the fluid in the cases a) and b) of Figure 10.6.

b) Buoyant force on the submerged solid

The traction vector on the boundary of the submerged solid in Figure 10.6 a) is

t = σσσ ·n =−p0 1 ·n =−p0 n (10.30)

and the resultant R of the forces the fluid exerts on the solid is

R =
∫

∂V

t dS =
∫

∂V

−p0 n dS . (10.31)

Note now that, since the hydrostatic pressure distribution is the same in both
cases of Figure 10.6, this resultant is the same as the one obtained in case b)
for the forces that the rest of the fluid exerts on the volume of displaced fluid,
with the particularity that, because the pressure distribution is constant in space
(with value p0), the Divergence Theorem (Stokes’ Theorem) can be applied
on (10.30), resulting in

R =
∫

∂V

−p0 n dS =
∫
V

−∇p0 dV . (10.32)

Introducing (10.25) in (10.32) yields

R =
∫
V

−∇p0 dV =
∫
V

−p0 b dV =−
∫
V

ρ0 b dV

︸ ︷︷ ︸
W êz

=W êz = E êz , (10.33)

where E is the upward buoyant force acting on the submerged solid and W is the
weight of the displaced fluid (see Figure 10.6 b) ). That is,

upward buoyant force︸ ︷︷ ︸
E

= weight of the displaced fluid︸ ︷︷ ︸
W

, (10.34)

whereby the first part of Archimedes’ Principle is proven.
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462 CHAPTER 10. FLUID MECHANICS

Volume of
displaced fluid

Figure 10.7: Forces acting on the volume of displaced fluid.

c) Vertical line of application of the upward buoyant force

Consider now the moment MG
E of the upward buoyant force E with respect to

the center of gravity, G, of the volume of displaced fluid (see Figure 10.72),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

MG
E =

∫
∂V

x× (−p0 n)dS

Divergence
Theorem

=
∫
V

x× (−p0∇)dV =−
∫
V

x×∇p0 dV

[
MG

E
]

i =−
∫

∂V

ei jk x j p0 nk dS =−
∫
V

∂
∂xk

(
ei jk x j p0

)
dV =

=−
∫
V

ei jk
∂x j

∂xk︸ ︷︷ ︸
ei jkδ jk =
ei j j = 0

p0 dV −
∫
V

ei jk x j
∂ p0

∂xk
dV =−

∫
V

ei jk x j
∂ p0

∂xk
dV

i ∈ {1,2,3}
(10.35)

and replacing the fundamental equation of hydrostatics (10.25) in (10.35) finally
yields

MG
E =−

∫
V

(x×∇p0)dV =−
∫
V

(x×ρ0 b)dV

︸ ︷︷ ︸
MG

W

=−MG
W = 0 , (10.36)

2 Without loss of generality, the origin of the system of Cartesian axes can be placed at G.
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Hydrostatics. Fluids at Rest 463

where MG
W is the moment of the weight of the displaced fluid with respect to its

center of gravity G, which, considering the definition of the center of gravity,
is null. Consequently, the moment of the upward buoyant force E with respect
to the center of gravity of the volume of displaced fluid is also null. Then, it
is concluded that the vertical line of application of the upward buoyant force
crosses said center of gravity, as established by the second part of Archimedes’
principle.

Example 10.1 – Apply Archimedes’ principle to the study of stability of the
equilibrium in floating solids to determine how the relative position of the
centers of gravity of the solid and the corresponding volume of displaced
fluid affect the nature of this equilibrium.

Solution

Consider a floating medium, in equilibrium, and the following two situations:

a) The center of gravity of the solid (center of thrust) is below the center of
gravity of the displaced fluid (center of buoyancy).

In this case, any perturbation (inclination) tends to create a moment M =Wd
in the sense that tends to recover the initial state of equilibrium. It is, thus, a
case of stable flotation equilibrium.

center of gravity
of the displaced

fluid

center of gravity
of the solid

perturbation

recovering
moment

b) The center of gravity of the solid (center of thrust) is above the center of
gravity of the displaced fluid (center of buoyancy).

In this case, any perturbation (inclination) tends to create a moment M =Wd
in the sense that tends to capsize the floating solid, that is, it tends to move
the solid further away from the initial state of equilibrium. It is, thus, a case
of unstable flotation equilibrium.
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center of gravity
of the solid

center of gravity
of the displaced fluid

perturbation

capsizing
moment

Placing weights (ballasts) on the keel of a boat responds to the search of
improved flotation stability of this boat.

10.3 Fluid Dynamics: Barotropic Perfect Fluids
In the most common case, the velocity is not uniform nor stationary (v≡ v(x, t)),
and, therefore, in general, the acceleration will not be null (a(x, t) �= 0). In con-
sequence, the divergence of the velocity (∇ ·v �= 0) and the gradient of the ve-

locity
(

∇⊗v not
= ∇v �= 0

)
will not be null either.

Definition 10.2. A perfect fluid is a Newtonian fluid characterized
by the fact that the viscosities λ and μ (see (10.14)) are null.

The mechanical constitutive equation (10.14) of a perfect fluid becomes

σσσ =−p1+λ Tr(d)+2μ d
λ = μ = 0

}
=⇒ σσσ =−p1

=⇒
{

∇ ·σσσ =−∇ p

σσσ : d =−p1 : d =−p Tr(d)

(10.37)

which results in a hydrostatic stress state3.

3 A hydrostatic stress state (the stress tensor is spherical) should not be confused with a
hydrostatic motion regime (the velocity is uniform or null).
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Definition 10.3. A barotropic fluid is characterized by a kinetic
equation of state (10.9) in which the temperature does not intervene.

F (ρ, p,θ)≡ F (ρ, p) = 0 =⇒ ρ = ρ (p)

10.3.1 Equations of the Problems
Taking into account the hypotheses of a perfect and a barotropic fluid, the equa-
tions governing a fluid dynamics problem are reduced to:

a) Mechanical problem

1) Mass continuity equation

dρ
dt

+ρ∇ ·v = 0 (1 equation) (10.38)

2) Balance of linear momentum (Euler’s equation)

−∇p+ρb = ρ
dv
dt

(3 equations) (10.39)

3) Kinetic equation of state

ρ = ρ (p) (1 equation) (10.40)

The mechanical problem is composed of 5 equations and 5 unknowns
(
ρ (x, t) ,v(x, t),

p(x, t)
)

that can be solved uncoupled from the thermal problem.

b) Thermal problem

1) Fourier’s law

q =−K ∇θ ⇒ ∇ ·q =−K ∇ · (∇θ) =−K ∇2θ (3 equations)

(10.41)

2) Energy balance

ρ
du
dt

=−p∇ ·v︸ ︷︷ ︸
σσσ : d

+ρ r+ K∇2θ︸ ︷︷ ︸
−∇ ·q

(1 equation)
(10.42)
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3) Caloric equation of state

u = u(ρ,θ) (1 equation) (10.43)

The thermal problem is defined by 5 equations and 5 unknowns
(
q(x, t), θ (x, t),

u(x, t)
)

and can be solved once the mechanical problem has been solved and the

velocity field v(x, t), the density ρ (x, t) and the pressure p(x, t) are known.

Remark 10.2. A general format of the fluid mechanics problem in-
cludes the thermal conductivity K between the viscosities (in a gen-
eralized sense) of the problem. The definition of a perfect fluid as
a fluid without viscosity results, in this context, in the cancella-
tion of the thermal conductivity (K = 0), therefore (10.41) leads to
q = −K∇θ = 0 and the thermal problem is reduced to the equa-
tions (10.42) and (10.43).

10.3.2 Resolution of the Mechanical Problem under Potential Body
Forces. Bernoulli’s Trinomial

Consider now the mechanical problem for the particular case of potential body
forces (the body forces derive from a potential φ ),

Potential body forces: b(x, t) =−∇φ (x, t) . (10.44)

In the particular case of a gravitational potential with the line of action along the
negative direction of the z-axis, the potential is

φ (x,y,z, t) = gz =⇒ b =−∇φ not≡

⎡
⎢⎣ 0

0

−g

⎤
⎥⎦ . (10.45)

Lemma 10.1. For a barotropic fluid (ρ = ρ (p)) there exists a func-
tion P(x, t) = P̂(p(x, t)) that satisfies

∇p = ρ ∇P .
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Proof
Defining the function P(x, t) as

P(x, t) = P̂(p(x, t)) =
p∫

0

1

ρ (p̄)
d p̄ , (10.46)

then, it will satisfy⎧⎪⎪⎨
⎪⎪⎩

∂P(x, t)
∂xi

=
∂ P̂
∂ p

∂ p
∂xi[

∇P
]

i =
∂ P̂
∂ p

[
∇p

]
i =

1

ρ (p)

[
∇p

]
i i ∈ {1,2,3}

(10.47)

leading to

∇P=
1

ρ (p)
∇p . (10.48)

Lemma 10.2. The convective term of the acceleration can be written
as

v ·∇v = 2ωωω×v+∇
(

1

2
v2

)
,

where 2ωωω = ∇×v is the vorticity vector.

Proof
Expanding the right-hand term in the Lemma4,

[
v ·∇v

]
j = vi

∂v j

∂xi
= vi

(
∂v j

∂xi
− ∂vi

∂x j

)
︸ ︷︷ ︸

2w ji

+vi
∂vi

∂x j
= 2vi w ji︸︷︷︸

−wi j

+vi
∂vi

∂x j
=

=−2vi wi j +vi
∂vi

∂x j
= 2 ei jk vi ωk︸ ︷︷ ︸

e jki vi ωk

+vi
∂vi

∂x j
=

= 2e jki vi ωk︸ ︷︷ ︸
[2ωωω×v] j

+
∂

∂x j

(
1

2
vivi︸︷︷︸

v ·v = v2

)
=
[
2ωωω×v

]
j +

[
∇
(

1

2
v2

)]
j
,

j ∈ {1,2,3}

(10.49)

4 The following results, previously obtained in Chapter 2, are used here:

w ji =−wi j =
[
∇av

]
ji = (∂v j/∂xi−∂vi/∂x j)/2 , wi j =−ei jkωk and v2 = |v|2 = v ·v.
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which leads to

v ·∇v = 2ωωω×v+∇
(

1

2
v2

)
. (10.50)

Rearranging now Euler’s equation (10.39),

−∇p+ρb = ρ
dv
dt

=⇒ − 1

ρ
∇p+b =

dv
dt

, (10.51)

and replacing (10.45) and (10.48) in (10.51) produces

−∇P−∇φ =
dv
dt

=
∂v
∂ t

+v ·∇v =
∂v
∂ t

+2ωωω×v+∇
(

1

2
v2

)
, (10.52)

where the result (10.50) has been taken into account. Finally, (10.52) is rewritten
as

−
(

∇P+∇φ +∇
(

1

2
v2

))
=

∂v
∂ t

+2ωωω×v . (10.53)

Equation of motion of a barotropic perfect fluid
under potential body forces

−∇
(
P+φ +

1

2
v2

)
︸ ︷︷ ︸
Bernoulli’s trinomial

=
∂v
∂ t

+2ωωω×v (10.54)

Equation (10.54) is the particular form adopted by the balance of linear momen-
tum (Euler’s equation (10.39)) in barotropic perfect fluids subjected to potential
body forces.

10.3.3 Solution in a Steady-State Regime
The solution to the mechanical problem defined by (10.38) to (10.40) has, in
general, a transient regime, in which the spatial description of the mechanical
variables evolves along time, and a steady-state regime, in which said spatial
description is, approximately, constant along time (see Figure 10.8).

Consider now the equation of motion (10.54) in a steady-state regime,

∂v
∂ t

= 0 =⇒ −∇
(
P+φ +

1

2
v2

)
= 2ωωω×v , (10.55)
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Transient regime Steady-state regime

Figure 10.8: Transient and steady-state regimes.

and a streamline5 Γ : x = x(s) parametrized in terms of its arc-length s (see
Figure 10.9). Projecting (multiplying) equation (10.53) in the direction tangent
to the streamline, t, results in

−∇
(
P+φ +

1

2
v2

)
︸ ︷︷ ︸

M (x)

= 2ωωω×v =⇒ −(∇M) · v︸︷︷︸
dx
ds

ds
dt

= (2ωωω×v) ·v︸ ︷︷ ︸
= 0

= 0 (10.56)

∇M (x(s)) · dx
ds

=
dM
ds

= 0

∂M (x(s))
∂xi

dxi

ds
=

dM
ds

= 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
∀x ∈ Γ =⇒ M (x) = const. ∀x ∈ Γ

(10.57)
and (10.57) is written as

[
P+φ +

1

2
v2

]
(x) = const. ∀x ∈ Γ , (10.58)

which establishes that Bernoulli’s trinomial remains constant along a same
streamline Γ .

Remark 10.3. Note that (10.58) is no longer a partial differential
equation but a (scalar) algebraic equation, already integrated. This
equation allows, thus, determining one of the unknowns of the me-
chanical problem once the others are known.

5 In a steady-state (stationary) regime, trajectories and streamlines coincide.
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Figure 10.9: Parametrized streamline.

10.3.3.1 Solution in Steady-State Regime for an Incompressible Fluid under
Gravitational Forces

Consider now the particular case of a barotropic fluid with the following char-
acteristics:

a) The fluid is incompressible

ρ = ρ (p) = ρ0 = const. (10.59)

In this case, the function P(p) in (10.46) can be integrated as follows.

P(x, t) =
p∫

0

1

ρ (p̄)
d p̄ =

1

ρ0

p∫
0

d p̄ =
p

ρ0
(10.60)

b) The body forces are gravitational

In accordance with (10.45),

φ = gz b =−∇φ not≡

⎡
⎢⎣ 0

0

−g

⎤
⎥⎦ (10.61)

Introducing (10.60) and (10.61) in Bernouilli’s trinomial (10.58) yields

p
ρ0

+gz+
1

2
v2 = const. =⇒ z+

p
ρ0 g

+
1

2

v2

g
de f
= H = const. ∀x ∈ Γ

(10.62)

The terms in (10.61) have dimensions of length (height) and may be inter-
preted in the following manner.
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Bernoulli’s theorem

z︸︷︷︸
elevation

+
p

ρ0 g︸︷︷︸
pressure

head

+
1

2

v2

g︸︷︷︸
velocity

head

de f
= H︸︷︷︸

total
height

= const. ∀x ∈ Γ (10.63)

Remark 10.4. The expression in (10.63) constitutes the so-called
Bernoulli’s theorem (for an incompressible perfect fluid under
gravitational forces and in steady-state regime), which establishes
that the sum of the elevation, the pressure head and the velocity head
is constant in every point belonging to a same streamline (see Fig-
ure 10.10).

Remark 10.5. In engineering, water is generally considered an in-
compressible and perfect fluid, and the science that studies it is
named hydraulics. Since, in general, the body forces are of the gravi-
tational type, Bernoulli’s Theorem is generally applicable in the res-
olution of steady-state problems in hydraulics.

velocity head

pressure head

elevation

streamline

Figure 10.10: Physical interpretation of Benoulli’s theorem.
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472 CHAPTER 10. FLUID MECHANICS

Example 10.2 – Determine the velocity of the water exiting the tank through
a small lateral hole placed at a distance h below the top surface of the water.
Consider the top of the tank is open and neglect the atmospheric pressure.
Assume a steady-state regime.

Solution

The fluid in this problem (water) is an incompressible perfect fluid in steady-
state regime under gravitational forces and, thus, Bernoulli’s theorem can be
applied.
Consider a streamline originating at point A of the water surface and ending
at point B of the exit hole (shown in the figure above). Applying Bernoulli’s
theorem between points A and B, and taking into account that the velocity
of the free surface in the tank is practically null and that its cross-section is
much larger than that of the exit hole, then

zA︸︷︷︸
= h

+
pA

ρ0 g︸︷︷︸
= 0

+
1

2

v2
A

g︸︷︷︸
= 0

= zB︸︷︷︸
= 0

+
pB

ρ0 g︸︷︷︸
= 0

+
1

2

v2
B

g

h+0+0 = 0+0+
1

2

v2

g
=⇒ v =

√
2gh .

10.3.4 Solution in Transient Regime
In a transient regime, the mechanical variables (in their spatial description) are
time-dependent (see Figure 10.8). The starting point to solve the problem is the
balance of linear momentum (10.54),
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−∇
(
P+φ +

1

2
v2

)
=

∂v
∂ t

+2ωωω×v . (10.64)

In some cases, the solution to this equation in transient regime is particularly
simple. In the following subsections, several of these cases will be studied.

10.3.4.1 (Irrotational) Potential Flow

Consider the case of
• a perfect fluid
• with potential body forces
• and irrotational flow.

Definition 10.4. The motion (or flow) of a fluid is said to be irrota-
tional (or potential) if the rotational of the velocity field is null at any
point of this fluid.

In other words, an irrotational flow has a null vorticity vector.

Irrotational flow

⎧⎨
⎩∇×v(x, t) = 0

ωωω (x, t) =
1

2
∇×v(x, t) = 0

∀x ∀t (10.65)

If the flow is irrotational, it is inferred from (10.65) that there exists a scalar
function (denoted as velocity potential χ (x, t)) that satisfies6

v(x, t) = ∇χ (x, t) . (10.66)

Note that, in this case, the vector field v(x, t) is determined in terms of the scalar
velocity potential χ (x, t) (which becomes the main unknown of the problem).
Replacing the conditions (10.65) and (10.66) in (10.64) yields

−∇
(
P+φ +

1

2
v2

)
=

∂v
∂ t

+2 ωωω︸︷︷︸
= 0

×v =
∂v
∂ t

=
∂
∂ t

(
∇χ (x, t)

)
= ∇

(
∂ χ
∂ t

)
=⇒

(10.67)

6 It can be proven that, given an irrotational vector field v(x, t), that is, a vector field
that satisfies ∇× v = 0, there exists a scalar function χ (x, t) (potential function) such that
v = ∇χ (x, t). Obviously, since ∇×∇(•)≡ 0, then ∇×v = ∇×∇χ (x, t) = 0 is satisfied.
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∇
(
P+φ +

1

2
v2 +

∂ χ
∂ t

)
︸ ︷︷ ︸

M (x, t)

= ∇M (x, t) = 0

∂M (x, t)
∂xi

= 0 i ∈ {1,2,3}

∀x ∀t (10.68)

This equation can be trivially integrated, resulting in

M (x, t) = P+φ +
1

2
v2 +

∂ χ
∂ t

= ϕ (t) . (10.69)

Defining a modified velocity potential χ̄ (x, t) of the form

χ̄ (x, t) de f
= χ (x, t)−

t∫
0

ϕ (τ) dτ ⇒

⎧⎪⎨
⎪⎩

∇χ̄ = ∇χ = v(x, t)
∂ χ̄
∂ t

=
∂ χ
∂ t
−ϕ (t)

(10.70)

and replacing (10.70) in (10.69) produces

P+φ +
1

2
v2 +

∂ χ
∂ t
−ϕ (t)︸ ︷︷ ︸
∂ χ̄
∂ t

= 0 =⇒ P+φ +
1

2
(∇χ̄)2 +

∂ χ̄
∂ t

= 0 ∀x ∀t ,

(10.71)
which is the differential equation of hydraulic transients.

The mechanical problem is then defined by:

1) Mass continuity equation

dρ
dt

+ρ∇ ·v =
dρ
dt

+ρ ∇ · (∇χ̄)︸ ︷︷ ︸
∇2χ̄

= 0 =⇒ dρ
dt

+ρ∇2χ̄ = 0 (10.72)

2) Balance of linear momentum (hydraulic transients equation)

P(ρ, p)+φ +
1

2
(∇χ̄)2 +

∂ χ̄
∂ t

= 0 ∀x ∀t (10.73)

3) Kinetic equation of state

ρ = ρ (p) (10.74)
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Fluid Dynamics: Barotropic Perfect Fluids 475

These constitute a system of 3 scalar equations and 3 unknowns (p(x, t), ρ (x, t)
and χ̄ (x, t)) that can be integrated in the R

3×R
+ domain. Once the potential

χ̄ (x, t) is known, the velocity field is obtained through

v(x, t) = ∇χ̄ (x, t) . (10.75)

10.3.4.2 Incompressible and Potential Flow

Consider the case of
• a perfect fluid
• with potential body forces,
• irrotational flow
• and incompressible flow.

Since the flow is incompressible, (10.46) and (10.72) allow determining7

dρ
dt

= 0 =⇒ ρ = ρ0 =⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P(p) =

p∫
0

1

ρ (p̄)
d p̄ =

p
ρ0

∇2χ̄ not
= Δ χ̄ = 0

(10.76)

and the mechanical problem (10.72) to (10.74) is reduced to:

1) Mass continuity equation

Δ χ̄ =
∂ 2χ̄

∂xi∂xi
= 0 (10.77)

2) Balance of linear momentum (hydraulic transients equation)

p
ρ0

+φ +
1

2
(∇χ̄)2 +

∂ χ̄
∂ t

= 0 ∀x ∀t (10.78)

These constitute a system of 2 scalar equations and 2 unknowns (p(x, t) and

χ̄ (x, t)) that can be integrated in the R
3×R

+ domain. In a steady-state regime,
the term ∂ χ̄/∂ t = 0 and any time derivative in the system disappears, such that

the problem can be integrated in R
3.

7 Here, the differential operator named Laplace operator or Laplacian of (•) is defined as

Δ (•) = ∇ ·∇(•)not
= ∇2 (•) = ∂ 2 (•)/∂xi∂xi .
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476 CHAPTER 10. FLUID MECHANICS

10.4 Fluid Dynamics: (Newtonian) Viscous Fluids
Consider now the general problem described by (10.1) to (10.9),

dρ
dt

+ρ∇ ·v = 0 Mass continuity equation (1 eqn.)

∇ ·σσσ +ρb = ρ
dv
dt

Balance of linear momentum (3 eqns.)

ρ
du
dt

= σσσ : d+ρ r−∇ ·q Energy balance (1 eqn.)

σσσ =−p1+λ Tr(d)1+2μ d Mechanical constitutive equation (6 eqns.)

s = s(d,θ ,ρ) Entropy constitutive equation (1 eqn.)

q =−K∇θ Heat conduction equation (3 eqns.)

u = u(ρ,θ) Caloric equation of state (1 eqn.)

F (ρ, p,θ) = 0 Kinetic equation of state (1 eqn.)

(10.79)
which constitute a system of 17 equations and 17 unknowns. This system is too
large to be treated efficiently and a reduced system of equations that allows a
simpler resolution will be sought.

10.4.1 Navier-Stokes Equation
The Navier-Stokes equation is essentially the balance of linear momentum
of (10.79) expressed solely in terms of the velocity field v(x, t) and the pres-
sure p(x, t).

Lemma 10.3. The divergence of the strain rate tensor d(x, t) is re-
lated to the velocity field v(x, t) by

∇ ·d =
1

2
Δv+

1

2
∇(∇ ·v) .
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Proof

[
∇ ·d] j =

∂
∂xi

di j =
∂

∂xi

(
1

2

(
∂vi

∂x j
+

∂v j

∂xi

))
=

1

2

∂ 2vi

∂xi∂x j
+

1

2

∂ 2v j

∂xi∂xi
=

=
1

2

∂
∂x j

∂vi

∂xi︸︷︷︸
∇ ·v

+
1

2

∂ 2v j

∂xi∂xi︸ ︷︷ ︸
Δv j

=
1

2

∂
∂x j

(∇ ·v)︸ ︷︷ ︸
[∇(∇ ·v)] j

+
1

2
Δv j︸︷︷︸
[Δv] j

=

=

[
1

2
Δv+

1

2
∇(∇ ·v)

]
j

j ∈ {1,2,3}
(10.80)

∇ ·d =
1

2
Δv+

1

2
∇(∇ ·v) (10.81)

Lemma 10.4. Given a scalar function α (x, t), the following is sat-
isfied.

∇ · (α 1) = ∇α

Proof

[
∇ · (α 1)

]
i =

∂ (αδi j)

∂x j
= δi j

∂ α
∂x j

=
∂ α
∂xi

=
[
∇α

]
i i ∈ {1,2,3} (10.82)

∇ · (α 1) = ∇α (10.83)

Replacing the mechanical constitutive equation of (10.79) into the balance of
linear momentum of (10.79), and taking into account (10.81) and (10.83) leads
to

σσσ =−p1+λ Tr(d)1+2μ d

∇ ·σσσ +ρb = ρ
dv
dt

⎫⎬
⎭ =⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∇ ·σσσ =−∇p+λ ∇(Tr(d))︸ ︷︷ ︸
∇(∇ ·v)

+μΔv+μ∇(∇ ·v)

∇ ·σσσ +ρb =−∇p+(λ +μ)∇(∇ ·v)+μΔv+ρb = ρ
dv
dt

(10.84)
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478 CHAPTER 10. FLUID MECHANICS

which results in the Navier-Stokes equation.

Navier-Stokes equation

−∇p+(λ +μ)∇(∇ ·v)+μΔv+ρb = ρ
dv
dt

− ∂ p
∂xi

+(λ +μ)
∂ 2v j

∂xi∂x j
+μ

∂ 2vi

∂x j∂x j
+ρbi = ρ

dvi

dt
; i ∈ {1,2,3}

(10.85)

10.4.2 Energy Equation
The aim is to eliminate σσσ and q from the energy balance of (10.79) by replacing
in this equation the mechanical constitutive equation and the entropy equation
of (10.79). To this aim, the definition of stress power in a Newtonian fluid (see
Chapter 9) is recovered,

σσσ : d =WR +2WD =−p∇ ·v+K Tr2 (d)+2μ d′ : d′ , (10.86)

where d′ is the deviatoric part of the strain rate tensor. Fourier’s law is also
recovered,

q =−K ∇θ =⇒ ∇ ·q =−∇ · (K ∇θ) . (10.87)

Replacing now in the energy balance of (10.79) yields

ρ
du
dt

= σσσ : d+ρ r−∇ ·q =⇒ (10.88)

Energy equation

ρ
du
dt

=−p∇ ·v+ρ r+∇ · (K ∇θ)+K Tr2 (d)+2μ d′ : d′︸ ︷︷ ︸
2WD

ρ
du
dt

=−p
∂vi

∂xi
+ρ r+

∂
∂xi

(
K

∂θ
∂xi

)
+K

(
∂vi

∂xi

)2

+2μ d′i j d′i j

(10.89)
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10.4.3 Governing Equations of the Fluid Mechanics Problem
Considering the simplified versions of the balance of linear momentum (Navier-
Stokes equation (10.85)) and the energy balance (energy equation (10.89)) the
problem defined in (10.79) can be reduced to the following system of 7 PDEs
and 7 unknowns (ρ (x, t), v(x, t), p(x, t), u(x, t), θ (x, t)), which must be solved

in the R
3×R

+ domain.

dρ
dt

+ρ∇ ·v = 0 Mass continuity equation (1 eqn.)

−∇p+(λ +μ)∇(∇ ·v)+
+μΔv+ρb = ρ

dv
dt

Balance of linear momentum
(Navier-Stokes)

(3 eqns.)

ρ
du
dt

=−p∇ ·v+ρ r+∇ · (K ∇θ)+

+K Tr2 (d)+2μ d′ : d′
Energy balance (1 eqn.)

u = u(ρ,θ) Caloric equation of state (1 eqn.)

F (ρ, p,θ) = 0 Kinetic equation of state (1 eqn.)

(10.90)

In the particular case of a barotropic regime (ρ = ρ (p)), the mechanical part
can be uncoupled from the thermal part in the set of equations of (10.79), result-
ing in the mechanical problem defined by the following system of 5 equations
and 5 unknowns (ρ (x, t), v(x, t), p(x, t)).

dρ
dt

+ρ∇ ·v = 0 Mass continuity equation (1 eqn.)

−∇p+(λ +μ)∇(∇ ·v)+
+μΔv+ρb = ρ

dv
dt

Balance of linear momentum
(Navier-Stokes)

(3 eqns.)

ρ = ρ (p) Kinetic equation of state
(barotropic)

(1 eqn.)

(10.91)
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480 CHAPTER 10. FLUID MECHANICS

10.4.4 Physical Interpretation of the Navier-Stokes and Energy
Equations

Each of the terms in the Navier-Stokes equation (10.85),⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−∇p+(λ +μ)∇(∇ ·v)+μΔv+ρb−ρ
dv
dt︸︷︷︸
a

= 0

− ∂ p
∂xi

+
[
(λ +μ)∇(∇ ·v)+μΔv

]
i
+ρ bi−ρ ai = 0

i ∈ {1,2,3}

(10.92)

can be interpreted as a component of the system of forces (per unit of volume)
that acts on a volume differential of the fluid in motion as follows.

−∇p︸︷︷︸
forces due to
the pressure

gradient

− −
(
(λ +μ)∇(∇ ·v)+μΔv

)
︸ ︷︷ ︸

viscous forces exerted by
the contact between particles

(= 0 when λ = μ = 0)

+ ρb︸︷︷︸
body
forces

+ ρa︸︷︷︸
inertial
forces

= 0
(10.93)

Figure 10.11 shows the projection of each of these components in the xi-
direction.

Figure 10.11: Projection of the components of the Navier-Stokes equation in the xi-

direction.
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Fluid Dynamics: (Newtonian) Viscous Fluids 481

Each of the terms in the energy equation (10.89) can also be given a physical
interpretation, as indicated in Table 10.1.

ρ
du
dt

=−p∇ ·v+ρ r+∇ · (k ∇θ)+K Tr2 (d)+2μ d′ : d′︸ ︷︷ ︸
2WD

ρ
du
dt

=
variation of internal energy

unit of volume and unit of time

∇ ·v =

d (dV )

dt
dV

=
variation of volume

unit of volume and unit of time

−p∇ ·v =−
p

d (dV )

dt
dV

=
mechanical work of the thermodynamic pressure

unit of volume and unit of time
(see Figure 10.12 and footnote8)

ρ r+∇ · (k ∇θ) =
heat generated by the internal sources and conduction

unit of volume and unit of time

2WD = σσσD : d = dissipative
power =

mechanical work of the viscous forces

unit of volume and unit of time

Table 10.1: Physical interpretation of the energy equation.

Figure 10.12: Mechanical work of the thermodynamic pressure.

8 Here, the relation d (dV )/dt = (∇ ·v)dV is used (see Section 2.14.3 in Chapter 2).
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482 CHAPTER 10. FLUID MECHANICS

10.4.5 Reduction of the General Problem to Particular Cases
The governing equations in fluid mechanics (10.90) can be simplified for certain
cases which are of particular interest in engineering applications.

10.4.5.1 Incompressible Fluids

In this case,

dρ
dt

= 0

dρ
dt

+ρ∇ ·v = 0

⎫⎪⎪⎬
⎪⎪⎭ =⇒

{
ρ = ρ0 = const.

∇ ·v = Tr(d) = 0
(10.94)

and introducing (10.94) in (10.90) results in the governing equations detailed in
Table 10.2.

Mechanical
Problem

Mass continuity equation ∇ ·v = 0

Navier-Stokes equation −∇p+μ Δv+ρ0 b = ρ0
dv
dt

Thermal
Problem

Energy balance ρ0
du
dt

= ρ0 r+∇ · (K ∇θ)+2μ d′ : d′

Caloric equation of state u = u(ρ0,θ)

Constitutive equation σσσ =−p1+2μ d

Table 10.2: Governing equations in incompressible Newtonian fluids

10.4.5.2 Fluids with Null Bulk Viscosity (Stokes Fluids)

In this case,

K= λ +
2

3
μ = 0 =⇒ λ =−2

3
μ =⇒ λ +μ =

1

3
μ (10.95)

2WD = K︸︷︷︸
= 0

Tr2 (d)+2μ d′ : d′ = 2μ d′ : d′ (10.96)

and replacing (10.95) and (10.96) in (10.90) yields the governing equations
given in Table 10.3.
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Fluid Dynamics: (Newtonian) Viscous Fluids 483

Mass continuity equation
dρ
dt

+ρ∇ ·v = 0

Navier-Stokes equation −∇p+
1

3
μ∇(∇ ·v)+μΔv+ρb = ρ

dv
dt

Energy balance ρ
du
dt

=−p∇ ·v+ρ r+∇ · (K ∇θ)+2μ d′ : d′

Caloric equation of state u = u(ρ,θ)

Kinetic equation of state F (ρ, p,θ) = 0

Constitutive equation σσσ =−p1− 2

3
μ Tr(d)1+2μ d

Table 10.3: Governing equations in Stokes fluids.

10.4.5.3 Perfect Fluids

Perfect fluids have null viscosity, λ = μ = K = 0, and no heat conductivity,
K = 0. Introducing these conditions in (10.90) results in the problem shown in
Table 10.4.

Mass continuity equation
dρ
dt

+ρ∇ ·v = 0

Euler’s equation −∇p+ρb = ρ
dv
dt

Energy balance ρ
du
dt

=−p∇ ·v+ρ r

Caloric equation of state u = u(ρ,θ)

Kinetic equation of state F (ρ, p,θ) = 0

Constitutive equation σσσ =−p1

Table 10.4: Governing equations in perfect fluids.
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484 CHAPTER 10. FLUID MECHANICS

10.4.5.4 Hydrostatics

In this case, the following conditions apply (see (10.20)):

a =
dv
dt

= 0 , ∇ ·v = 0 , ρ = ρ0 , p = p0 and σσσ =−p01 , (10.97)

and, thus, (10.90) is reduced to the equations described in Table 10.5.

Mechanical
Problem

Hydrostatics fundamental equation −∇p0 +ρ0 b = 0

Thermal
Problem

Energy balance ρ0
du
dt

= ρ0 r+∇ · (K ∇θ)

Caloric equation of state u = u(ρ0,θ)

Constitutive equation σσσ =−p0 1

Table 10.5: Governing equations in hydrostatics.

10.5 Boundary Conditions in Fluid Mechanics
The governing equations of the fluid mechanics problem presented in the previ-
ous sections require adequate boundary conditions to be solved correctly. In gen-
eral, the spatial (or Eulerian) description is used in fluid mechanics problems,
and a specific control volume (fixed in space) is analyzed, on whose boundary
the aforementioned spatial boundary conditions are applied. Even though there
are different boundary conditions, and these often depend on the type of problem
being studied, the most common types of boundary conditions are summarized
below.

10.5.1 Velocity Boundary Conditions
a) Prescribed velocity

In certain parts Γv̄ of the boundary of the control volume V being analyzed,
the velocities are known (see Figure 10.13).

v(x, t) = v̄(x, t) ∀x ∈ Γv (10.98)

b) Impermeability condition
Usually, part of the boundary of the control volume V is composed of imper-
meable walls, Γvn , which are assumed to be impervious to fluid, that is, they
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Boundary Conditions in Fluid Mechanics 485

Figure 10.13: Velocity boundary conditions: prescribed velocity.

cannot be penetrated by said fluid. The mathematical expression of this con-
dition is denoted as impermeability condition and it establishes that the rela-
tive velocity of the fluid, vr, with respect to the impermeable wall (assumed
mobile and with a velocity v∗) in the direction normal to the boundary must
be null (see Figure10.14),

vn (x, t) = v ·n︸︷︷︸
fluid

= v∗ ·n︸︷︷︸
wall

∀x ∈ Γvn =⇒

vr ·n = (v−v∗) ·n = 0 ∀x ∈ Γvn .

(10.99)

In the particular case of a fixed boundary, this condition is reduced to
(v∗ = 0) ⇒ v ·n = 0 ∀x ∈ Γvn .

Figure 10.14: Velocity boundary conditions: impermeability condition.
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486 CHAPTER 10. FLUID MECHANICS

Remark 10.6. The impermeability condition is usually applied for
perfect fluids (fluids without viscosity) in which the tangential com-
ponent of the relative velocity between the fluid and the wall vt (see
Figure 10.14) is assumed to be non-null.

c) Adherence condition
In viscous fluids in contact with an impermeable wall, due to the effect of
viscosity, the fluid is assumed to adhere to the wall (see Figure 10.15) and,
thus, the relative velocity between the fluid and the wall vr is null.

vr (x, t) = v−v∗ = 0 ∀x ∈ Γv =⇒ v = v∗ ∀x ∈ Γv (10.100)

Figure 10.15: Velocity boundary conditions: adherence condition.

10.5.2 Pressure Boundary Conditions
In certain parts Γσ of the boundary, the traction vector t = σσσ · n can be pre-
scribed (see Figure 10.16).

t(x, t) = σσσ ·n = t∗ (x, t) ∀x ∈ Γσ (10.101)

Under certain circumstances, only a part of the traction vector such as the ther-
modynamic pressure is prescribed. In effect, for a Newtonian fluid,

σσσ =−p1+λ Tr(d)1+2μ d =⇒
t = σσσ ·n =−pn+λ Tr(d)n+2μ d ·n ,

(10.102)
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Boundary Conditions in Fluid Mechanics 487

Figure 10.16: Pressure boundary conditions: prescribed traction vector.

which exposes how the thermodynamic pressure p is a part of the normal com-
ponent of the traction vector t. The prescription of the thermodynamic pressure
on a part of the boundary Γp is written as

p(x, t) = p∗ (x, t) ∀x ∈ Γp . (10.103)

10.5.3 Mixed Boundary Conditions
In certain cases (such as the entrance and exit sections of pipes) the pressure (a
part of the normal component of the traction vector) and the tangential com-
ponents of the velocity (which are assumed to be null, see Figure 10.17) are
prescribed.

Figure 10.17: Mixed boundary conditions.

10.5.4 Boundary Conditions on Free Surfaces

Definition 10.5. A free surface is a contact surface between the air
(atmosphere) and a fluid (generally water).
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488 CHAPTER 10. FLUID MECHANICS

free surface

= free surface height

Figure 10.18: Free surface of the sea.

Examples of free surface9 are the surface of the sea (see Figure 10.18) or the
surface that separates the saturated and unsaturated parts of an embankment dam
(see Figure 10.19).

A hypothesis with a clear physical sense that is frequently used in relation
to a free surface is that such a surface is a material surface (constituted always
by the same particles). This hypothesis implicitly establishes certain boundary
conditions on the velocity field in the material surface Γf s. In effect, considering
the free surface in Figure 10.18,

Γf s := {x | φ (x,y,z, t)≡ z−η (x,y, t) = 0} , (10.104)

and imposing the material character of the free surface (null material derivative,
see Section 1.11 in Chapter 1),

dφ
dt

=
∂φ
∂ t

+v ·∇φ =−∂η
∂ t
−vx

∂η
∂x
−vy

∂η
∂y

+vz
∂φ
∂ z︸︷︷︸
= 1

= 0 , (10.105)

vz (x, t) =
∂η
∂ t

+vx
∂η
∂x

+vy
∂η
∂y

∀x ∈ Γf s . (10.106)

This condition establishes the dependency of the vertical component of the ve-
locity vz on the other components vx and vy.

Another boundary condition frequently imposed on free surfaces is that, in
these surfaces, the thermodynamic pressure is known and equal to the atmo-
spheric pressure10,

p(x, t) = Patm ∀x ∈ Γf s (10.107)

9 In general, in fluid mechanics problems in which free surfaces appear, the position of these
surfaces is not known and their geometrical characteristics become an unknown of the prob-
lem.
10 The value of the atmospheric pressure is generally neglected (Patm ≈ 0).
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free surfacedry

saturated

Figure 10.19: Free surface of an embankment dam.

Equation (10.107) allows identifying, in certain cases, the position of the free
surface (once the pressure field is known) as the locus of points in the fluid in
which the pressure is equal to the atmospheric pressure.

Equation of the
free surface

Γf s := {x | p(x, t)−Patm = 0} (10.108)

10.6 Laminar and Turbulent Flows
10.6.1 Laminar Flow
The equations governing a fluid mechanics problem, described in the previous
sections, are valid for a certain range of motion of the fluids, named laminar
flow (or regime). Basically, laminar flow is physically characterized by the fact
that the fluid moves in parallel layers that do not mix (see Figure 10.20).

Vortex

Figure 10.20: Laminar flow around an obstacle.
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The character of a laminar flow is identified by the Reynolds number Re

Reynolds number: Re
de f
=

V ×L
ν⎧⎪⎨

⎪⎩
V = characteristic velocity of the fluid

L = characteristic length of the domain

ν = kinematic viscosity (ν = μ/ρ)

(10.109)

such that small values of the Reynolds number characterize laminar flows.

10.6.2 Turbulent Flow
When the velocity increases and the viscosity decreases, the Reynolds num-
ber (10.109) increases. For increasing values of this number, the initially lam-
inar flow is seen to distort and become highly unstable. The flow can then be
understood as being in a situation in which the velocity v(x, t), at a given point
in space, randomly and rapidly fluctuates along time about a mean value v̄(x, t)
(see Figure 10.21). This situation is defined as turbulent flow (or regime).

Even though the equations of the fluid mechanics problem in general, and the
Navier-Stokes equation in particular, are still valid in turbulent regime, certain
circumstances (such as the difficulty in treating the mathematical problem and
the impossibility of experimentally characterizing the rapid fluctuations of the
variables of this problem) impose a singular treatment for turbulent flow. The
mathematical characterization of turbulent regime is done, then, by means of
the so-called turbulence models. These models are based on isolating the mean
values of the velocity and pressure fields from their fluctuations and, then, the
governing equations of the problem are obtained in terms of these mean values.

Figure 10.21: Variation of the velocity along time in laminar and turbulent flows.
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10.7 Fluid Mechanics Formulas
10.7.1 Stress tensor for Newtonian fluids

(incompressible fluid, ∇ ·v = 0)

Cartesian coordinates

σx = 2μ
∂vx

∂x
− p τxy = τyx = μ

(
∂vx

∂y
+

∂vy

∂x

)

σy = 2μ
∂vy

∂y
− p τyz = τzy = μ

(
∂vy

∂ z
+

∂vz

∂y

)

σz = 2μ
∂vz

∂ z
− p τzx = τxz = μ

(
∂vz

∂x
+

∂vx

∂ z

) (10.110)

Cylindrical coordinates

σr = 2μ
∂vr

∂ r
− p τrθ = τθr = μ

(
r

∂
∂ r

(vθ
r

)
+

1

r
∂vr

∂θ

)

σθ = 2μ
(

1

r
∂vθ
∂θ

+
vr

r

)
− p τθz = τzθ = μ

(
∂vθ
∂ z

+
1

r
∂vz

∂θ

)

σz = 2μ
∂vz

∂ z
− p τzr = τrz = μ

(
∂vz

∂ r
+

∂vr

∂ z

)
(10.111)

∇ ·v =
1

r
∂
∂ r

(rvr)+
1

r
∂vθ
∂θ

+
∂vz

∂ z
(10.112)

Spherical coordinates

σr = 2μ
∂vr

∂ r
− p

σθ = 2μ
(

1

r
∂vθ
∂θ

+
vr

r

)
− p

σφ = 2μ
(

1

r sinθ
∂vφ

∂φ
+

vr

r
+

vθ cotθ
r

)
− p

(10.113)

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems

doi:10.13140/RG.2.2.25821.20961



Con
tin

uum
M

ech
an

ics
for

Engin
eer

s

Theo
ry

an
d Pro

blem
s

©
X. O

liv
er

an
d C. A

ge
let

de Sar
ac

ibar

492 CHAPTER 10. FLUID MECHANICS

τrθ = τθr = μ
(

r
∂
∂ r

(vθ
r

)
+

1

r
∂vr

∂θ

)

τθφ = τφθ = μ
(

sinθ
r

∂
∂θ

( vφ

sinθ

)
+

1

r sinθ
∂vθ
∂φ

)

τφr = τrφ = μ
(

1

r sinθ
∂vr

∂φ
+ r

∂
∂ r

(vφ

r

))
(10.113 (cont.))

∇ ·v =
1

r2

∂
∂ r

(
r2vr

)
+

1

r sinθ
∂

∂θ
(vθ sinθ)+

1

r sinθ
∂vφ

∂φ
(10.114)

10.7.2 Continuity Equation
Cartesian coordinates

∂ρ
∂ t

+
∂
∂x

(ρvx)+
∂
∂y

(ρvy)+
∂
∂ z

(ρvz) = 0 (10.115)

Cylindrical coordinates

∂ρ
∂ t

+
1

r
∂
∂ r

(ρrvr)+
1

r
∂

∂θ
(ρvθ )+

∂
∂ z

(ρvz) = 0 (10.116)

Spherical coordinates

∂ρ
∂ t

+
1

r2

∂
∂ r

(
ρr2vr

)
+

1

r sinθ
∂

∂θ
(ρvθ sinθ)+

1

r sinθ
∂

∂φ
(
ρvφ

)
= 0 (10.117)

10.7.3 Navier-Stokes Equation
(incompressible fluid, ∇ ·v = 0; ρ and μ const.)

Cartesian coordinates

−∂ p
∂x

+μ
(

∂ 2vx

∂x2
+

∂ 2vx

∂y2
+

∂ 2vx

∂ z2

)
+ρbx = ρ

(
∂vx

∂ t
+vx

∂vx

∂x
+vy

∂vx

∂y
+ vz

∂vx

∂ z

)

−∂ p
∂y

+μ
(

∂ 2vy

∂x2
+

∂ 2vy

∂y2
+

∂ 2vy

∂ z2

)
+ρby = ρ

(
∂vy

∂ t
+vx

∂vy

∂x
+vy

∂vy

∂y
+vz

∂vy

∂ z

)

−∂ p
∂ z

+μ
(

∂ 2vz

∂x2
+

∂ 2vz

∂y2
+

∂ 2vz

∂ z2

)
+ρbz = ρ

(
∂vz

∂ t
+vx

∂vz

∂x
+vy

∂vz

∂y
+vz

∂vz

∂ z

)
(10.118)
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Cylindrical coordinates

−∂ p
∂ r

+μ
(

∂
∂ r

(
1

r
∂
∂ r

(rvr)

)
+

1

r2

∂ 2vr

∂θ 2
− 2

r2

∂vθ
∂θ

+
∂ 2vr

∂ z2

)
+ρbr =

= ρ
(

∂vr

∂ t
+vr

∂vr

∂ r
+

vθ
r

∂vr

∂θ
− v2

θ
r
+vz

∂vr

∂ z

)

−1

r
∂ p
∂θ

+μ
(

∂
∂ r

(
1

r
∂
∂ r

(rvθ )

)
+

1

r2

∂ 2vθ
∂θ 2

+
2

r2

∂vr

∂θ
+

∂ 2vθ
∂ z2

)
+ρbθ =

= ρ
(

∂vθ
∂ t

+vr
∂vθ
∂ r

+
vθ
r

∂vθ
∂θ

+
vrvθ

r
+vz

∂vθ
∂ z

)

−∂ p
∂ z

+μ
(

1

r
∂
∂ r

(
r

∂vz

∂ r

)
+

1

r2

∂ 2vz

∂θ 2
+

∂ 2vz

∂ z2

)
+ρbz =

= ρ
(

∂vz

∂ t
+vr

∂vz

∂ r
+

vθ
r

∂vz

∂θ
+vz

∂vz

∂ z

)
(10.119)

Spherical coordinates

−∂ p
∂ r

+μ

(
∂
∂ r

(
1

r2

∂
∂ r

(
r2vr

))
+

1

r2 sinθ
∂

∂θ

(
sinθ

∂vr

∂θ

)
+

1

r2sin2θ
∂ 2vr

∂φ 2
+

− 2

r2 sinθ
∂

∂θ
(vθ sinθ)− 2

r2 sinθ
∂vφ

∂φ

)
+ρbr =

= ρ

(
∂vr

∂ t
+vr

∂vr

∂ r
+

vθ
r

∂vr

∂θ
+

vφ

r sinθ
∂vr

∂φ
− v2

θ +v2
φ

r

)

−1

r
∂ p
∂θ

+μ

(
1

r2

∂
∂ r

(
r2 ∂vθ

∂ r

)
+

1

r2

∂
∂θ

(
1

sinθ
∂

∂θ
(vθ sinθ)

)
+

+
1

r2sin2θ
∂ 2vθ
∂φ 2

+
2

r2

∂vr

∂θ
− 2cot θ

r2 sinθ
∂vφ

∂φ

)
+ρbθ =

= ρ

(
∂vθ
∂ t

+vr
∂vθ
∂ r

+
vθ
r

∂vθ
∂θ

+
vφ

r sinθ
∂vθ
∂φ

+
vrvθ

r
− v2

φ cotθ
r

)
(10.120)
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− 1

r sinθ
∂ p
∂φ

+μ

(
1

r2

∂
∂ r

(
r2 ∂vφ

∂ r

)
+

1

r2

∂
∂θ

(
1

sinθ
∂

∂θ
(
vφ sinθ

))
+

+
1

r2sin2θ
∂ 2vφ

∂φ 2
+

2

r2 sinθ
∂vr

∂φ
+

2cot θ
r2 sinθ

∂vθ
∂φ

)
+ρbϕ =

= ρ
(

∂vφ

∂ t
+vr

∂vφ

∂ r
+

vθ
r

∂vφ

∂θ
+

vφ

r sinθ
∂vφ

∂φ
+

vφ vr

r
+

vθ vφ

r
cotθ

)
(10.120 (cont.))
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PROBLEMS

Problem 10.1 – The barotropic fluid flowing inside the pipe shown in the figure
below has the following kinetic equation of state.

p = β ln

(
ρ
ρ0

)
(β and ρ0 const.)

Determine, for a steady-state regime, the exit pressure P2 in terms of the other
variables shown in the figure.

Solution

The global spatial form of the mass continuity equation (5.22) states

d
dt

∫
V

ρ dV = 0 .

Using the Reynolds Transport Theorem (5.37) on this expression results in

d
dt

∫
V

ρ dV =
∂
∂ t

∫
V

ρ dV +
∫

∂V

ρv ·n dS =⇒ ∂
∂ t

∫
V

ρ dV +
∫

∂V

ρv ·n dS = 0 ,

and introducing the conditions associated with a steady-state regime yields

∂
∂ t

∫
V

ρ dV = 0 =⇒
∫

∂V

ρv ·n dS = 0 .

Applying this last expression to the problem described in the statement produces

−ρ1 v1 S1 +ρ2 v2 S2 = 0 =⇒ ρ1 v1 S1 = ρ2 v2 S2 .
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Finally, isolating the density from the given kinetic equation of state,

p = β ln

(
ρ
ρ0

)
=⇒ ρ = ρ0 e p/β ,

and introducing it into the previous one produces

ρ0 eP1/β v1 S1 = ρ0 eP2/β v2 S2 =⇒ e(P2−P1)/β =
v1 S1

v2 S2
=⇒

P2 = P1 +β ln

(
v1 S1

v2 S2

)
.

Problem 10.2 – Determine the value per unit of thickness of the horizontal
force F that must be applied on point B of the semicircular floodgate shown
in the figure such that the straight line AB remains vertical. The floodgate can
rotate around the hinge A and separates two different height levels, h and αh,
of a same fluid.

HYPOTHESES:

1) The weight of the floodgate can be neglected.
2) The atmospheric pressure is negligible.

Solution

The only forces acting on the floodgate are the pressure forces of the fluids,
the force F and the reaction in A (horizontal component H and vertical compo-
nent V).
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Figure A Figure B

Since the pressure exerted by the fluids is perpendicular to the surface of the
floodgate and the floodgate is circular, the resultant force obtained by integrating
the pressures on the surface are applied at the center of the circumference defined
by the floodgate. Thus, posing the equilibrium of momentum with respect to the
center of this circumference (see Figure A) results in

FR = HR =⇒ H = F .

Imposing now the equilibrium of horizontal forces, knowing that the fluids exert
a horizontal pressure with a triangular distribution (see Figure B), yields

2F+
1

2
(ρgα h)(α h) =

1

2
(ρgh)h =⇒ F =

1

4
ρgh2

(
1−α2

)
.

Problem 10.3 – Determine the relation between the force F applied on the
piston shown in the figure and its velocity of descent

.
δ .

HYPOTHESES:

1) Assume the fluid is an incompressible perfect fluid in steady-state regime.
2) The atmospheric pressure is negligible.
3) S1 and S2 are the cross-sections.
4) The density of the fluid is ρ .
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498 CHAPTER 10. FLUID MECHANICS

Solution

The stress state of a perfect fluid is known to be of the form σσσ = −p1 (see
Section 9.3 in Chapter 9). The mass continuity equation (5.22) is applied to
obtain the relation between the velocities of the fluid,

v1 S1 = v2 S2 =⇒ v2 =
S1

S2
v1 =

S1

S2

.
δ .

Taking into account Bernoulli’s theorem (10.63) between an arbitrary point in
contact with the piston and another at the exit cross-section, both belonging to a
same streamline, results in

H+
p

ρg
+

.
δ 2

2g
= 0+0+

(
S1

S2

.
δ
)2

1

2g
=⇒ p =

ρ
2

((
S1

S2

)2

−1

)
.
δ 2−ρgH

Therefore, p must be constant for any point in contact with the piston (x = H).
Then,

p = const. ∀x = H =⇒ F = pS1 .

Finally, the force F is related to
.
δ in the following manner.

F =
ρ
2

S1

((
S1

S2

)2

−1

)
.
δ 2−ρgHS1

Problem 10.4 – A shear force f∗ per unit of surface acts on an rigid plate of
indefinite size with density ρ∗ and thickness t. The plate slides at a velocity v∗
in the longitudinal direction on a plane inclined at an angle α with respect to
the horizontal longitudinal direction. Between the plate and the inclined plane
are two distinct and immiscible Newtonian fluids with viscosities μ1 and μ2,
which are distributed into two layers with the same thickness h.

a) Establish the generic form of the pressure and velocity fields and argue the
hypotheses used to determine them.

b) Integrate the corresponding differential equations and obtain, except for the
integration constants, the distribution of pressures and velocities in each
fluid.

c) Indicate and justify the boundary conditions that must be applied to deter-
mine the above integration constants.

d) Completely determine the pressure and velocity fields as well as the stresses
in each fluid. Plot the distribution of each variable (velocities, pressure and
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stresses) on a cross-section such as A−A′, indicating the most significant
values.

e) Obtain the value of v∗ in terms of f∗ and the volume flow rate q that flows
through a semicircular section such as B−B′.

HYPOTHESES:

1) Both fluids are incompressible.
2) Assume a steady-state regime.
3) The body forces of the fluids can be neglected.
4) The atmospheric pressure is negligible.

Solution

a) Note that the z-dimension, perpendicular to the plane of the paper, does not
intervene in the problem. Thus, the pressure and velocity fields are reduced to

p = p(x,y) and v = v(x,y) not≡ [
vx (x,y) , 0 , 0

]T
.

In fact, vx does not depend on x either since the velocity should be the same in
all the cross-sections of the type A−A′. If this is not acknowledged a priori, the
mass continuity equation (5.22) may be imposed, considering the incompress-
ible nature of the fluids, as follows.

dρ
dt

+ρ∇ ·v = 0 =⇒ ∇ ·v = 0 =⇒ ∂vx

∂x
+

∂vy

∂y
= 0 , but vy = 0

=⇒ ∂vx

∂x
= 0 =⇒ vx = vx (y) =⇒ v not≡ [

vx (y) , 0 , 0
]T
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500 CHAPTER 10. FLUID MECHANICS

Therefore, the pressure and velocity fields are

p = p(x,y) and v not≡ [
vx (y) , 0 , 0

]T .

b) The components of the Navier-Stokes differential equation (10.85) in Carte-
sian coordinates must be integrated to obtain the expressions of v and p,

x− component =⇒ 0 =−∂ p
∂x

+μ
∂ 2vx

∂y2
,

y− component =⇒ 0 =−∂ p
∂y

⇒ p = p(x) .

The pressure p only depends on x and the component vx of v only depends on y.
Therefore, the partial derivatives in the equation for the x-component can be
replaced by total derivatives. In this way, an equality of functions is obtained in
which the pressure term depends solely on x whilst the velocity term depends
exclusively on y. Consequently, these terms must be constant.

d p
dx

= μ
d2vx

dy2

f (x) = f (y)

⎫⎪⎬
⎪⎭ =⇒ d p

dx
= μ

d2vx

dy2
= k = const.

d p
dx

= k =⇒ p(x) = k x+A

d2vx

dy2
=

k
μ

=⇒ vx (y) =
k

2μ
y2 +By+C

To determine the stresses, the constitutive equation in Cartesian coordinates of
Table10.2 is used,

σx = σy = σz =−p(x)

τxy = τyx = μ
∂vx (y)

∂y

⎫⎬
⎭ =⇒

σσσ (x,y) not≡

⎡
⎢⎢⎢⎢⎣

−k x−A μ
(

k
μ

y+B

)
0

μ
(

k
μ

y+B

)
−k x−A 0

0 0 −k x−A

⎤
⎥⎥⎥⎥⎦

where the constants in these expressions (k, A, B, C) are different for each fluid.
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c) The boundary conditions that must be applied in this problem are:

VELOCITY BOUNDARY CONDITIONS

1. v1
x (y)

∣∣
y=h

= v∗ , since the plate moves at a velocity v∗ and μ > 0.

2. v2
x (y)

∣∣
y=−h

= 0 , since the inclined plane does not move and μ > 0.

3. v1
x (y)

∣∣
y=0

= v2
x (y)

∣∣
y=0

, which is the continuity condition for v at the inter-

face between the two fluids.

PRESSURE BOUNDARY CONDITIONS

In the fluid with density μ1, the pressure is prescribed for y = h or, directly,
since p does not depend on y (because the weight of the fluid is neglected), the
pressure p1 is prescribed in the whole domain of this fluid. The value of p1

corresponds to the pressure that the plate exerts on the fluid with density μ1,
which is the projection of the plate’s weight in the direction of the y-axis.

4. W = ρ∗gt is the weight of a section of the plate with unit length, according
to the x- and z-axis. Here, patm = 0 has been considered.

5. p1 = ρ∗gt cosα , ∀x is the projection on the y-axis. Since a unit length has
been considered, the weight is directly the exerted pressure.

6. p1
∣∣
y=0

= p2
∣∣
y=0

∀x is the continuity condition for the pressure in the

interface between the two fluids.

STRESS BOUNDARY CONDITIONS

The continuity condition for stresses that must be imposed in the interface be-
tween the two fluids does not affect the complete tensor σσσ . Instead, only the
traction vector t is affected. The condition

t1
∣∣
y=0

=− t2
∣∣
y=0

must be satisfied. Considering that the unit normal vector n is the exterior normal
vector, then

n1 not≡ [0 , −1 , 0]T and n2 not≡ [0 , 1 , 0]T .

Hence, the shear stresses must satisfy:

7. τ1
xy
∣∣
y=0

= τ2
xy
∣∣
y=0

d) Only 7 boundary conditions have been established and 8 constants must be
determined, but since some equations include two constants, it suffices. Replac-
ing the expressions of p, v and σσσ in the boundary conditions results in:
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k1

2μ1
h2 +B1h+C1 = v∗

k2

2μ2
h2−B2h+C2 = 0

C1 = C2

k1 x+A1 = ρ∗gt cosα , ∀x =⇒
{

k1 = 0

A1 = ρ∗gt cosα

k1 x+A1 = k2 x+A2 , ∀x =⇒
{

k1 = k2 = 0

A1 = A2 = ρ∗gt cosα

y = 0

k1 = k2 = 0

}
=⇒ μ1B1 = μ2B2

Solving and replacing these values in the expressions for the pressure, velocity
and stress obtained in b) results in

v1
x (y) =

v∗

1+
μ1

μ2

(
y
h
+

μ1

μ2

)

v2
x (y) =

μ1

μ2

v∗

1+
μ1

μ2

( y
h
+1

)
p1 = p2 = ρ∗gt cosα = const.

τ1
xy = τ2

xy = μ1
v∗

h

(
1+

μ1

μ2

) = const.

e) To determine the relation between f∗ and v∗, the equilibrium of forces on a
unit element of the plate is posed. Three forces act on this element:

1) The force f∗ that pushes the plate in the positive direction of the x-axis.

2) The projection of the plate’s own weight in the direction of the x-axis. This
force pulls the plate in the negative direction of the x-axis.

3) The shear force of the fluid on the plate, which resists the motion of the plate
and, thus, acts in the negative direction of the x-axis.

To determine the sign criterion of this last force, the stresses acting on an element
of the fluid domain are drawn:
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Posing the equilibrium of forces yields

f∗ = ρ∗gt sinα +μ1
v∗(

1+
μ1

μ2

)
h

and, isolating v∗, produces the velocity in terms of the shear force,

v∗ =
h

μ1

(
1+

μ1

μ2

)
(f∗ −ρ∗gt sinα) .

To compute the volume flow rate that flows across the surface B−B′, one must
take into account that the fluids are incompressible and, thus, the volume flow
rate crossing the curved surface is the same as if a straight segment joining B
and B′ was considered, that is,

q =
∫

BB′ curved

v ·n dS =
∫

BB′ straight

v ·n dS =

h∫
−h

vx (y) dy .

Then, replacing the expressions found in d) for the velocity vx and integrating
results in the volume flow

q = v∗h
(

1

2
+

μ1

μ1 +μ2

)
.

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems

doi:10.13140/RG.2.2.25821.20961



Con
tin

uum
M

ech
an

ics
for

Engin
eer

s

Theo
ry

an
d Pro

blem
s

©
X. O

liv
er

an
d C. A

ge
let

de Sar
ac

ibar

504 CHAPTER 10. FLUID MECHANICS

Problem 10.5 – Figure A shows the cross-section of a damper of indefinite
length composed of a piston ABA′B′ that slides inside a container filled with
an incompressible Newtonian fluid with viscosity μ . The piston descends at a
velocity

.
δ (t), producing a lateral flow of fluid between the piston and the walls

(see Figure B).

Figure A Figure B

a) Determine the pressure and velocity fields in the zone of the fluid shown in
Figure B (zone ABCD), except for the integration constants.

b) Indicate and justify the boundary conditions that must be applied to deter-
mine the above integration constants.

c) Completely determine the pressure and velocity fields in zone ABCD of the
fluid.

d) Determine the expression of the stress tensor in zone ABCD of the fluid.
e) Assuming that the stress σy in the surface A−A′ is uniform and equal to

the stress in point A, prove there exists a relation of the form F = η
.
δ (t),

where F is the force per unit of length applied on the piston and
.
δ (t) is the

velocity of descent of said piston. Compute the value of η .

HYPOTHESES:

1) The body forces of the fluid can be neglected.
2) The weight of the piston can be neglected.
3) Assume a steady-state regime.
4) The atmospheric pressure is negligible.
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Solution

a) The problem is not defined in the z-direction, the direction perpendicular to
the plane of the paper, and, thus, is independent of the z variable. Then, consider
the bidimensional situation

v not≡ [
vx (x,y) , vy (x,y) , 0

]T
.

On the other hand, vx = 0 must be satisfied on the
walls AB and CD, owing to the impermeability con-
dition (a fluid cannot penetrate through a solid).
For convenience, an additional approximate hypoth-
esis is introduced to further simplify the problem: it
will be assumed that vx = 0 in all the zone ABCD of
the fluid. However, the streamlines have, in fact, the
approximate form shown in the figure to the right.
It is even possible that vortexes are formed in this
region if there is a high velocity.
In short, the velocity and pressure fields are assumed to be of the form

v not≡ [
0 , vy (x,y) , 0

]T
and p = p(x,y) .

The mass continuity equation (5.22) for an incompressible fluid (ρ = const.) is
reduced to ∇ ·v = 0 and, for this particular problem,

∂vy

∂y
= 0 =⇒ vy = vy (x) .

Then, the velocity remains constant for a same vertical line since the spatial
description of the velocity does not depend on y.
Now, the Navier-Stokes equation (10.85) in Cartesian coordinates is imposed,
considering the hypotheses given in the statement of the problem and the ad-
ditional assumptions described above. Since the problem is bidimensional, the
z-component of the equation does not provide information.

0 =−∂ p
∂x

=⇒ p = p(y)

0 =−∂ p
∂y

+μ
∂ 2vy

∂x2

⎫⎪⎬
⎪⎭ =⇒ ∂ p

∂y
= μ

∂ 2vy

∂x2

The term in the right-hand side of the equation depends solely on x and the one
in the left-hand side depends only on y, therefore both terms must be constant.

∂ p
∂y

= k =⇒ p = ky+C1
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μ
∂ 2vy

∂x2
= k =⇒ ∂vy

∂x
=

k
μ

x+C2 =⇒ vy (x) =
1

2

k
μ

x2 +C2 x+C3

b) The boundary conditions that must be applied in this problem are:

VELOCITY BOUNDARY CONDITIONS

1. vy (x)
∣∣∣
x=0

= 0 , ∀y, since there is no relative displacement of the fluid with

respect to the wall.

2. vy (x)
∣∣∣
x=a

=−
.
δ , ∀y, again, since there is no relative displacement.

PRESSURE BOUNDARY CONDITIONS

3. p(y)
∣∣∣
y=m+h

= patm = 0

VOLUME FLOW RATE BOUNDARY CONDITIONS

In an incompressible fluid the entrance and exit volume flow rates are the same,
Qin = Qout , where

Q =
∫
S

v ·n dS .

The piston descends at a velocity
.
δ and, thus, its cross-section is introduced into

the fluid, pushing it upwards. Then, the entrance volume flow rate can be defined
as (velocity · surface),

Qin =
.
δ · L .

On the other hand, the exit volume flow rate, flowing in the space left between
the piston and the lateral walls, is determined by means of the general expression
for volume flow rate

Qout = 2

∫
Sa

v ·n dS = 2

a∫
0

vy (x) dx .

Finally, equating the entrance and exit volume flow rates results in:

4. 2

a∫
0

vy (x)dx =
.
δ L
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c) The constants are determined by means of the boundary conditions described
in b) as follows:

vy (x)
∣∣∣
x=0

= 0 =⇒ vy (0) =C3 =⇒ C3 = 0

vy (x)
∣∣∣
x=a

=−
.
δ =⇒ vy (a) =

1

2

k
μ

a2 +C2 a =⇒ C2 =−
.
δ
a
− k

2μ
a

2

a∫
0

vy (x) dx = 2

a∫
0

(
k

2μ
x2 +C2 x

)
dx = 2

(
k

2μ
a3

3
+C2

a2

2

)
=

.
δL =⇒

k =−6μ
a3

.
δ (a+L) and C2 =

.
δ
a

(
2+3

L

a

)

p(y)
∣∣∣
y=m+h

= 0 =⇒ k (m+h)+C1 = 0 =⇒ C1 =
6μ
a3

.
δ (a+L)(m+h)

Introducing these values in the expressions for the pressure and velocity obtained
in a) results in:

p = p(y) =
6μ
a3

.
δ (a+L)(m+h− y)

vy (x) =− 3

a3
(a+L)

.
δx2 +

.
δ
a

(
2+3

L

a

)
x

d) The stresses in zone ABCD of the fluid are computed by means of the con-
stitutive equation in Cartesian coordinates of Table 10.2. Using the expressions
for the pressure and velocity fields obtained in c) yields

σσσ not≡

⎡
⎢⎢⎢⎢⎢⎣
−p μ

∂vy

∂x
0

μ
∂vy

∂x
−p 0

0 0 −p

⎤
⎥⎥⎥⎥⎥⎦ where

μ
∂vy

∂x
= μ

.
δ
(
−6

x
a3

(a+L)+3
L

a2
+

2

a

)
.
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508 CHAPTER 10. FLUID MECHANICS

COMMENT

When the piston descends, the steady-state regime hypothesis is, in fact, not
completely rigorous since, at some point, the piston will reach the lowest point
of its trajectory and the flow will vary. To be able to apply this hypothesis, either

(m+h) must be a very large length or
.
δ must be a very low velocity.

e) The stresses acting on the piston must be computed to obtain the resultant
forces and, then, the equilibrium of forces is applied to determine the expression
for F. These stresses are:

postive sign
criterion

The stresses in the inferior surface of the piston are

σ∗ =−σy

∣∣∣
A
= p(y)

∣∣∣
y=m

= k m+C1 =⇒ σ∗ =
6μ
a3

(a+L)h
.
δ .

In the lateral surfaces, due to symmetry, τ∗1 = τ∗2 and, therefore, only τ∗1 needs
to be computed,

τ∗1 = τ∗2 =−τxy

∣∣∣
x=a

=−μ
.
δ
(
−6

a

a3
(a+L)+3

L

a2
+

2

a

)
=⇒

τ∗1 = τ∗2 =
μ

.
δ

a

(
3

L

a
+4

)
.

Imposing the equilibrium of forces (since
.
δ is a constant velocity),

F = Lσ∗+hτ∗1 +hτ∗2 =⇒

F = η
.
δ with η =

2μh

a

(
3

L2

a2
+6

L

a
+4

)
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Problems and Exercises 509

EXERCISES

10.1 – Compute the horizontal and vertical components of the resultant of the
actions, per unit of length, exerted by the water on the gravity dam shown in the
figure.

10.2 – The wall of a tank has a valve that rotates about point O as shown in the
figure. Compute the resultant force and moment, per unit of thickness, that the
fluid exerts on the valve. The weight of the valve can be neglected.

10.3 – Determine the weight of the ballast W′ required at the bottom of the crate
shown in the figure, whose weight is W, such that it is maintained afloat in stable
equilibrium.

NOTE: The water has a density ρ and the weights are per unit of thickness.
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510 CHAPTER 10. FLUID MECHANICS

10.4 – A container filled with water up to
a height H is placed on an inclined plane
with angle θ and dropped such that it slides
down this plane with a constant accelera-
tion value a. Determine the distribution of
pressures and the equation of the free sur-
face in terms of a, H, θ and the atmospheric
pressure pa.

10.5 – A plate of indefinite size and thickness 2a separates two incompressible
Newtonian fluids that move between two rigid boundaries of indefinite length
placed at a distance h from the plate, as shown in the figure. The plate and the
top boundary move at velocities v/2 and v, respectively. Determine:

a) The pressure, velocity and stress fields in terms of the integration constants.
b) The integration constants, by applying the adequate boundary conditions.
c) The forces per unit of surface F1 and F2 exerted on the plate and the top

boundary needed to produce the described motion.
d) The dissipated energy, per unit of time and of surface perpendicular to the

plane of the paper, due to viscous effects.

Additional hypotheses:

1) The pressures at points A and B are pA and pB, respectively.
2) Consider a steady-state regime.
3) Due to the indefinite character of the x-direction, the flow and its properties

can be considered to be invariable in this direction.

10.6 – A volume flow rate Q of an incompressible isotropic Newtonian fluid
flows in steady-state regime between the plate and the horizontal surface shown
in the figure. The plate is kept horizontal and immobile by means of a force
with horizontal and vertical components H and V, respectively, acting on an
appropriate point of said plate. Determine:
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Problems and Exercises 511

a) The pressure and velocity fields.
b) The value of the vertical component of the force and the distance d from the

origin to its application point, such that the plate does not rotate.
c) The value of the horizontal component of the force.

Additional hypotheses:

1) The flow is assumed to be parallel to the x-y plane.
2) Inertial forces can be neglected.
3) The volume flow rate, Q, and the components of the force, V and H, are

considered per unit of length in the z-direction.
4) The weight of the plate and the atmospheric pressure are negligible.

10.7 – A cylindrical shell of indefinite length and internal radius R rotates in
steady-state regime at an angular velocity ω inside an infinite domain occupied
by an incompressible Newtonian fluid with viscosity μ2. A different incompress-
ible Newtonian fluid, with viscosity μ1, is contained inside the cylindrical shell.
Determine:
a) The pressure and velocity fields

of the internal fluid.
b) The pressure and velocity fields

of the external fluid.
c) The moment that must be ap-

plied on the cylindrical shell to
maintain its velocity.
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512 CHAPTER 10. FLUID MECHANICS

10.8 – A disc of radius R rotates with a constant angular velocity ω at a dis-
tance a from a horizontal surface. Between the disc and the surface is an incom-
pressible Newtonian fluid with viscosity μ . Determine:

a) The velocity field of the fluid in terms of the integration constants.
b) The value of the integration constants, by applying the appropriate boundary

conditions, and the complete expression of the velocity field.
c) The pressure field and the shear stress τzθ .
d) The value of the moment M that must be applied on the axis of the disc to

maintain the described motion.
Additional hypotheses:

1) The rotation of the disc is sufficiently
slow to neglect the inertial forces.

2) The effect of the lateral walls (fluid-
wall friction effects) can be neglected.

3) The velocity field varies linearly with
the distance to the inferior surface.

4) Assume a steady-state regime.

10.9 – The cross-section of a cylindrical piston ABA′B′ that slides inside a con-
tainer filled with an incompressible Newtonian fluid with viscosity μ is shown
in the figure. The motion of the piston, at a velocity

.
δ , causes the fluid to flow

through the pipe DED′E′.

a) Determine the pressure and velocity fields of the fluid in zone DED′E′ in
terms of the integration constants.

b) Indicate and justify the boundary conditions that must be applied to deter-
mine the value of the integration constants. Determine these constants and
the complete expressions of the pressure and velocity fields.

c) Compute the stresses in zone DED′E′ of the fluid.
d) Assuming that the stress normal to the surface BB′ in the fluid is constant

and equal to the pressure in points D and D′, prove there exists a relation
between the force F applied on the piston and its velocity

.
δ , and that said

relation is of the form F = η
.
δ . Determine the value of η .

Additional hypotheses:

1) The body forces of the fluid and weight
of the piston can be neglected.

2) Assume a steady-state regime.
3) The atmospheric pressure is negligible.
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Ch.11. Variational Principles 

11.1. Introduction 



Computational Mechanics 

 In computational mechanics problems are solved by cooperation 
of mechanics, computers and numerical methods. 

 This provides an additional approach to problem-solving, besides the
theoretical and experimental sciences.

 Includes  disciplines such as solid mechanics, fluid dynamics,
thermodynamics, electromagnetics, and solid mechanics.

6 

https://youtu.be/7LU_ydBvSLE?t=00m00s


8 

Ch.11. Variational Principles 

11.2. Functionals 



Definition of Functional 

 Consider a function space    : 

 The elements of      are functions        
of an arbitrary tensor order, defined in 
a subset             .

 A functional         is a mapping of the function space     onto the 
set of the real numbers ,      :                      . 
 It is a function that takes an element         of the function space     as 

its input argument  and returns a scalar. 

X

( ){ }3: : m= Ω ⊂ →u xX R R

X ( )u x

3Ω⊂ R

( ) : →uF X R
( )uF

R
X

( )u x X

X
( )u x

R
( )

b

a

u x dx∫

( )
b

a

u x dx′∫

[ ], ( ), ( )
b

a

f x u x u x dx′∫( )uF

( ) [ ]: ,u x a b → R
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Definition of Gâteaux Derivative 

 Consider : 
 a function space
 the functional
 a perturbation parameter
 a perturbation direction

 The function                        is the perturbed function of         in 
the         direction. 

{ }3: ( ) : m= Ω⊂ →u xX R R
( ) : →uF X R

ε∈R
( )∈x Xη

( ) ( )+ ε ∈u x x Xη ( )u x
( )xη

Ω0

Ω 

t=0 

P P’ 

t 

( )u x

( )ε xη
( ) ( )+ εu x xη
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Definition of Gâteaux Derivative 

 The Gâteaux derivative of the functional        in the    direction is: ( )uF η

( ) ( )( )
0

; : d
d ε=

δ = + ε
ε

u uF Fη η

Ω0

Ω 

t=0 

P P’ 

t 

( )u x

( )ε xη
( ) ( )+ εu x xη

P’ 
( )F u

REMARK 
The perturbation direction is often denoted as           . 
Do not confuse          with the differential           . 
          is not necessarily small !!! 

not
= δuη

( )δu x ( )du x
( )δu x
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Example 

Find the Gâteaux derivative of the functional 

Solution : 

 

( ) ( ) ( ): d d
Ω ∂Ω

= ϕ Ω+ φ Γ∫ ∫u u uF

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
0 0

0 0

0

;   d d dd d
d d d

d d
d d

d d

Ω ∂Ωε= ε=

Ω ∂Ωε= ε=

ε=

δ δ = + εδ = ϕ + εδ Ω + φ + εδ Γ =
ε ε ε

   ∂ϕ + εδ + εδ ∂φ + εδ + εδ
= ⋅ Ω + ⋅ Γ   ∂ ε ∂ ε   

∫ ∫

∫ ∫

u u u u u u u u

u u u u u u u u
u u

F F

( ) ( ) ( );     d d
Ω ∂Ω

∂ϕ ∂φ
δ δ = ⋅ δ Ω + ⋅ δ Γ

∂ ∂∫ ∫
u uu u u u

u u
F

= δu = δu
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t 

( )u x

( )εδu x
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Gâteaux Derivative with boundary 
conditions 

 Consider the function space    : 
 
 

 By definition, when performing the Gâteaux derivative on     , 
                     . 
 Then,  

 The direction perturbation must satisfy: 

V

( ) ( ) ( ) ( ){ }m *: : ;
u∈Γ

= Ω→ =
x

u x u x u x u xV R

V
( )+ εδ ∈u u V

( ) ( )*

u∈Γ
+ εδ =

x
u u u x *

u u∈Γ ∈Γ
+ ε δ =

x x
u u u 0

u∈Γ
ε δ =

x
u

u∈Γ
δ =

x
u 0

*= u

u σΓ Γ =∅
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 Consider the family of functionals 

 The Gâteaux derivative of this family 
   of functionals can be written as, 

Gâteaux Derivative in terms of 
Functionals 

( ) ( , ( ), ( ))

( , ( ), ( ))

d

d
σ

φ

ϕ
Ω

Γ

= Ω

+ Γ

∫
∫

u x u x u x

x u x u x

∇

∇

F

( ); ( , ( ), ( )) ( , ( ), ( ))d d
σ

δ δ δ δ
Ω Γ

= ⋅ Ω + ⋅ Γ∫ ∫u u x u x u x u x u x u x u∇ ∇F E T

REMARK  
The example showed that for                                           , the 

Gâteaux derivative is                                                           . ( ) ( ) ( )    d d
Ω ∂Ω

∂φ ∂ϕ
δ = ⋅ δ Ω + ⋅δ Γ

∂ ∂∫ ∫
u uu u u

u u
F

( ) ( ) ( ): d d
Ω ∂Ω

= φ Ω+ ϕ Γ∫ ∫u u uF

u σΓ Γ =∅

u

δ
δ

∈Γ

∀
=

x

u
u 0
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 A function                  has a local minimum (maximum) at    

 Necessary condition:

 The same condition is necessary for the function to have extrema
(maximum, minimum or saddle point) at      .

 This concept can be can be extended to functionals. 

Extrema of a Function 

( ) :f x →R R 0x

Local minimum 

( )
0

0
( ) 0

not

x x

df x f x
dx =

′= =

0x
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 A functional                     has a minimum at             

 Necessary condition for the functional to have extrema at         : 

 

 This can be re-written in integral form:
 

Extreme of a Functional. Variational 
principle 

( ) : →uF V R ( )∈u x V

( )u x

( ); 0 |
u∈Γ

δ δ = ∀ =
x

u u u u 0F δ δ

( ); ( ) ( ) 0d d
σ

δ δ δ δ
Ω Γ

= ⋅ Ω + ⋅ Γ =∫ ∫u u u u u uF E T

Variational Principle u

δ
δ

∈Γ

∀
=

x

u
u 0
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Ch.11. Variational Principles 

11.3.Variational Principle 



 Variational Principle: 

 Fundamental Theorem of Variational Calculus: 
The expression 

is satisfied  if and only if 

Variational Principle 

( ); 0d d
Ω Γ

= ⋅ Ω + ⋅ Γ =∫ ∫u u u uF E T
σ

δ δ δ δ REMARK 
 Note that      
is arbitrary. 

uδ

( , ( ), ( )) 0 σ= ∀ ∈Γx u x u x x∇T

( , ( ), ( )) 0= ∀ ∈Ωx u x u x x∇E Euler-Lagrange equations 

Natural boundary conditions 

( , ( ), ( )) ( , ( ), ( )) 0d d
σ

δ δ
Ω Γ

⋅ Ω + ⋅ Γ =∫ ∫x u x u x u x u x u x u∇ ∇E T

u

δ
δ

∈Γ

∀
=

x

u
u 0

u

δ
δ

∈Γ

∀
=

x

u
u 0
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Example 

Find the Euler-Lagrange equations  and the natural and forced boundary 
conditions of the functional 

 
 ( ) ( ) ( ) ( ) [ ] ( ) ( ), , : , ;
b

x a
a

u x u x u x dx u x a b u x u a pφ
=

′= → = =  ∫F Rwith

19 
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Example - Solution 

Find the Euler-Lagrange equations  and the natural and forced boundary 
conditions of the functional 

 

 

Solution : 

First, the Gâteaux derivative must be obtained.  
 The function          is perturbed: 

 

 

 This is replaced in the functional: 

( ) ( ) ( ) ( ) ( ), ,
b

x a
a

u x u x u x dx u x u a pφ
=

′= = =  ∫F with

( )u x
( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )| 0

not

a

u x u x x
x u x a

u x u x x
→ +  ∀ ≡ = =′ ′ ′→ + 

ε η
η δ η η

ε η

( ) ( ) ( ), ,
b

a

u x u x u x dxεη φ εη εη′ ′+ = + +  ∫F
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Example - Solution 

 The Gâteaux derivative will be 
 

 

Then, the expression obtained must be manipulated so that it resembles the 
Variational Principle                                                           : 

  Integrating by parts the second term in the expression obtained: 
 

 

 

The Gâteaux derivative is re-written as: 

 

( ) ( )
0

;
b

a

d
du u dx

u uεε
φ φδ η ε η η η

=

∂ ∂ ′= + = + ′∂ ∂ ∫F F

( ); 0d d
σ

δ δ δ δ
Ω Γ

= ⋅ Ω + ⋅ Γ =∫ ∫u u u uF E T

( ) ( )
b

b b b

b aa a a
a b a

d ddx dx dx
u u dx u u u dx u
φ φ φ φ φ φη η η η η η∂ ∂ ∂ ∂ ∂ ∂′ = − = − −
′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂∫ ∫ ∫

( ) ( ) ( ) ( )



( (

, , ;

; ) ; ) [ ( )]

b

a

b

ba
bu

u x u x u x dx u a p

du u u udx u
u dx u uδ

δ δ

φ

φ φ φη δ δ δ
≡

=

′= =  

∂ ∂ ∂
= − +

′ ′∂ ∂ ∂

∫

∫



 

0aη =

( ) ( ) ( )

( ) ( )

, ,
b

a

x a

u x u x u x dx

u x u a p

φ

=

′=   

= =

∫F
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Example - Solution 

Therefore, the Variational Principle  takes the form 

If this is compared to                                                           , one obtains: 

 

( ; ) 0
b

ba
b

du u u dx u
u dx u u

δ
φ φ φδ δ δ=

∂ ∂  ∂ − + =  ′ ′∂ ∂ ∂  
∫

( ); 0d d
σ

δ δ δ δ
Ω Γ

= ⋅ Ω + ⋅ Γ =∫ ∫u u u uF E T

0a

u
u
δ

δ
∀

=

( ) ( ), , 0 ,dx u u x a b
u dx u
φ φ∂ ∂ ′ ≡ − = ∀ ∈ ′∂ ∂ 

E Euler-Lagrange Equations 

Natural (Newmann) 
boundary conditions 

Essential (Dirichlet) 
boundary conditions 

( ) ( )
x a

u x u a p
=
≡ =

( ), , 0
x b

x u u
u
φ

=

∂′ ≡ =
′∂

T
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 Consider a continuum mechanics problem with local or strong 
governing equations given by, 
 Euler-Lagrange equations 

 
 

 with boundary conditions: 
 Natural or Newmann 

 
 

 Forced (essential) or Dirichlet 

Variational Form of a Continuum 
Mechanics Problem 

( , ( ), ( )) 0 V= ∀ ∈x u x u x xE ∇

*( , ( ), ( )) ( ) ( ) σ≡ ⋅ − = ∀ ∈Γx u x u x u n t x 0 x∇ ∇T 

( ) ( ) u
∗= ∀ ∈Γu x u x x REMARK  

 The Euler-Lagrange equations 
are generally a set of PDEs. 
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 The variational form of the continuum mechanics problem consists 
in finding a field             where 

fulfilling: 

 

Variational Form of a Continuum 
Mechanics Problem 

( )∈u x X

( ) ( ) ( ){ }
{ }

3

3
0

: : on

( ) : ( ) on

m
u

m
u

V

Vδ δ

∗= ⊂ → = Γ

= ⊂ → = Γ

u x u x u x

u x u x 0

V R R

V R R

0( , ( ), ( )) ( ) ( , ( ), ( )) ( ) 0 ( )
V

dV d
σ

δ δ δ
Γ

⋅ + ⋅ Γ = ∀ ∈∫ ∫x u x u x u x x u x u x u x u x∇ ∇E T V
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Variational Form of a Continuum 
Mechanics Problem 

REMARK 1 
 The local or strong governing equations of the continuum mechanics 
are the Euler-Lagrange equation and natural boundary conditions. 

REMARK 2  
 The fundamental theorem of variational calculus guarantees that the 
solution given by the variational principle and the one given by the local 
governing equations is the same solution.  

25 
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Ch.11. Variational Principles 

11.4. Virtual Work Principle 



 Continuum mechanics problem for a body: 
 Cauchy equation

 

 Boundary conditions

Governing Equations 

( ) ( ) ( )2

0 0 2

,
, ,

u x
x b x

t
t t V

t
ρ ρ

∂
+ =

∂
in∇ ⋅σ

( ) ( ) ( )
( ( ),t)

, t , t , t σ
∗⋅ = Γ

u

x n x t x


∇

σ

 ε

on

( ) ( ), , ut t∗= Γu x u x on
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 The variational principle consists in finding a displacement field 
     ,  where 

     such that the variational principle holds, 

     where 
 Note: 
 is the space of admissible displacements.
 is the space of admissible virtual displacements (test functions).
 The (perturbations of the displacements )      are termed virtual

displacements.

( )
2

02; [ ( )] ( ) 0
V

dV d
t

δ δ ρ δ δ δ∗

Γ

∂
= + − ⋅ + − ⋅ ⋅ Γ = ∀ ∈

∂∫ ∫
uu u b u t n u uW V∇ ⋅σ σ

σ = T

Variational Principle 

( ) ( ) ( ){ }3: , : , , onm
ut V t t∗= ⊂ → = Γu x u x u xV R R

( ) ( ){ }3
0 : : onm

uVδ δ= ⊂ → = Γu x u x 0V R R

δu

= E
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 The first term in the variational principle 

 

   Considering that 

   and (applying the divergence theorem): 

 Then, the Virtual Work Principle  reads: 

Virtual Work Principle (VWP) 

( ) ( ) sδ δ δ⋅ = ⋅ −u u u∇ ⋅σ ∇ ⋅ σ σ : ∇

( ) s( d
V V

dV dVδ δ δ
Γ

 ⋅ ⋅ = ⋅ Γ −  ∫ ∫ ∫u n u u∇ ⋅σ ⋅ σ) σ : ∇
σ

( ) ( ) * s
0; 0

V V

dV d dVδ δ ρ δ δ δ δ
Γ

= − ⋅ + ⋅ Γ − = ∀ ∈∫ ∫ ∫u u b a u t u u uσ : ∇
σ

W V

( ) ( )
2

02; [ ( )] 0
V

dV d
t

δ δ ρ δ δ δ∗

Γ

∂
= + − ⋅ + − ⋅ ⋅ Γ = ∀ ∈

∂∫ ∫
uu u b u t n u u∇ ⋅σ σW V

σ

= E
= T

= a
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Virtual Work Principle (VWP) 

REMARK 1  
The Cauchy equation and the equilibrium of tractions at the boundary 
are, respectively, the Euler-Lagrange equations and natural boundary 
conditions associated to the Virtual Work Principle. 

REMARK 2   
The Virtual Work Principle can be viewed as the variational principle 
associated to a functional           , being the necessary condition to find 
a minimum of this functional. 

( )uW

30 



 The VWP can be interpreted as: 

Interpretation of the VWP 

( ) ( ) ( )* s

V V

; 0

*

dV d dVδ δ ρ δ δ δ

δ
Γ

= − ⋅ + ⋅ Γ − =∫ ∫ ∫u u b a u t u u

b




pseudo - virtual
body forces strains

σ : ∇

εσ

W

Work by the pseudo-body 
forces and the contact forces. 

External virtual work 

Work by the 
virtual strain. 

Internal virtual 
work 

intδWextδW

( ) 0
ext int;δ δ δ δ δ= − = ∀ ∈u u 0 uW W W V
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 Engineering notation uses vectors instead of tensors: 

 

 The Virtual Work Principle becomes 

VWP in Voigt’s Notation 

{ } { } { } { }

x x x

y y y

notz z z6 6

xy xy xy

xz xz xz

yz yz yz

; ;
2

2
2

σ δε δε
σ δε δε

σ δε δε
δ δ

τ δγ δε

τ δγ δε
τ δγ δε

     
     
     
          ∈ = ∈ = =     
     
     
     
          

σ σ εR Rε { } { } { } { }:δ δ δ= ⋅ = ⋅σ ε σ ε ε σ

{ } { } ( ) *
00b a u t u u

V V

dV dV d
σ

δ δ ρ δ δ δ
Γ

 
= ⋅ − − ⋅ + ⋅ Γ = ∀ ∈  

 
∫ ∫ ∫W Vε σ

Total virtual 
work. 

Internal virtual 
work,            .intδW

External virtual 
work,            .

ex tδW
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Ch.11. Variational Principles 

11.5. Minimum Potential Energy Principle 



 An explicit expression of the functional     in the VWP can only be 
obtained under the following hypothesis: 
1. Linear elastic material. The elastic potential is:

2. Conservative volume forces. The potential for the quasi-static
case           under gravitational 

 forces and constant density is:                    

3. Conservative surface forces. The potential is:  

 Then a functional, total potential energy, can be defined as 

Hypothesis 

W

( )a 0=

( ) )GG ∗ ∗∂ (
= − ⋅ = −

∂
uu t u t

u

( ) )ρ ρ∂φ(
φ = − ⋅ = −

∂
uu b u b

u

ˆ1 (ˆ( : : :
2

uu ∂ )
) = = =

∂
σC Cε

ε ε ε ε
ε

( ) ( ) ( )ˆ(
V V

u dV dV G dSφ
Γ

= ) + +∫ ∫ ∫u u uεU
σ

Elastic 
energy 

Potential energy of 
the body forces 

Potential energy of 
the surface forces ( ))s u= ε(∇
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 The variational form consists in finding a displacement field  
              , such that for any                            the following 
condition holds, 

 

 This is equivalent to the VWP previously defined. 

Potential Energy Variational Principle 

( , )t ∈u x V δ δ = Γu0u u in

( ) ( ) *
0;       d

V V

dV dV
σ

δ δ δ ρ δ δ δ
Γ

= − − ⋅ − ⋅ Γ ∀ ∈∫ ∫ ∫u u : b a u t u uσ εU V

( );δ δ δ≡ u uW U

( ) ( ) ( ) ( )
;

ˆ
      0S

V V

Gu dV dV d
σ

δ δ δ δ δ
Γ

=
∂φ ∂∂

∇ + ⋅ + ⋅ Γ =
∂ ∂ ∂∫ ∫ ∫u u

u u
: u u u

u uε
U

= σ δ= ε
bρ= −

*= −t
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 The VWP is obtained as the variational principle associated with 
this functional    , the potential energy.  

 The potential energy is 

 This function has an extremum (which can be proven to be a minimum) for
the solution of the linear elastic problem.

 The solution provided by the VWP can be viewed in this case as 
the solution which minimizes the total potential energy functional. 

Minimization of the Potential Energy 

U

0( ; ) 0δ δ δ= ∀ ∈u u uU V

( ) *1( ) ( ) ( ) ( )  
2

u u u b a u u t u
V V

dV dV d
σ

ρ
Γ

= − − ⋅ − ⋅ Γ∫ ∫ ∫U Cε : :

deriving from a
potential
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Chapter 11
Variational Principles

11.1 Governing Equations
Variational calculus is a mathematical tool that allows working with the so-
called integral or weak form of the governing differential equations of a problem.
Given a system of differential equations, which must be verified in local form
(point by point) for a certain domain, the variational principles allow obtain-
ing an integral or weak formulation (global, in the domain), whose imposition,
nonetheless, guarantees that the aforementioned differential equations are sat-
isfied. Integral formulations are of particular interest when treating and solving
the problem by means of numerical methods.

11.1.1 Functionals. Functional Derivatives

Definition 11.1. The functional F(u) is a mapping of the function
space X onto the set of real numbers R,

F(u) : X→ R where X :=
{

u(x)
∣∣ u(x) : R3 ⊃Ω → R

m} .

In other words, the functional F(u) is a function that takes an ele-
ment u(x) (a scalar, vector or tensor function defined in a domain Ω
of R3 or, in general, Rn) of a function space X as its input argument
and returns a real number.

With certain language misuse, one could say that the functional F(u) is a scalar
function whose arguments are functions u(x).
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514 CHAPTER 11. VARIATIONAL PRINCIPLES

Example 11.1 – Consider an interval Ω ≡ [a,b] ∈ R and the space X

constituted by all the real functions with real variables in the interval
[a,b] (u(x) : [a,b]→ R) with first derivatives u′ (x) that are integrable in this
interval. Examples of possible functionals are

F(u) =
b∫

a

u(x)dx , G(u) =
b∫

a

u′ (x)dx

and H(u) =
b∫

a

F
(
x, u(x) , u′ (x)

)
dx .

Definition 11.2. Consider the (scalar, vector or tensor) function
space X :=

{
u(x)

∣∣ u(x) : R3 ⊃Ω → R
n
}

on a domain Ω and a

functional F(•) : X→ R.

Consider the two functions u, ηηη ∈ X and the (perturbation) param-
eter ε ∈ R. Then, the function u+ ε ηηη ∈ X, can be interpreted as a
perturbed function of the function u in the direction ηηη .

The Gateaux variation (or Gateaux derivative) of the functional
F(u) in the direction ηηη is defined as

δF(u;ηηη)
de f
=

d
dε

F(u+ ε ηηη)
∣∣∣
ε=0

.

Remark 11.1. The direction with respect to which the variation is

taken is often denoted as ηηη not
= δu. This notation will be used fre-

quently in the remainder of the chapter. Do not confuse δu(x) with
the differential du(x) (in an infinitesimal calculus context) of a func-
tion u(x). However, obtaining the Gateaux variation of a functional
has in certain cases the same formalism as the ordinary differentia-
tion of functions and, thus, the risk of confusion (see Example 11.2).

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems

doi:10.13140/RG.2.2.25821.20961



Con
tin

uum
M

ech
an

ics
for

Engin
eer

s

Theo
ry

an
d Pro

blem
s

©
X. O

liv
er

an
d C. A

ge
let

de Sar
ac

ibar

Governing Equations 515

Example 11.2 – Obtain the Gateaux derivative of the functional

F(u)de f
=
∫
Ω

φ (u)dΩ +
∫

∂Ω

ϕ (u)dΓ .

Solution

δF(u; δu) =
d

dε
F(u+ εδu)

∣∣∣∣
ε=0

=
d

dε

∫
Ω

φ (u+ εδu)dΩ
∣∣∣∣
ε=0

+

+
d

dε

∫
∂Ω

ϕ (u+ εδu)dΓ
∣∣∣∣
ε=0

=

=

⎡
⎢⎢⎢⎣
∫
Ω

∂φ (u+ εδu)
∂u

· d (u+ εδu)
dε︸ ︷︷ ︸
δu

dΩ

⎤
⎥⎥⎥⎦

ε = 0

+

+

⎡
⎢⎢⎢⎣
∫

∂Ω

∂ϕ (u+ εδu)
∂u

· d (u+ εδu)
dε︸ ︷︷ ︸
δu

dΓ

⎤
⎥⎥⎥⎦

ε = 0

=⇒

δ

⎡
⎣∫

Ω

φ (u)dΩ +
∫

∂Ω

ϕ (u)dΓ

⎤
⎦=

∫
Ω

∂φ (u)
∂u

·δudΩ +
∫

∂Ω

∂ϕ (u)
∂u

·δudΓ

Note, in this case, the formal similarity of obtaining the Gateaux derivative
of the functional with the differentiation of functions.

Consider now a domain Ω ⊂R
3, its boundary ∂Ω =Γu

⋃
Γσ with Γu

⋂
Γσ = /0

(see Figure 11.1) and the space V of the functions u(x) defined on Ω and such
that they take a prescribed value u∗ (x) at the boundary Γu:

V :=

{
u(x)

∣∣ u(x) : Ω → R
m ; u(x)

∣∣∣
x∈Γu

= u∗ (x)
}

(11.1)

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems
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516 CHAPTER 11. VARIATIONAL PRINCIPLES

Γu
⋂

Γσ = /0

Figure 11.1: Definition of the domain Ω ⊂ R
3.

Remark 11.2. When computing the Gateaux derivative, a condition,
established in the definition itself, on the perturbation ηηη ≡ δu is that
the perturbed function u+ ε δu must belong to the same function
space V(u+ ε δu ∈ V). In this case, if u+ ε δu ∈ V,

(u+ ε δu)
∣∣∣∣
x∈Γu

= u∗ =⇒ u
∣∣∣∣
x∈Γu︸ ︷︷ ︸
u∗

+ ε δu
∣∣∣∣
x∈Γu

= u∗ =⇒ ε δu
∣∣∣∣
x∈Γu

= 0

and the perturbation δu must satisfy δu
∣∣∣∣
x∈Γu

= 0 .

Based on the family of functions (11.1), consider now the following family
of functionals

F(u) =
∫
Ω

φ (x,u(x) ,∇u)dΩ +
∫
Γσ

ϕ (x,u(x) ,∇u)dΓ ∀u ∈ V , (11.2)

where the functions φ and ϕ are regular enough to be integrable in the domains
Ω and Γσ , respectively. Assume, in addition, that, through adequate algebraic
operations, the Gateaux derivative of F(u) can be written as

δF(u;δu) =
∫
Ω

E(x,u(x) ,∇u) ·δudΩ +
∫
Γσ

T(x,u(x) ,∇u) ·δudΓ

∀δu; δu
∣∣∣
x∈Γσ

= 0
. (11.3)

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems
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Governing Equations 517

Example 11.3 – Obtain the Gateaux derivative, in the format given in (11.3),
of the functional

F(u) =
b∫

a

φ
(
x, u(x) ,u′ (x)

)
dx with u(x)

∣∣∣
x=a

= u(a) = p .

Solution

The given functional is a particular case of the functional in (11.2), reduced
to a single dimension with ϕ ≡ 0, Ω ≡ (a, b), Γu ≡ a and Γσ ≡ b.

Perturbing the function u(x) and replacing in the functional yields

u(x)→ u(x)+ ε η(x)

u′(x)→ u′(x)+ ε η ′(x)

}
∀η (x)≡ δu(x)

∣∣∣ η (a) not
= ηa = 0 =⇒

F(u+ ε η) =

b∫
a

φ
(
x, u(x)+ ε η , u′ (x)+ ε η ′

)
dx

The Gateaux derivative is then

δF(u;η) =
d

dε
F(u+ ε η)

∣∣∣
ε=0

=

b∫
a

(
∂φ
∂u

η +
∂φ
∂u′

η ′
)

dx .

On the other hand, the previous expression can be integrated by parts,

b∫
a

∂φ
∂u′

η ′ dx =

[
∂φ
∂u′

η
]x=b

x=a
−

b∫
a

(
d
dx

(
∂φ
∂u′

)
η
)

dx =

=
∂φ
∂u′

∣∣∣∣∣
x=b

ηb − ∂φ
∂u′

∣∣∣∣∣
x=a

ηa︸︷︷︸
= 0

−
b∫

a

(
d
dx

(
∂φ
∂u′

)
η
)

dx =

=
∂φ
∂u′

∣∣∣∣∣
x=b

ηb−
b∫

a

(
d
dx

(
∂φ
∂u′

)
η
)

dx ,

producing the expression

δF
(

u; δu︸︷︷︸
η

)
=

b∫
a

(
∂φ
∂u
− d

dx

(
∂φ
∂u′

))
δu dx+

∂φ
∂u′

∣∣∣∣∣
x=b

δub ,

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems

doi:10.13140/RG.2.2.25821.20961
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518 CHAPTER 11. VARIATIONAL PRINCIPLES

which is a particular case of (11.3) with

E(x,u,u′)≡ ∂φ
∂u
− d

dx

(
∂φ
∂u′

)
∀x ∈ (a,b)

T(x,u,u′)≡ ∂φ
∂u′

∣∣∣∣∣
x=b

.

11.1.2 Extrema of the Functionals. Variational Principles.
Euler-Lagrange Equations

Consider a real function of a real variable f (x) : R→R. This function is said to
have a minimum at x = x0 when

f (x0)≤ f (x) ∀x ∈ R . (11.4)

The necessary condition for f to have an extrema (maximum, minimum or sad-
dle point) at x = x0 is known to be

d f (x)
dx

∣∣∣∣∣
x=x0

not
= f ′ (x0) = 0 . (11.5)

This concept can be extended to the functionals in a function space. Given a
functional F(u) : V→ R, this functional is said to have a minimum at u(x)
when

F(u)≤ F(v) ∀v ∈ V , (11.6)

and a necessary condition for the functional to have an extreme (maximum,
minimum or saddle point) at u(x) is that the derivative δF(u; δu) be null in
every direction δu,

δF(u;δu) = 0 ∀δu
∣∣ δu

∣∣∣
x∈Γu

= 0 . (11.7)

Expressing (11.7) in the same format as (11.3) results in

Variational principle

δF(u;δu) =
∫
Ω

E ·δu dΩ +
∫
Γσ

T ·δu dΓ = 0

∀δu
∣∣ δu

∣∣∣
x∈Γu

= 0

(11.8)

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems
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Governing Equations 519

Theorem 11.1. Fundamental Theorem of Variational Calculus:
Given E(x) : Ω → R

m and T(x) : Γσ → R
m that satisfy∫

Ω

E(x) ·δu dΩ +
∫
Γσ

T(x) ·δu dΓ = 0 ∀δu
∣∣ δu

∣∣∣
x∈Γu

= 0

⇐⇒ E(x) = 0 ∀x ∈Ω
T(x) = 0 ∀x ∈ Γσ

Proof (indicative1)
Consider the following choice for δu(x).

δu(x) =

⎧⎨
⎩

E(x) ∀x ∈Ω
0 ∀x ∈ Γu

T(x) ∀x ∈ Γσ

Replacing in the theorem results in∫
Ω

E(x) ·E(x)︸ ︷︷ ︸
≥ 0

dΩ +
∫
Γσ

T(x) ·T(x)︸ ︷︷ ︸
≥ 0

dΓ = 0 ⇐⇒ E(x) = T(x) = 0 .

Q.E.D.

Equation (11.8) is denoted as variational principle2 and, since δu is arbitrary,
in accordance with Theorem 11.1 it is completely equivalent to

Euler-Lagrange equations

E(x,u(x) ,∇u(x)) = 0 ∀x ∈Ω (11.9)

Natural boundary conditions

T(x,u(x) ,∇u(x)) = 0 ∀x ∈ Γσ
(11.10)

1 This proof is not rigorous and is provided solely as an intuitive indication of the line of
reasoning followed by the theorem’s proof.
2 Strictly speaking, (11.8) is a variational equation or the weak form of a differential prob-
lem.

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems
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520 CHAPTER 11. VARIATIONAL PRINCIPLES

Remark 11.3. Equations (11.9),

E(x,u(x) ,∇u(x)) = 0 ∀x ∈Ω ,

are, in general, a set of partial differential equations (PDEs) known
as Euler-Lagrange equations of the variational principle (11.8).

Equations (11.10),

T(x,u(x) ,∇u(x)) = 0 ∀x ∈ Γσ ,

constitute a set of boundary conditions on these differential equa-
tions denoted as natural or Neumann boundary conditions. Together
with the conditions (11.1),

u(x) = u∗ (x) ∀x ∈ Γu ,

named essential or Dirichlet boundary conditions, they define a sys-
tem whose solution u(x) is an extreme of the functional F.

Example 11.4 – Obtain the Euler-Lagrange equations and the corresponding
natural and essential boundary conditions of the functional in Example 11.3,

F(u) =
b∫

a

φ
(
x, u(x) ,u′ (x)

)
dx with u(x)

∣∣∣
x=a

= u(a) = p .

Solution

From the result of Example 11.3,

δF
(

u; δu︸︷︷︸
η

)
=

b∫
a

(
∂φ
∂u
− d

dx

(
∂φ
∂u′

))
δu dx+

∂φ
∂u′

∣∣∣∣∣
x=b

δub ,

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems
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Virtual Work Principle (Theorem) 521

one directly obtains:

Euler-Lagrange equations :

E(x,u,u′)≡ ∂φ
∂u
− d

dx

(
∂φ
∂u′

)
= 0 ∀x ∈ (a,b)

Natural boundary conditions :

T(x,u,u′)≡ ∂φ
∂u′

∣∣∣∣∣
x=b

= 0

Essential boundary conditions :

u(x)
∣∣∣
x=a

= u(a) = p

11.2 Virtual Work Principle (Theorem)
Consider a material volume of the continuous medium Vt , occupying at time t
the volume in space V , subjected to the body forces b(x, t) and the surface
forces t∗ (x, t) on the boundary Γσ (see Figure 11.2). Consider also the func-
tional space V of all the admissible displacements, which satisfy the boundary
condition u

∣∣
x∈Γu

= u∗.

Space of admissible displacements

V :=

{
ut (x) : V → R

3
∣∣ ut (x)

∣∣∣
x∈Γu

= u∗t (x)
}

(11.11)

Two of the equations governing the behavior of the medium are

Cauchy’s equation: ∇ ·σσσ (u)+ρ (b−a(u)) = 0 ∀x ∈V , (11.12)

Equilibrium condition
at the boundary Γσ :

σσσ (u) ·n− t∗ = 0 ∀x ∈ Γσ , (11.13)

where the implicit dependency of the stresses on the displacements (through the
strains and the constitutive equation σσσ (u) = σσσ (εεε (u)) ) and of the accelerations

on the displacements (through equation a(x, t) = ∂ 2u(x, t)/∂ t2 ) has been taken
into account.

X. Oliver and C. Agelet de Saracibar Continuum Mechanics for Engineers.Theory and Problems
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522 CHAPTER 11. VARIATIONAL PRINCIPLES

Figure 11.2: Definition of the material volume Vt .

Consider now the variational principle

δW(u;δu) =
∫
V

(
∇ ·σσσ (u)+ρ (b−a(u))

)
︸ ︷︷ ︸

E

· δu dV+

+
∫
Γσ

(
t∗ −σσσ (u) ·n

)
︸ ︷︷ ︸

T

· δu dΓ = 0 ; ∀δu(x)
∣∣ δu

∣∣∣
x∈Γu

= 0 ,

(11.14)

where the displacement perturbations δu are denoted as virtual displacements.

Virtual displacements: δu : V → R
3
∣∣ δu

∣∣∣
x∈Γu

= 0 (11.15)

In view of (11.8) and (11.9), the Euler-Lagrange equations of the variational
principle (11.14) and their natural boundary conditions are

Euler-Lagrange
equations:

E≡ ∇ ·σσσ +ρ (b−a) = 0 ∀x ∈Ω ,

Natural boundary
conditions:

T≡ t∗ −σσσ ·n = 0 ∀x ∈ Γσ ,

(11.16)

that is, Cauchy’s equation (11.12) and the equilibrium condition at the bound-
ary (11.13).
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The variational principle (11.14) can be rewritten in a totally equivalent form
as follows. Consider the term⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(∇ ·σσσ) ·δu = ∇ · (σσσ ·δu)−σσσ : (∇⊗δu) = ∇ · (σσσ ·δu)−σσσ : (δu⊗∇)

∂σi j

∂xi
δu j =

∂ (σi jδu j)

∂xi
−σi j

∂ (δu j)

∂xi
=

∂ (σi jδu j)

∂xi
−σ ji

∂ (δu j)

∂xi

i, j ∈ {1,2,3}
(11.17)

and the splitting of δu⊗ ∇ into its symmetrical part, ∇sδu, and its skew-
symmetric part ∇aδu,

δu⊗∇ = ∇sδu+∇aδu with

∇sδu de f
=

1

2
(δu⊗∇+∇⊗δu) and ∇aδu de f

=
1

2
(δu⊗∇−∇⊗δu) .

(11.18)
Introducing (11.18) in (11.17)3 produces

(∇ ·σσσ) ·δu = ∇ · (σσσ ·δu)−σσσ : (δu⊗∇) =

= ∇ · (σσσ ·δu)−σσσ : ∇sδu−σσσ : ∇aδu︸ ︷︷ ︸
= 0

=⇒ (11.19)

(∇ ·σσσ) ·δu = ∇ · (σσσ ·δu)−σσσ : ∇sδu . (11.20)

Integrating now (11.20) over the domain V and applying the Divergence Theo-
rem yields∫

V

(∇ ·σσσ) ·δu dV =
∫
V

∇ · (σσσ ·δu) dV −
∫
V

σσσ : ∇sδu dV =

=
∫

∂V=Γu
⋃

Γσ

n · (σσσ ·δu)dΓ −
∫
V

σσσ : ∇sδu dV =

=
∫
Γu

(n ·σσσ) · δu︸︷︷︸
= 0

dΓ +
∫
Γσ

(n ·σσσ) ·δu dΓ −
∫
V

σσσ : ∇sδu dV =⇒

(11.21)

3 The tensor σσσ is symmetrical and the tensor ∇aδu is skew-symmetric. Consequently, their
product is null, σσσ : ∇aδu = 0.
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524 CHAPTER 11. VARIATIONAL PRINCIPLES

∫
V

(∇ ·σσσ) ·δu dV =
∫
Γσ

(n ·σσσ) ·δu dΓ −
∫
V

σσσ : ∇sδu dV , (11.22)

where the condition δu
∣∣
x∈Γu

= 0 (see (11.15)) has been taken into account. Fi-

nally, introducing (11.20) in the original form of the variational principle (11.14)
results in

δW(u;δu) =
∫
V

(
∇ ·σσσ +ρ (b−a)

) ·δu dV +
∫
Γσ

(
t∗ − (σσσ ·n)) ·δu dΓ =

=
∫
V

(∇ ·σσσ) ·δudV +
∫
V

ρ (b−a) ·δudV +
∫
Γσ

t∗ ·δudΓ −
∫
Γσ

(σσσ ·n) ·δudΓ =

=−
∫
V

σσσ : ∇sδu dV +
∫
V

ρ (b−a) ·δu dV +
∫
Γσ

t∗ ·δu dΓ = 0 =⇒

(11.23)

Virtual Work Principle

δW(u;δu) =
∫
V

ρ (b−a) ·δu dV +
∫
Γσ

t∗ ·δu dΓ

−
∫
V

σσσ : ∇sδu dV = 0 ∀δu(x)
∣∣ δu

∣∣∣∣
x∈Γu

= 0

(11.24)

Expression (11.24), which is completely equivalent to the original variational
principle and maintains the same Euler-Lagrange equations and boundary con-
ditions (11.16), is known as the Virtual Work Principle (or Theorem) (VWP).

Remark 11.4. The VWP is a variational principle frequently applied
in solid mechanics that can be interpreted as the search of an extrema
of a functional of a displacement field W(u), not necessarily known
in its explicit form, whose variation (Gateaux derivative) δW(u;δu)
is known and is given by (11.14). Since the Euler-Lagrange equa-
tions of the VWP are the Cauchy’s equation (11.12) and the equilib-
rium condition at the boundary (11.13), its imposition is completely
equivalent (yet, more convenient when solving the problem through
numerical methods) to the imposition in local form of the aforemen-
tioned equations and receives the name of weak form of these equa-
tions.
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Virtual Work Principle (Theorem) 525

Remark 11.5. The constitutive equation does not intervene in the
VWP formulation and the type of kinematics considered (finite or
infinitesimal strains) is not distinguished either. Thus, the applica-
tion of the VWP is not restricted by the type of constitutive equation
chosen (elastic, elastoplastic, fluid, etc.) nor by the kinematics (finite
or infinitesimal strains) considered.

11.2.1 Interpretation of the Virtual Work Principle
Consider the continuous medium in the present configuration Vt at time t sub-
jected to the fictitious body forces b∗ (x, t) = b(x, t)− a(x, t) and the real sur-
face forces t∗ (x, t) (see Figure 11.3), and suffering the real stresses σσσ (x, t).
Consider, in addition, the virtual (fictitious) configuration Vt+δ t corresponding
to time t + δ t, separated from the real configuration by a virtual displacement
field (11.15)

Virtual displacements: δu
∣∣ δu

∣∣∣
x∈Γu

= 0 . (11.25)

t − present configuration

t +δ t − virtual configuration

Figure 11.3: Continuous medium subjected to fictitious body forces and real surface

forces.
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526 CHAPTER 11. VARIATIONAL PRINCIPLES

Under infinitesimal strain kinematics, the virtual strains associated with the
virtual displacements (11.25) are

Virtual strains: δεεε = ∇sδu (11.26)

and, assuming that the stresses σσσ (x, t) remain constant along the time inter-
val [t, t +δ t], the virtual strain work (internal virtual work) performed by the
medium during this interval is

Internal
virtual work:

δWint =
∫
V

σσσ : δεεε dV =
∫
V

σσσ : ∇sδu dV . (11.27)

Likewise, assuming that both the pseudo-body forces b∗ (x, t) and the surface
forces t∗ (x, t) remain constant during the virtual strain process in the inter-
val [t, t +δ t], the work performed by these forces (external virtual work) results
in

External
virtual work:

δWext =
∫
V

ρ (b−a)︸ ︷︷ ︸
b∗

· δu dV =
∫
Γσ

t∗ ·δu dV (11.28)

and, comparing the VWP (11.24) with expressions (11.27) and (11.28), the
VWP can be interpreted as follows.

Virtual Work Principle

δW︸︷︷︸
Total

virtual
work

=
∫
V

σσσ : δεεε dV

︸ ︷︷ ︸
Internal virtual
work

(
δWint

)
−
∫
V

ρ (b−a) ·δu dV +
∫
Γσ

t∗ ·δu dΓ

︸ ︷︷ ︸
External virtual
work (δWext)

= 0

=⇒ δW= δWint −δWext = 0

for any kinematically admissible
change in the virtual configuration(

δu
∣∣∣
x=Γu

= 0
)

(11.29)
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Virtual Work Principle (Theorem) 527

11.2.2 Virtual Work Principle in terms of the Stress and Strain Vectors
The vectors of stress {σσσ} and virtual strain {δεεε} can be extracted from the
symmetrical tensors of stress, σσσ , and virtual strain, δεεε = ∇sδu, in (11.29) as
follows.

{σσσ} ∈ R
6; {σσσ} not≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σx

σy

σz

τxy

τxz

τyz

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

{δεεε} ∈ R
6; {δεεε} not≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

δεx

δεy

δεz

δγxy

δγxz

δγyz

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

δεx

δεy

δεz

2δεxy

2δεxz

2δεyz

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(11.30)
They satisfy the equality{

σσσ : δεεε = {σσσ} · {δεεε}= {δεεε} · {σσσ} ,

σi jδεi j = σmδεm = δεmσm i, j ∈ {1,2,3} , m ∈ {1, ..6} .
(11.31)

Replacing (11.31) in the VWP (11.29) results in

Virtual Work Principle

δW︸︷︷︸
Total

virtual
work

=
∫
V

{δεεε} · {σσσ}dV

︸ ︷︷ ︸
Internal virtual
work

(
δWint

)
−
∫
V

ρ (b−a) ·δu dV +
∫
Γσ

t∗ ·δu dΓ

︸ ︷︷ ︸
External virtual
work (δWext)

= 0

=⇒ δW= δWint −δWext

for any kinematically admissible
change in the virtual configuration(

δu
∣∣∣
x=Γu

= 0
)

(11.32)

which constitutes the VWP form most commonly used in engineering.
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528 CHAPTER 11. VARIATIONAL PRINCIPLES

11.3 Potential Energy. Minimum Potential Energy
Principle

The functional W, in terms of which the variational principle (11.24) is estab-
lished, can be explicitly formulated only under certain circumstances. One such
case requires the following conditions:

1) Linear elastic problem
The constitutive equation can be written in terms of the elastic potential û(εεε) as

follows4.

Elastic
potential:

û(εεε) =
1

2
εεε :CCC : εεε︸︷︷︸

σσσ
=

1

2
σσσ : εεε

∂ û(εεε)
∂εεε

=CCC : εεε = σσσ

(11.33)

2) The body forces ρb∗ (x, t) are conservative
That is, these body forces derive from a potential φ (u) and, thus,

∂φ (u)
∂u

=−ρb∗ =−ρ (b−a) . (11.34)

Remark 11.6. A typical case of conservative body forces is obtained
for the quasi-static case (a = 0) under gravitational forces and con-
stant density,

b(x, t) not≡ [0, 0, −g ]T = const. and ρ (x, t) = const.

In this case, the potential of the body forces is

φ (u) =−ρb ·u =⇒ ∂φ (u)
∂u

=−ρb .

4 The restriction to the linear elastic problem can be made less strict and be extended to the
case of hyperelastic materials in a finite strain regime.
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Potential Energy. Minimum Potential Energy Principle 529

3) The surface forces t∗ (x, t) are conservative
Therefore, they derive from a potential G(u) such that

t∗ =−∂G(u)
∂u

. (11.35)

Remark 11.7. A typical case of conservative surface forces occurs
when the traction vector t∗ (x, t) is independent of the displacements,

∂ t∗

∂u
= 0 .

In this case, the potential of the surface forces is

G(u) =−t∗ ·u =⇒ ∂G(u)
∂u

=−t∗ .

Under the above circumstances, the following functional, named total poten-
tial energy, can be defined.

Potential energy

U(u)︸ ︷︷ ︸
Total

potential
energy

=
∫
V

û(εεε (u)) dV

︸ ︷︷ ︸
Elastic
energy

+
∫
V

φ (u) dV

︸ ︷︷ ︸
Potential energy

of the body forces

+
∫
Γσ

G(u) dΓ

︸ ︷︷ ︸
Potential energy of
the surface forces

(11.36)

whose Gateaux variation is

δU(u;δu) =
∫
V

∂ û
∂εεε︸︷︷︸
σσσ

: ∇S (δu)︸ ︷︷ ︸
δεεε

dV +
∫
V

∂φ (u)
∂u︸ ︷︷ ︸

−ρ (b−a)

·δu dV +
∫
Γσ

∂G(u)
∂u︸ ︷︷ ︸
−t∗

·δu dΓ =

=
∫
V

σσσ : δεεε dV −
∫
V

ρ (b−a) ·δu dV −
∫
Γσ

t∗ ·δu dΓ ; ∀δu
∣∣ δu
∣∣∣
x∈Γu

= 0 ,

(11.37)
where (11.33) to (11.35) have been taken into account.
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530 CHAPTER 11. VARIATIONAL PRINCIPLES

Comparing (11.37) with the VWP (11.29) leads to

δW≡ δU(u;δu) =
∫
V

σσσ : δεεε dV −
∫
V

ρ (b−a) ·δu dV −
∫
Γσ

t∗ ·δu dΓ = 0

∀δu
∣∣ δu

∣∣∣
x∈Γu

= 0 .

(11.38)

Definition 11.3. Minimum Potential Energy Principle:
The variational principle (11.38), which is still the weak form of
Cauchy’s equation (11.12) and the equilibrium condition at the
boundary (11.13), is now the Gateaux variation of the potential
energy functional U(u) in (11.36). Consequently, this functional,
which for the case of constant body and surface forces takes the form

U(u) =
∫
V

1

2
εεε :CCC : εεε︸ ︷︷ ︸
û(εεε)

dV −
∫
V

ρ (b−a) ·u dV −
∫
Γσ

t∗ ·u dΓ ,

presents an extreme (which can be proven to be a minimum5) for the
solution to the linear elastic problem.

5 The condition of minimum of an extreme is proven by means of the thermodynamic re-
quirement that CCC be positive-definite (see Chapter 6).
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PROBLEMS

Problem 11.1 – From the expression of the Virtual Work Principle,∫
V0

σσσ : δεεε dV0 =
∫
V0

ρb ·δu dV0 +
∫
Γσ

t ·δu dΓ ∀ δu
∣∣ δu = 0 in Γu ,

prove the Minimum Potential Energy Principle for a linear elastic material
under infinitesimal strain regime.

Solution

A linear elastic material is a particular type of hyperelastic material and, thus,
there must exist an elastic potential of the type

∃W(εεε)
∣∣∣ ∂W

∂εi j
= σi j =⇒ δW= σi j δεi j = σσσ : δεεε .

In addition, if the external forces are conservative, the following is satisfied:

∃ G(u)
∣∣∣ t∗ =−∂G(u)

∂u
=⇒ δG=−t∗ ·δu

∃ Φ (u)
∣∣∣ ρb =−∂Φ (u)

∂u
=⇒ δΦ =−ρb ·δu

Now, the given expression of the Virtual Work Principle can be rewritten as∫
V0

δW dV0 +
∫
V0

δΦ dV0 +
∫
Γσ

δG dΓ = 0 ∀ δu
∣∣ δu = 0 in Γu ,

δ

⎛
⎝∫

V0

W dV0 +
∫
V0

Φ dV0 +
∫
Γσ

G dΓ

⎞
⎠= 0 ∀ δu

∣∣ δu = 0 in Γu .

Defining the total potential energy as

U(u) =
∫
V0

W dV0 +
∫
V0

Φ dV0 +
∫
Γσ

G dΓ
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532 CHAPTER 11. VARIATIONAL PRINCIPLES

leads to
δU= 0 ∀ δu

∣∣ δu = 0 in Γu ,

which is the same as stating that U has an extreme at u. To prove that this extreme
is a minimum, consider

W(εεε) =
1

2
εεε :CCC : εεε where Ci jkl =

∂ 2
W

∂εi j∂εkl
.

Then, the expressions for U(u) and U(u+δu) are computed as

U(u) =
∫
V0

1

2
εεε (u) :CCC : εεε (u)dV0−

∫
V0

ρb · (u)dV0−
∫
Γσ

t∗ ·u dΓ and

U(u+δu) =
∫
V0

1

2
εεε (u+δu) :CCC : εεε (u+δu)dV0−

∫
V0

ρb · (u+δu)dV0

−
∫
Γσ

t∗ · (u+δu)dΓ .

Taking into account
εεε (u+δu) = εεε (u)+ εεε (δu)

results in the following expression for the subtraction U(u+δu)−U(u):

U(u+δu)−U(u) =
∫
V0

1

2
εεε (u) :CCC : εεε (δu)dV0 +

∫
V0

1

2
εεε (δu) :CCC : εεε (u)dV0

+
∫
V0

1

2
εεε (δu) :CCC : εεε (δu)dV0−

∫
V0

ρb ·δu dV0−
∫
Γσ

t∗ ·δu dΓ

Introducing

εεε (u) :CCC : εεε (δu) = εεε (δu) :CCC : εεε (u) = σσσ : δεεε

reduces the subtraction to

U(u+δu)−U(u) =
∫
V0

σσσ : δεεε dV0 +
∫
V0

1

2
εεε (δu) :CCC : εεε (δu)dV0

−
∫
V0

ρb ·δu dV0−
∫
Γσ

t∗ ·δu dΓ .
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Now, considering the previous expression and

δU=
∫
V0

σσσ : δεεε dV0−
∫
V0

ρb ·δu dV0−
∫
Γσ

t∗ ·δu dΓ

yields

U(u+δu)−U(u) =
∫
V0

1

2
εεε (δu) :CCC : εεε (δu)dV0 .

Finally, since the tensor Ci jkl = ∂ 2
W/(∂εi j∂εkl) is positive-definite,

U(u+δu)−U(u)≥ 0

and, thus, the potential energy is seen to have a minimum in the equilibrium
state.
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Concept of Tensor 

 A TENSOR is an algebraic entity with various components 
which generalizes the concepts of scalar, vector and matrix. 

 Many physical quantities are mathematically represented as tensors. 

 Tensors are independent of any reference system but, by need, are 
commonly represented in one by means of their “component matrices”. 

 The components of a tensor will depend on the reference system 
chosen and will vary with it. 

5 
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Order of a Tensor 

 The order of a tensor is given by the number of indexes 
needed to specify without ambiguity a component of a tensor. 

 Scalar: zero dimension  

 Vector: 1 dimension 

 2nd order: 2 dimensions 

 3rd order: 3 dimensions 

 4th order … 

 
 

a
,a a

,A A

, AA
, AA

3.14α = 1.2
0.3
0.8

vi

 
 



= 


  0.1 0 1.3
0 2.4 0.5

1.3 0.5 5.8
ijE

 
 


 

= 
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Cartesian Coordinate System 

 Given an orthonormal basis formed by three mutually 
perpendicular unit vectors: 

 
 

Where: 

 

 

 Note that 

 

1 2 2 3 3 1ˆ ˆ ˆ ˆ ˆ ˆ, ,⊥ ⊥ ⊥e e e e e e

1 2 3ˆ ˆ ˆ1 , 1 , 1= = =e e e

1
ˆ ˆ

0i j ij

i j
i j

δ
= 

⋅ = = ≠ 
e e

if

if
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Tensor Algebra 

Indicial or (Index) Notation 

10 



Tensor Bases – VECTOR 

 A vector     can be written as a unique linear combination of the 
three vector basis      for                  .  
 
 

 In matrix notation: 
 
 
 

 In index notation: 

  

ˆ ie

1 1 2 2 3 3ˆ ˆ ˆv v v= + +v e e e
v

v

[ ]
1

2

3

v
v
v

 
 =  
  

v

ˆvi i
i

=∑v e

[ ] vii
=v

tensor as a physical entity 

component i of the tensor in the 
given basis 

1v
2v

3v

{ }1,2,3i∈

{ }1,2,3i∈

11 
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Tensor Bases – 2nd ORDER TENSOR 

 A 2nd order tensor     can be written as a unique linear combination 
of the nine dyads                        for                      .  
 
 

 
 
 

Alternatively, this could have been written as: 
 
 
 
 

  

{ }, 1, 2,3i j∈ˆ ˆ ˆ ˆi j i j⊗ ≡e e e e
A

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ

11 12 13

21 22 23

31 32 33

A A A
A A A
A A A

= + + +

+ + + +
+ + +

A e e e e e e
e e e e e e
e e e e e e

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

11 12 13

21 22 23

31 32 33

A A A

A A A

A A A

= ⊗ + ⊗ + ⊗ +

+ ⊗ + ⊗ + ⊗ +

+ ⊗ + ⊗ + ⊗

A e e e e e e

e e e e e e

e e e e e e

12 
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Tensor Bases – 2nd ORDER TENSOR 

 
 
 
 

 In matrix notation: 
 
 
 

 In index notation: 

  

[ ]
11 12 13

21 22 23

31 32 33

A A A
A A A
A A A

 
 =  
  

A

( )ˆ ˆAij i j
ij

= ⊗∑A e e

[ ] ijij
A=A

tensor as a 
physical entity 

component ij of the tensor 
in the given basis 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

11 12 13

21 22 23

31 32 33

A A A

A A A

A A A

= ⊗ + ⊗ + ⊗ +

+ ⊗ + ⊗ + ⊗ +

+ ⊗ + ⊗ + ⊗

A e e e e e e

e e e e e e

e e e e e e

{ }, 1, 2,3i j∈
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Tensor Bases – 3rd ORDER TENSOR 

 A 3rd order tensor     can be written as a unique linear combination 
of the 27 tryads                                  for                         .  
 
 
 
 

 

Alternatively, this could have been written as: 

 

ˆ ˆ ˆ ˆ ˆ ˆi j k i j k⊗ ⊗ ≡e e e e e e
A

{ }, , 1, 2,3i j k∈

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )

1 1 1 1 2 1 1 3 1

2 1 1 2 2 1 2 3 1

3 1 1 3 2 1 3 3 1

1 1 2 1 2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ...

111 121 131

211 221 231

311 321 331

112 122

= ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗ +

+ ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗ +

+ ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗ +

+ ⊗ ⊗ + ⊗ ⊗ +

e e e e e e e e e

e e e e e e e e e

e e e e e e e e e

e e e e e e

A A A A

A A A

A A A

A A

1 1 1 1 2 1 1 3 1

2 1 1 2 2 1 2 3 1

3 1 1 3 2 1 3 3 1

1 1 2 1 2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ ...

111 121 131

211 221 231

311 321 331

112 122

= + + +
+ + + +
+ + + +
+ + +

e e e e e e e e e
e e e e e e e e e
e e e e e e e e e
e e e e e e

A A A A
A A A
A A A
A A

14 
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Tensor Bases – 3rd ORDER TENSOR 

 
 
 
 
 

 In matrix notation: 
 
 
 
 
 

  

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )

1 1 1 1 2 1 1 3 1

2 1 1 2 2 1 2 3 1

3 1 1 3 2 1 3 3 1

1 1 2 1 2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ...

111 121 131

211 221 231

311 321 331

112 122

= ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗ +

+ ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗ +

+ ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗ +

+ ⊗ ⊗ + ⊗ ⊗ +

e e e e e e e e e

e e e e e e e e e

e e e e e e e e e

e e e e e e

A



A A A

A A A

A A A

A A

113 123 133

213 223 233

313 323 333

 
 
 
 
 
 
  

A A A

A A A

A A A

112 122 132

212 222 232

312 322 332

 
 
 
 
 
 
 
 

A A A

A A A

A A A

111 121 131

211 221 231

311 321 331

 
 
 
 
 
 
  

A A A

A A A

A A A

[ ] =A
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Tensor Bases – 3rd ORDER TENSOR 

 
 
 
 
 

 In index notation: 

  ( )

( )

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ijk i j k
ijk

ijk i j k ijk i j k

= ⊗ ⊗ =

= ⊗ ⊗ ≡

∑ e e e

e e e e e e

A A

A A

[ ] ijkijk
=A A

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )

1 1 1 1 2 1 1 3 1

2 1 1 2 2 1 2 3 1

3 1 1 3 2 1 3 3 1

1 1 2 1 2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ...

111 121 131

211 221 231

311 321 331

112 122

= ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗

+ ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗ +

+ ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗ +

+ ⊗ ⊗ + ⊗ ⊗ +

e e e e e e e e e

e e e e e e e e e

e e e e e e e e e

e e e e e e

A A A A

A A A

A A A

A A

tensor as a 
physical entity 

component ijk of the tensor 
in the given basis { }, , 1, 2,3i j k∈
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 The Einstein Summation Convention: repeated Roman indices are 
summed over. 
 

 
 
 

 A “MUTE” (or DUMMY) INDEX is an index that does not appear in a 
monomial after the summation is carried out (it can be arbitrarily changed 
of “name”).  

 A “TALKING” INDEX is an index that is not repeated in the same 
monomial and is transmitted outside of it (it cannot be arbitrarily changed 
of “name”). 

3

1 1 2 2 3 3
1
3

1 1 2 2 3 3
1

i i i i
i

ij j ij j i i i
j

a b a b a b a b a b

A b A b A b A b A b

=

=

= = + +

= = + +

∑

∑

REMARK 
An index can only appear up 
to two times in a monomial.  

Repeated-index (or Einstein’s) Notation 

i is a mute 
index 

i is a talking 
index and j is a 

mute index  

18 
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Rules of this notation: 

1. Sum over all repeated indices. 

2. Increment all unique indices fully at least once, covering all 
combinations. 

3. Increment repeated indices first. 

4. A comma indicates differentiation, with respect to coordinate xi . 

 

5. The number of talking indices indicates the order of the tensor result 

Repeated-index (or Einstein’s) Notation 

3

,
1

i i
i i

ii i

u uu
x x=

∂ ∂
= =
∂ ∂∑

2 23

, 2
1

i i
i jj

jj j j

u uu
x x x=

∂ ∂
= =
∂ ∂ ∂∑

3

,
1

ij ij
ij j

jj j

A A
A

x x=

∂ ∂
= =
∂ ∂∑

19 



Kronecker Delta δ 

 The Kronecker delta δij is defined as: 
 
 
 

 Both i and j may take on any value in   
 Only for the three possible cases where i = j  is δij  non-zero. 

 
 

  
   

1
0ij

i j
i j

δ
=

=  ≠

if

if

( )
( )

11 22 33

12 13 21

1 1
0 ... 0ij

i j
i j

δ δ δ
δ

δ δ δ
= = = ==  ≠ = = =

if

if

ij jiδ δ=
REMARK 
Following Einsten’s notation:   
Kronecker delta serves as a replacement operator: 
 

11 22 33 3iiδ δ δ δ= + + =

,ij j i ij jk iku u A Aδ δ= =

20 
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Levi-Civita Epsilon (permutation) e 

 The Levi-Civita epsilon      is defined as: 
 

 
 
 
 

 3 indices     27 possible combinations.  
   

0
1 123, 231 312
1 213,132 321

ijk ijk
ijk


= + =
 − =

if there is a repeated index

if or

if or

e

REMARK 
The Levi-Civita symbol is also named 
permutation or alternating symbol. 

ijk ikj= −e e

ijke

21 

https://youtu.be/IqcSPiP4NwA?t=03m19s


Example 

 Prove the following expression is true: 

6ijk ijk =e e

23 

https://youtu.be/IqcSPiP4NwA?t=06m26s


211 211 212 212 213 213

221 221 222 222 223 223

231 231 232 232 233 233

+ + + +
+ + + +
+ + + +

e e e e e e
e e e e e e
e e e e e e

2i =

311 311 312 312 313 313

321 321 322 322 323 323

331 331 332 332 333 333

+ + + +
+ + + +
+ + +

e e e e e e
e e e e e e
e e e e e e

3i =

121 121 122 122 123 123+ + + +e e e e e e 2j =
131 131 132 132 133 133+ + + +e e e e e e 3j =

Example - Solution 

 
 
 

111 111 112 112 113 113ijk ijk = + + +e e e e e e e e
1=

1=

1=

1= −

1= −

1= −

6=

1i =

1j =
1k = 2k = 3k =

24 



Tensor Algebra 

Vector Operations 

25 



 Sum and Subtraction. Parallelogram law. 
 

 
 

 
 
 

 Scalar multiplication 
 

 

Vector Operations 

+ = + =
− =

a b b a c
a b d

1 1 2 2 3 3ˆ ˆ ˆa a aα α α α= = + +a b e e e

i i i

i i i

c a b
d a b
= +
= −

i ib aα=

26 
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 Scalar or dot product  yields a scalar 

 
 

 
 In index notation:  
 

 
 

 Norm of a vector 
 
 
 

 

 

Vector Operations 

cosθ⋅ =u v u v
where      is the angle 

between the vectors u and v 
θ

2 ˆ ˆi i j j i j ij i iu u u u u uu u e eu δ= ⋅ = ⋅ = =

( ) ( )1 2 1 2
i iu uu uu = ⋅ =

[ ] [ ]
3

1

ˆ ˆ ˆ ˆv v v v v
i

T
i i j j i j i j i j ij i i i i

i
u u u u uδ

=

=

 ⋅ = ⋅ = ⋅ = = = = 
 
∑u v e e e e u v

u v ijδ 0( )
1 ( )

i j
j i

= ≠
= =

27 

https://youtu.be/z3wB4c4yFdU?t=03m28s


 Some properties of the scalar or dot product 
 

 

Vector Operations 

( ) ( ) ( )
0

0
0
0, ,

u v v u
u 0
u v w u v u w
u u u 0
u u u 0
u v u 0 v 0 u v

α β α β

⋅ = ⋅
⋅ =

⋅ + = ⋅ + ⋅

⋅ > ≠
⋅ = =
⋅ = ≠ ≠ ⊥

Linear operator 

28 



 Vector product (or cross product )   yields another vector 

                                
     
 
 
 In index notation:  

 

Vector Operations 

sinθ
= × = − ×

=

c a b b a
c a b

i iˆ ˆi ijk j k i ijk j kc a b c a b i⇒= = = ∈c e ee e 

( ) ( ) ( )2 3 3 2 1 3 1 1 3 2 1 2 2 1 3ˆ ˆ ˆa b a b a b a b a b a b= − + − + −c e e e

where      is the angle 
between the vectors a and b 

θ

0 θ π≤ ≤

1 2 3

1 2 3

1 2 3

ˆ ˆ ˆ
det

symb
a a a
b b b

 
 =  
  

e e e

123 132
1 1

2 3 3 2a b a b
= =−

+
 

e e

1i =

 

231 3 1 213 1 3
1 1

a b a b
= =−

+e e

2i =

 

312 1 2 321 2 1
1 1

a b a b
= =−

+e e

3i =

29 
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 Some properties of the vector or cross product 
 

 

Vector Operations 

( )

( )
, , ||

a b a b

× = − ×

× = ≠ ≠

× + = × + ×

u v v u
u v 0 u 0 v 0 u v
u v w u v u w Linear operator 

30 



 Tensor product (or open or dyadic product) of two vectors:  
 

    Also known as the dyad of the vectors u and v, which results in a 2nd 
order tensor A. 

 Deriving the tensor product along an orthonormal basis {êi}: 
 
 
 

 In matrix notation: 

Vector Operations 

= ⊗ ≡A u v uv

( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆv vi i j j i j i j ij i ju u A= ⊗ = ⊗ = ⊗ = ⊗A u v e e e e e e

[ ] [ ][ ] [ ]v v v
1

T
2 1 2 3

3

u
u
u

 
 ⊗ = = = 
  

u v u v

[ ] [ ] v ,ij i jij ijA u i j= = ⊗ = ∈A u v 

v v v
v v v
v v v

1 1 1 2 1 3 11 12 13

2 1 2 2 2 3 21 22 23

3 1 3 2 3 3 31 32 33

u u u A A A
u u u A A A
u u u A A A

   
   =   
      

31 
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 Some properties of the open product: 
 

 
 

 

Vector Operations 

( ) ( ) ( ) ( )⊗ ⋅ = ⊗ ⋅ = ⋅ = ⋅u v w u v w u v w v w u

( ) ( )u v v u⊗ ≠ ⊗

( )α β α β⊗ + = ⊗ + ⊗u v w u v u w

( ) ( ) ( ) ( )⋅ ⊗ = ⋅ ⊗ = ⋅ = ⋅u v w u v w u v w w u v

( )( ) ( )( )⊗ ⊗ = ⊗ ⋅u v w x u x v w
Linear operator 

32 



Example 

 Prove the following property of the tensor product is true: 

( ) ( )⋅ ⊗ = ⋅ ⊗u v w u v w

33 



Tensor Algebra 

Tensor Operations 

39 



 Summation (only for equal order tensors) 
 
 

 Scalar multiplication (scalar times tensor) 
 

 

 
 

Tensor Operations 

+ = + =A B B A C

α =A C

ij ij ijC A B= +

ij ijC Aα=

40 

https://youtu.be/_1enpGkEhuc?t=00m00s


 Dot product (.) or single index contraction product 
 

 

 

 

 

 

 

 

 

 

 
 
 
 

 

 

Tensor Operations 

REMARK  
 2A A A⋅ =⋅ ≠ ⋅A B B A

Index “j” disappears (index 
contraction)  

i ij jc A b=
2nd 

order 
1st  

order 

⋅ =A b c
1st  

order 

Index “k” disappears (index 
contraction)  

ij i k kjC b=A⋅ =b CA
3rd  

order 
1st  

order 
2nd   

order 

Index “j” disappears (index 
contraction)  

ik i kj jC A B=⋅ =A B C
2nd   

order 
2nd   

order 
2nd   

order 

41 



 Some properties: 
 
 
 2nd order unit (or identity) tensor 

 
 

 

Tensor Operations 

⋅ = ⋅ =1 u u 1 u

[1]
ij j i i i

ij ij

δ

δ

= ⊗ = ⊗
 =

1 e e e e
[ ]

1 0 0

0 1 0

0 0 1

 
 =  
  

1

( )α β α β⋅ + = ⋅ + ⋅A b c A b A c Linear operator 

42 



 Some properties: 
 

 

 
 

 

2nd Order Tensor Operations 

( )
( ) ( )

⋅ = = ⋅

⋅ + = ⋅ + ⋅

⋅ ⋅ = ⋅ ⋅ = ⋅ ⋅

1 A A A 1
A B C A B A C

A B C A B C A B C
⋅ ≠ ⋅A B B A

43 
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Example 

 When does the relation                     hold true ?  ⋅ = ⋅n T T n

44 



 Transpose 
 

 

 

 

 

 Trace   yields a scalar 
 

 

 Some properties: 

 
 

2nd Order Tensor Operations 

[ ]T
jiij = AA

( ) 11 22 33( )iiTr A A A AA = = + +

( )A ATTr Tr=

( ) ( )Tr Tr⋅ = ⋅A B B A
( )Tr Tr Tr+ = +A B A B

( )Tr Trα α=A A

[ ] [ ]
11 12 13 11 21 31

21 22 23 12 22 32

31 32 33 13 23 33

T

A A A A A A
A A A A A A
A A A A A A

   
   = =   
      

A A

( ) i j i iTr Tr a b a b ⊗ = = = ⋅ a b a b

( )A A
TT =

( )T T T⋅ = ⋅A B B A

( )u v v uT⊗ = ⊗

( )A B A BT T Tα β α β+ = +

48 
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 Double index contraction or double (vertical) dot product (:) 
 
 
 
 

 

 

 

 

  Indices contiguous to the double-dot (:) operator get vertically repeated 
(contraction) and they disappear in the resulting tensor (4 order reduction of the sum 
of orders). 

 

 
 

 

2nd Order Tensor Operations 

Indices “i,j” disappear (double index 
contraction)  

ij ijc A B=
2nd 

order 
2nd   

order 

: c=A B
zero  
order 

(scalar) 

Indices “j,k” disappear (double index 
contraction)  

jk jki i B=c A: =B cA
3rd  

order 
2nd   

order 
1st    

order 

Indices “k,l” disappear (double index 
contraction)  

ij ijkl klC B= : =B CA
4th    

order 
2nd   

order 
2nd   

order 

49 
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 Some properties   
 

 
 
 

 

2nd Order Tensor Operations 

( ) ( ) ( ) ( ): :T T T TTr Tr Tr Tr= ⋅ = ⋅ = ⋅ = ⋅ =A B A B B A A B B A B A

( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )

: :

: : :

:

:

1 A A A 1

A B C B A C A C B

A u v u A v

u v w x u w v x

T T

Tr= =

⋅ = ⋅ = ⋅

⊗ = ⋅ ⋅

⊗ ⊗ = ⋅ ⋅ ⋅

REMARK  
 : :A B C B A C= ⇒ =

50 



 Double index contraction or double (horizontal) dot product (··) 
 
 
 
 

 

 

 

 

  Indices contiguous to the double-dot (··) operator get horizontally repeated 
(contraction) and they disappear in the resulting tensor (4 orders reduction  of the sum 
of orders). 

 
 

 

2nd Order Tensor Operations 

Indices “i,j” disappear (double index 
contraction)  

ij jic A B=
2nd 

order 
2nd   

order 

c⋅ ⋅ =A B

Indices “j,k” disappear (double index 
contraction)  

jk kji i B=c A⋅ ⋅ =B cA
3rd  

order 
2nd   

order 
1st    

order 

Indices “k,l” disappear (double index 
contraction)  

ij ijkl lkC B= ⋅ ⋅ =B CA
4th    

order 
2nd   

order 
2nd   

order 

zero  
order 

(scalar) 
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 Norm of a tensor is a non-negative real number defined by 
 
 
 

 

 

 

Tensor Operations 

REMARK 
 
Unless one of the two 
tensors is symmetric.  

:A B A B≠ ⋅⋅
Tr⋅ ⋅ = = ⋅⋅1 A A A 1

( ) ( )1 21 2: 0ij ijA A= = ≥A A A

( ) ( )Tr Tr⋅ ⋅ = ⋅ = ⋅ = ⋅⋅A B A B B A B A

52 



Example 

 Prove that: 

( )Tr⋅ ⋅ = ⋅A B A B

( ): TTr= ⋅A B A B

53 



 Determinant yields a scalar 

 
 
 Some properties: 

 

 

 

 Inverse  
   There exists a unique inverse A-1 of A when A is nonsingular, which 

satisfies the reciprocal relation: 

 

 

2nd Order Tensor Operations 

[ ]
11 12 13

21 22 23 1 2 3

31 32 33

1

6
det det detA A ijk i j k ijk pqr pi qj rk

A A A
A A A A A A A A A
A A A

 
 = = = = 
  

e e e

( )det det det⋅ = ⋅A B A B
det detA AT =

REMARK 
The tensor A is SINGULAR if and 
only if det A = 0.  
 

A is NONSINGULAR if det A ≠ 0. 

1 1

1 1 , , {1,2,3}ik kj ik kj ijA A A A i j kδ

− −

− −

 ⋅ = = ⋅


= = ∈

A A 1 A A

( ) 3det detα α=A A
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Example 

 Prove that                                  .  1 2 3det A ijk i j kA A A= e
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Differential Operators 

 A differential operator is a mapping that transforms a field  
                    into another field  by means of partial derivatives. 

 The mapping is typically understood to be linear. 

 Examples: 
 Nabla operator 
 Gradient 
 Divergence 
 Rotation 
 … 

( ) ( ), ...v x A x
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Nabla Operator 

 The Nabla operator  is a differential operator 
“symbolically” defined as: 
 
 

 In Cartesian coordinates, it can be used as a (symbolic) vector 
on its own: 

.
ˆ

symbolic symb

i
ix

∂ ∂
∇ = =

∂ ∂
e

x

[ ]
1

.

2

3

symb

x

x

x

 ∂
 ∂ 
 ∂

∇ =  ∂ 
 ∂
 
∂ 
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Gradient 

 The gradient (or open product of Nabla) is a differential 
operator defined as: 
 Gradient of a scalar field  Φ(x): 

 Yields a vector 
 

 
 
 Gradient of a vector field  v(x): 

 Yields a 2nd order tensor 

 
 

[ ] [ ] [ ]

[ ]

.

{1, 2,3}

ˆ ˆ

symb

i i i
i i

i ii
i

i
x x

x

∂ ∂Φ ∇Φ = ∇⊗Φ = ∇ Φ = Φ = ∈ ∂ ∂
 ∂Φ∇Φ = ∇Φ =
 ∂

e e

[ ] [ ] [ ]

[ ]

. v
v , {1,2,3}

v
ˆ ˆ ˆ ˆ

symb
j

jij i j
i i

j
i j i jij

i

i j
x x

x

∂ ∂
∇⊗ = ∇ = = ∈ ∂ ∂

 ∂∇ = ∇⊗ = ∇⊗ ⊗ = ⊗ ∂

v v

v v v e e e e

ˆ i
ix

∂Φ
∇Φ =

∂
e

v
ˆ ˆj

i j
ix

∂
∇ = ⊗

∂
v e e
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Gradient 

 Gradient of a 2nd order tensor field  A(x): 

 Yields a 3rd order tensor 

[ ] [ ] [ ] [ ]

[ ]

. A
A , , {1,2,3}

A
ˆ ˆ ˆ ˆ ˆ ˆ

symb
jk

jkijk ijk i jk
i i

jk
i j k i j kijk

i

i j k
x x

x

∂ ∂
∇ = ∇⊗ = ∇ = = ∈ ∂ ∂

 ∂∇ = ∇⊗ = ∇⊗ ⊗ ⊗ = ⊗ ⊗ ∂

A A A

A A A e e e e e e

A
ˆ ˆ ˆjk

i j k
ix

∂
∇ = ⊗ ⊗

∂
A e e e
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Divergence 

 The divergence (or dot product of Nabla) is a differential 
operator defined as : 
 Divergence of a vector field  v(x): 

 Yields a scalar  
  

 

 Divergence of a 2nd order tensor  A(x): 

 Yields a vector 
 

 

vi

ix
∂

∇ ⋅ =
∂

v[ ] [ ]
. vv

symb
i

ii i
i ix x

∂∂
∇ ⋅ = ∇ = =

∂ ∂
v v

A
ˆij

j
ix

∂
∇ ⋅ =

∂
A e

[ ] [ ] [ ]

[ ]

. A
A {1,2,3}

A
ˆ ˆ

symb
ij

j iji ij
i i

ij
j jj

i

j
x x

x

∂ ∂
∇ ⋅ = ∇ = = ∈ ∂ ∂

 ∂∇ ⋅ = ∇ ⋅ = ∂

A A

A A e e
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Divergence 

 
 The divergence can only be performed on tensors of order 1 or 

higher.  
 

 If               , the vector field          is said to be solenoid (or 
divergence-free). 

0∇⋅ =v ( )v x
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Rotation 

 The rotation or curl (or vector product of Nabla)  is a differential 
operator defined as: 
 Rotation of a vector field v(x): 

 Yields a vector 
 
 
 
 

 Rotation of a 2nd order tensor A(x): 

 Yields a 2nd order tensor 
 

v ˆv ek
ijk i

jx
∂

∇× =
∂

e

A ˆ ˆA e ekl
ijk i l

jx
∂

∇× = ⊗
∂

e

[ ] [ ] [ ]

[ ]

. . vv {1,2,3}

vˆ ˆ

v v

v v e e

symb symb
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i ijk ijk k ijkj k
j j
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i i ijk i

j
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x x

x
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 ∂

e e e
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x x
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 ∂

e e

e
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Rotation 

 
 The rotation can only be performed on tensors of order 1 or 

higher. 
 

 If               , the vector field          is said to be irrotational (or    
curl-free). 

0∇× =v ( )v x
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Differential Operators - Summary 

scalar field 
Φ(x) 

vector field  
v(x) 

2nd order tensor  
A(x) 

GRADIENT 

 
 
 
 

DIVERGENCE 

 
 
 
 

ROTATION 
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Example 

 Given the vector                                                                    
determine 

 

( ) 1 2 3 1 1 2 2 1 3ˆ ˆ ˆx x x x x x= = + +v v x e e e
, , .∇⋅ ∇× ∇v v v
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Example - Solution 

 
 
 

 Divergence: 

 vi

ix
∂

∇ ⋅ =
∂
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31 2
2 3 1

1 2 3

v vv vi

i

x x x
x x x x
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1

x x x
x x
x

 
 =  
  

v( ) 1 2 3 1 1 2 2 1 3ˆ ˆ ˆx x x x x x= = + +v v x e e e
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Example - Solution 

 Divergence: 

 
 

 In matrix notation: 
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ix
∂
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∂
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1 2 3

1 2
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Divergence or Gauss Theorem 

 Given a field      in a volume V with closed boundary surface 
∂V and unit outward normal to the boundary n ,  the 
Divergence (or Gauss) Theorem states: 
 

 
 
 
 

  Where: 
     represents either a vector field ( v(x) ) or a tensor field ( A(x) ). A

A

V V
dV dS

∂
∇ ⋅ = ⋅∫ ∫ nA A

V V
dV dS

∂
⋅∇ = ⋅∫ ∫ nA A
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Generalized Divergence Theorem 

 Given a field      in a volume V with closed boundary surface 
∂V  and unit outward normal to the boundary n ,  the 
Generalized Divergence Theorem states: 
 

 
 
 

  Where: 
      represents either the dot product ( · ), the cross product (  ) or the 

tensor product (  ). 
       represents either a scalar field ( ϕ(x) ), a vector field ( v(x) ) or a 

tensor field ( A(x) ). 

V V
dV dS

∂
∇∗ = ∗∫ ∫ nA A

V V
dV dS

∂
∗∇ = ∗∫ ∫ nA A

A

∗

A
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jn

Example 

 Use the Generalized Divergence Theorem to show that 
 
 
where       is the position vector of      . 

i j ijS
x n dS Vδ=∫

jnix

V V
dS dV

∂
∗ = ∗∇∫ ∫nA A
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